JPS629375B2 - - Google Patents

Info

Publication number
JPS629375B2
JPS629375B2 JP8554179A JP8554179A JPS629375B2 JP S629375 B2 JPS629375 B2 JP S629375B2 JP 8554179 A JP8554179 A JP 8554179A JP 8554179 A JP8554179 A JP 8554179A JP S629375 B2 JPS629375 B2 JP S629375B2
Authority
JP
Japan
Prior art keywords
weight
parts
ferrous carbonate
oxygen
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8554179A
Other languages
Japanese (ja)
Other versions
JPS5610328A (en
Inventor
Motohisa Aoki
Isao Kawakami
Masami Nishihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Teikoku Kako Co Ltd
Original Assignee
Mitsubishi Kasei Corp
Teikoku Kako Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp, Teikoku Kako Co Ltd filed Critical Mitsubishi Kasei Corp
Priority to JP8554179A priority Critical patent/JPS5610328A/en
Priority to US06/087,498 priority patent/US4299719A/en
Publication of JPS5610328A publication Critical patent/JPS5610328A/en
Publication of JPS629375B2 publication Critical patent/JPS629375B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は容器内の圧力変化の少い新しい脱酸素
剤に関するものである。詳しくは本発明は密閉容
器内の圧力変動巾を容器の変形により内容物の商
品性を損傷しない範囲に小さくする炭酸第1鉄を
主成分とした脱酸素剤に関するものである。 しかして本発明の脱酸素剤は炭酸第1鉄と生石
灰及び/又はエトリンジヤイト、必要に応じアル
カリ金属、アルカリ土類金属の水酸化物を含んだ
ものである。 近年透明なプラスチツクを用いて食品類を商品
本来の形状に合せて立体的に包装し、商品の外観
を美しくし、購売意欲をそゝることが行われてい
る。又最近包装容器内に脱酸素剤を存在させ、容
器内の酸素を除去することにより酸化・腐敗など
の商品劣化の原因を除去することの優位性が注目
され、脱酸素剤の採用が各方面に見られるように
なつた。 しかしながら、現在知られている多くの脱酸素
剤の場合、使用時間の経過と共に収納する容器内
が極端に減圧あるいは加工の状態になつてしま
う。 一般に用いられている包装容器の多くのもの
は、容器内が絶対圧力0.85atm以下、場合によつ
ては0.9atm以下となるとへこんで変形し、また
1.15atm以上、場合によつて1.10atm以上となる
と脹らんで座りが悪くなる。 包装材料、包装容器は年々進歩し、新らしい材
料が登場している。従つて場合によつては益益軽
量化、簡略化して容器の耐圧性が弱くなることが
予想される。 従つてこれからの脱酸素剤としては収容される
容器内の圧力を0.85〜1.15atm以内に維持するこ
とができることが必要となつてくる。 我々が開発した脱酸素剤の炭酸第1鉄の場合、
これだけを用いた場合、使用中に容器内の圧力は
高くなり24時間後には、絶対圧力1.3〜1.5atmと
なる。これにアルカリ金属及び/又はアルカリ土
類金属の水酸化物を併用して炭酸第1鉄の酸化に
より発生する過剰の炭酸ガスを吸収しても脱酸素
反応時間内の包装容器内絶対圧力を0.9〜1.1atm
以内に納めることは困難で、量を多くすれば脱酸
素初期に0.9atm以下となり、量を少くすれば脱
酸素後期に1.1atmを超えてしまい脱酸素反応が
進行している全期間を通して目標とする圧力範囲
内に保持するのはむつかしい。 我々はかゝる要請を満足させるため種々検討を
重さねた結果本発明に到達した。 即ち炭酸第1鉄を主体とし、これに生石灰又
は/及びエトリンジヤイト更に必要に応じアルカ
リ金属及び/又はアルカリ土類金属の水酸化物を
添加したものである。 本発明で使用する炭酸第1鉄は比表面積が少く
とも20m2/gのものが好ましく、更に50m2/g以
上のものが実用的である。また種々検討した結果
結晶子が400Å以下のものが好ましい特性を示
す。これら以外のものは脱酸素反応がおそすぎ、
あるいは少なくて通常の使用に供する脱酸素剤と
して満足すべきものではない。 本発明で用いる炭酸第1鉄は、例えば硫酸第1
鉄のような第1鉄塩を水に溶解し、空気を絶つて
炭酸ソーダ等の炭酸アルカリを添加して、炭酸第
1鉄を生成させ、適宜凝集剤等を加えて沈殿を凝
集させ、空気を絶つて別、乾燥して製造する。 本発明で使用する生石灰アルカリ金属、アルカ
リ土類金属の水酸化物は試薬グレードのものを使
用し、エトリンジヤイトは結晶性で3CaO・
Al2O3・3CaSO4・32H2Oなる組成を有する物質で
あるが、天然のものでも合成のものでもいずれで
もよい。なお合成のエトリンジヤイトは、例えば
石灰石、ボーキサイトおよび石膏を高温で焼成し
た後水和するとか、硫酸アルミニウムを水の存在
下に可溶性カルシウム塩と反応させることにより
容易に製造される。 本発明で用いるアルカリ金属水酸化物としては
水酸化ナトリウム、水酸化カリウムが挙げられ、
またアルカリ土類金属水酸化物としては水酸化カ
ルシウム、水酸化マグネシウムなどが挙げられ
る。炭酸第1鉄とこれらの化合物との混合割合
は、単独で用いる場合及び複合して用いる場合を
夫々表−1に示す。表−1の割合は使用条件に応
じ適宜選定される。
The present invention relates to a new oxygen scavenger that causes little pressure change within a container. Specifically, the present invention relates to an oxygen absorber containing ferrous carbonate as a main component, which reduces the range of pressure fluctuation within a closed container to a range that does not damage the marketability of the contents due to deformation of the container. Therefore, the oxygen scavenger of the present invention contains ferrous carbonate, quicklime and/or ettringite, and, if necessary, an alkali metal or alkaline earth metal hydroxide. In recent years, transparent plastic has been used to package food products in a three-dimensional manner that conforms to the original shape of the product, thereby making the product look more beautiful and discouraging people from purchasing it. Recently, attention has been paid to the superiority of having an oxygen absorber in the packaging container to eliminate the causes of product deterioration such as oxidation and spoilage by removing the oxygen inside the container. It started to be seen in However, in the case of many of the currently known oxygen scavengers, the inside of the container in which they are stored becomes extremely reduced in pressure or processed as the usage time progresses. Many commonly used packaging containers become dented and deformed when the absolute pressure inside the container is below 0.85 atm, and in some cases below 0.9 atm.
If it exceeds 1.15 atm, or in some cases 1.10 atm, it will swell and make you uncomfortable to sit on. Packaging materials and packaging containers are improving year by year, and new materials are appearing. Therefore, depending on the case, it is expected that the pressure resistance of the container will become weaker due to the benefit of weight reduction and simplification. Therefore, future oxygen scavengers will need to be able to maintain the pressure within the container in which they are housed within 0.85 to 1.15 atm. In the case of ferrous carbonate, the oxygen scavenger we developed,
When only this is used, the pressure inside the container increases during use and reaches an absolute pressure of 1.3 to 1.5 atm after 24 hours. Even if an alkali metal and/or alkaline earth metal hydroxide is used in combination to absorb excess carbon dioxide gas generated by oxidation of ferrous carbonate, the absolute pressure inside the packaging container during the deoxidation reaction time is 0.9 ~1.1atm
It is difficult to keep the value within this range; if the amount is increased, it will be less than 0.9 atm in the early stage of deoxidation, and if the amount is decreased, it will exceed 1.1 atm in the late stage of deoxidation, and the target value will be maintained throughout the entire period when the deoxidation reaction is progressing. It is difficult to maintain the pressure within this range. We have arrived at the present invention as a result of various studies to satisfy these demands. That is, it is mainly composed of ferrous carbonate, to which quicklime and/or ettringite and, if necessary, alkali metal and/or alkaline earth metal hydroxides are added. The ferrous carbonate used in the present invention preferably has a specific surface area of at least 20 m 2 /g, and more preferably 50 m 2 /g or more. Further, as a result of various studies, crystallites of 400 Å or less have favorable characteristics. Other than these, the deoxidation reaction is too slow,
Or, at the very least, it is not satisfactory as an oxygen scavenger for normal use. The ferrous carbonate used in the present invention is, for example, ferrous sulfate.
Ferrous salt such as iron is dissolved in water, air is removed, and an alkali carbonate such as soda carbonate is added to produce ferrous carbonate.A coagulant is added as appropriate to coagulate the precipitate, and air is removed. Separately, dry and manufacture. The quicklime alkali metal and alkaline earth metal hydroxides used in the present invention are of reagent grade, and ettringite is crystalline and 3CaO.
The substance has the composition Al 2 O 3 .3CaSO 4 .32H 2 O, and it may be either a natural substance or a synthetic substance. Synthetic ettringite can be easily produced, for example, by calcining limestone, bauxite, and gypsum at high temperatures and then hydrating them, or by reacting aluminum sulfate with a soluble calcium salt in the presence of water. Examples of the alkali metal hydroxide used in the present invention include sodium hydroxide and potassium hydroxide,
Examples of alkaline earth metal hydroxides include calcium hydroxide and magnesium hydroxide. The mixing ratio of ferrous carbonate and these compounds is shown in Table 1 when used alone and when used in combination. The ratios in Table 1 are appropriately selected depending on the conditions of use.

【表】 使用目的、使用条件に応じて表−1の割合を適
当に選ばないと、脱酸素反応の全期間を通じて包
材を設計されたまゝの形に保持することが困難と
なる。更に一時的にでも減圧状態を経過し変形を
来たしてしまうと、その後絶対圧1.15atm程度に
圧力が加わつてももとの状態に復帰することはほ
とんどなく、復帰する程の圧力では今度はふくら
みすぎてしまう。又一時的にしろ減圧を経ると内
容物が変形してしまうのが一般的である。 本剤の使用量は除去すべき酸素量100ml(空気
にして約500ml)当り炭酸第1鉄として2〜15g
を、望ましくは4〜8gを使用すれば十分であ
る。使用量については脱酸素すべき容器の大き
さ、すなわち酸素量の多少によつて決まつてくる
ものであるが、その他容器の気密の程度によつて
も変わつてくる。気密性が良好でない容器内を無
酸素状態に保つ場合には、長時間脱酸素作用が持
続されるよう多量の脱酸素剤を使用して、徐々に
脱酸素効果が発揮するように使用態様を工夫する
必要がある。 前述したように炭酸第1鉄の脱酸素反応には水
が関与するので脱酸素するには水の存在が必要で
ある。脱酸素剤が存在する系内に水が十分存在す
れば特に剤に水を加える必要はないが、十分存在
しない時には不足分を補給する。普通、炭酸第1
鉄に対して10〜35重量部が必要である。この水は
種々の形態で系内に加えられる。即ち炭酸第1鉄
に含水させるか、あるいは他の物質に含浸させて
加えるか、その他種々の方法が考えられるが、い
ずれにしても水は物質を保存する時に良い効果を
もたらすことは少ないから、多過ぎないようによ
く調整すべきである。炭酸第1鉄と表−1に示し
たアルカリ性物質とは夫々粉末状であり、予め混
合した後袋に入れたり又袋に入れる時に混合した
り更に別々に袋に充填し外袋の中には脱酸素のた
めに2種類の袋を入れて使用したりいずれの様態
で使用することも可能である。本脱酸素剤の包装
形態としては、通常先ずこの脱酸素剤を紙、ラミ
ネート紙、プラスチツクフイルム等のガス透過性
の袋に収納する。これをガス不透過性の材料で製
造した袋等の容器に封入、保存する。これを脱酸
素するべき容器内に予め外袋の封を切つて収納し
て密封すればよい。 本発明の脱酸素剤は菓子類、特に油菓子類、ケ
ーキ類の保存、その他果物の過熟防止、毛皮の防
虫、光学機械類の防かび等広い範囲の使用に適す
るもので、これを使用した場合に収納容器内の圧
力が増えたり減つたりして、容器が変形したり、
破損することがなく、安心して使用することがで
きる。 以下に実施例を挙げて発明を具体的に説明する
が、本発明はこれら実施例に制限されるものでは
ない。 なお実施例で用いたエトリンジヤイトは次のよ
うに調製したものである。 すなわち白石工業社のサチン ホワイト(商標
名)(エトリンジヤイト水性スラリー)1Kgをア
セトン2に懸濁させ、過し、更にアセトンで
洗浄した後、風乾した。 炭酸第1鉄の製造 硫酸第1鉄7水塩1Kg(3.6mole)を蒸留水6
に溶かし撹拌下窒素雰囲気中で炭酸ナトリウム
0.4Kg(3.76mole)を添加し、炭酸第1鉄を得
た。炭酸ソーダ添加後のPHは7.5であつた。その
後凝集剤ダイヤクリヤーMA−3000Hを反応液に
対し5ppm加え炭酸第1鉄の沈殿を凝集させた。
過は窒素置換したドライボツクス内で行い、蒸
留水で3回洗浄し硫酸ナトリウムの付着分を除去
した。窒素置換した真空乾燥機に炭酸第1鉄渣
を入れ、減圧下、80℃約12時間乾燥した。 乾燥品はドライボツクス内で小分け秤量して、
水分測定、鉄3価イオンの分析及び脱酸素実験に
供した。水分は気化器を250℃で操作し、気化ガ
スをカールフイツシヤー試薬液に導入し測定した
ところ13.8%含まれていた。本試料を窒素ガス気
流中でガス透過性を適当に調節した小袋に小分け
秤量し一旦シールし、これらを高ガスバリヤー性
のフイルムで作つた袋に入れ、更にシールした。 実施例 1
[Table] Unless the proportions shown in Table 1 are selected appropriately according to the purpose of use and conditions of use, it will be difficult to maintain the packaging material in its designed shape throughout the entire period of the deoxidation reaction. Furthermore, if the decompression occurs even temporarily and deformation occurs, it will hardly return to its original state even if pressure is applied to an absolute pressure of about 1.15 atm, and if the pressure is high enough to restore it, it will swell again. It's too much. Furthermore, the contents are generally deformed when the pressure is reduced, even if only temporarily. The amount of this agent used is 2 to 15 g of ferrous carbonate per 100 ml of oxygen to be removed (approximately 500 ml of air).
It is sufficient to use preferably 4 to 8 g. The amount used is determined by the size of the container to be deoxidized, that is, the amount of oxygen, but it also varies depending on the degree of airtightness of the container. When maintaining an oxygen-free condition in a container that is not airtight, use a large amount of oxygen scavenger to maintain the oxygen scavenging effect for a long time, and use the method so that the oxygen scavenging effect gradually takes effect. We need to devise ways to do this. As mentioned above, since water is involved in the deoxidation reaction of ferrous carbonate, the presence of water is necessary for deoxygenation. If there is sufficient water in the system containing the oxygen scavenger, there is no need to add water to the agent, but if there is not enough water, the shortage is replenished. Normal, carbonated 1st
10 to 35 parts by weight of iron are required. This water is added into the system in various forms. In other words, various methods can be considered, such as adding water to ferrous carbonate or impregnating it with other substances, but in any case, water rarely has a positive effect when preserving substances. It should be adjusted carefully so that it is not too much. Ferrous carbonate and the alkaline substances shown in Table 1 are each in powder form, and they can be mixed in advance and then put into a bag, or mixed when being put into a bag, or filled into bags separately, and placed inside the outer bag. It is also possible to use two types of bags for deoxidation, or to use them in either manner. The oxygen absorber is usually packaged in a gas-permeable bag made of paper, laminated paper, plastic film, or the like. This is sealed and stored in a container such as a bag made of a gas-impermeable material. This can be stored in a container to be deoxidized with the outer bag sealed in advance and sealed. The oxygen absorber of the present invention is suitable for a wide range of uses, such as preserving confectionery, especially oil confectionery and cakes, preventing overripeness of other fruits, preventing insects from fur, and preventing mold from optical machinery. If this occurs, the pressure inside the storage container may increase or decrease, causing the container to deform or
It will not be damaged and can be used with confidence. The invention will be specifically described below with reference to Examples, but the invention is not limited to these Examples. The ettringite used in the examples was prepared as follows. Specifically, 1 kg of Sachin White (trade name) (Ettringite aqueous slurry) manufactured by Shiraishi Kogyo Co., Ltd. was suspended in 2 parts of acetone, filtered, further washed with acetone, and then air-dried. Production of ferrous carbonate 1 kg (3.6 mole) of ferrous sulfate heptahydrate is mixed with distilled water 6
Sodium carbonate dissolved in a nitrogen atmosphere under stirring
0.4Kg (3.76mole) was added to obtain ferrous carbonate. The pH after adding soda carbonate was 7.5. Thereafter, 5 ppm of a flocculant Diaclear MA-3000H was added to the reaction solution to flocculate the ferrous carbonate precipitate.
Filtration was carried out in a dry box purged with nitrogen, and the sample was washed three times with distilled water to remove adhering sodium sulfate. The ferrous carbonate residue was placed in a vacuum dryer purged with nitrogen and dried at 80°C for about 12 hours under reduced pressure. Dried products are divided into portions and weighed in a dry box.
It was used for moisture measurement, trivalent iron ion analysis, and deoxidation experiments. The moisture content was determined to be 13.8% by operating the vaporizer at 250°C and introducing the vaporized gas into the Karl Fischer reagent solution. This sample was weighed and divided into small bags whose gas permeability was appropriately adjusted in a nitrogen gas stream, and the bags were sealed, and these bags were placed in a bag made of a film with high gas barrier properties, which was further sealed. Example 1

【表】 窒素置換したドライボツクスの中で上記表2に
示したA,B夫々を秤量し新日本アルク製の孔ポ
リ+紙ラミネートフイルム(ガーレの透気度=3
万秒)巾60m/m×長さ80m/mに充填・シールし
これを更にポリエチレンの袋で包んだ。ナイロ
ン/塩化ビニリデン/ポリエチレンをラミネート
したガスバリヤー性の袋にサンプル口をつけ、ポ
リエチレンの袋に包んだ試料A,Bそれぞれの袋
を入れた。別に用意したガスバリヤー性フイルム
にO2=20%、N2=80%のメーキヤツプ エアー
(makedup Air)を入れ、試料A,Bの入つた袋
及び秤量用のガスサンプラーとともに20℃に空調
された部屋に約1hr放置した。メーキヤツプ エ
アーをガスサンプラーで500ml秤り取りサンプリ
ング口からA,Bの試料の入つた袋に注入し、そ
の後ポリエチレンの袋を破つてガスと試料A,B
それぞれの接触を開始した。酸素及び炭酸ガス量
の変化をガスクロマトグラフにより測定した接触
後の酸素濃度及び時間ゼロのときのモル数を1.0
とした気相モル比の変化を図−1,2に示す。 実施例 2
[Table] Weighed each of A and B shown in Table 2 above in a nitrogen-substituted dry box, and prepared a porous poly + paper laminate film manufactured by Shin Nippon Alc (air permeability of Gurley = 3).
10,000 seconds) was filled and sealed to a width of 60 m/m x length of 80 m/m, which was further wrapped in a polyethylene bag. A sample opening was attached to a gas barrier bag made of a nylon/vinylidene chloride/polyethylene laminate, and samples A and B each wrapped in a polyethylene bag were placed in the bag. A separately prepared gas barrier film was filled with make-up air containing 20% O 2 and 80% N 2 , and was air-conditioned at 20°C along with bags containing samples A and B and a gas sampler for weighing. I left it in the room for about 1 hour. Make Cap Weigh out 500ml of air with a gas sampler and inject it into the bags containing samples A and B from the sampling port, then tear the polyethylene bags and add the gas and samples A and B.
Initiated each contact. Changes in the amount of oxygen and carbon dioxide were measured using a gas chromatograph.The oxygen concentration after contact and the number of moles at zero time were 1.0.
Figures 1 and 2 show the changes in the gas phase molar ratio. Example 2

【表】 操作は実施例1と全く同じに行つた。結果を図
3〜7に示した。但しBは試料の入つた孔ポリ紙
ラミート充填袋を30min空気中に放置してから実
験を開始した結果である。 実施例 3
[Table] The operation was carried out in exactly the same manner as in Example 1. The results are shown in Figures 3-7. However, B is the result of starting the experiment after leaving the perforated plastic paper laminate bag containing the sample in the air for 30 minutes. Example 3

【表】 実施例1に準じて操作し、その結果を図−8及
び図−9に示した。 比較例 1 含水炭酸第1鉄6.0g、水分=13.6%のみを用
いて、実施例1に準じて操作し、その結果を図−
10に示した。 実施例 4 含水炭酸第1鉄6.03g、含水率=14.1%、CaO
=2.0gを用いて、実施例1に準じて操作した。
結果を図−11に示した。この結果からわかるこ
とは、当然のことながら生石灰といえども、適量
をはずして添加すると、所期の効果を奏すること
はできないということである。
[Table] The procedure was carried out according to Example 1, and the results are shown in Figures 8 and 9. Comparative Example 1 Using only 6.0 g of hydrated ferrous carbonate and moisture = 13.6%, the procedure was carried out according to Example 1, and the results are shown in Figure -
10. Example 4 Hydrous ferrous carbonate 6.03g, water content = 14.1%, CaO
The procedure was performed according to Example 1 using = 2.0 g.
The results are shown in Figure 11. This result shows that, of course, even quicklime cannot produce the desired effect if added in an inappropriate amount.

【図面の簡単な説明】[Brief explanation of the drawing]

図−1〜9及び11は本願発明の実施例の各脱
酸素剤の脱酸素効果の経時変化を示すグラフであ
り、図−10は比較例としての脱酸素剤の脱酸素
効果の経過変化を示すグラフである。図中実線は
酸素濃度を、点線は気相モル比を示す。
Figures 1 to 9 and 11 are graphs showing changes over time in the oxygen scavenging effect of each oxygen scavenger in Examples of the present invention, and Figure 10 is a graph showing changes over time in the oxygen scavenging effect of the oxygen scavenger as a comparative example. This is a graph showing. In the figure, the solid line indicates the oxygen concentration, and the dotted line indicates the gas phase molar ratio.

Claims (1)

【特許請求の範囲】 1 炭酸第1鉄と、生石灰及び/又はエトリンジ
ヤイトとを含有することを特徴とする脱酸素剤。 2 炭酸第1鉄100重量部及び生石灰6〜25重量
部を含有する特許請求の範囲第1項記載の脱酸素
剤。 3 炭酸第1鉄100重量部及びエトリンジヤイト
12〜50重量部を含有する特許請求の範囲第1項記
載の脱酸素剤。 4 炭酸第1鉄100重量部、生石灰4〜20重量部
及びエトリンジヤイト10〜40重量部を含有する特
許請求の範囲第1項記載の脱酸素剤。 5 炭酸第1鉄100重量部、生石灰3〜18重量
部、エトリンジヤイト8〜35重量部及びアルカリ
金属水酸化物4〜16重量部を含有する特許請求の
範囲第1項記載の脱酸素剤。 6 炭酸第1鉄100重量部、生石灰3〜18重量
部、エトリンジヤイト8〜35重量部及びアルカリ
土類水酸化物4〜16重量部を含有する特許請求の
範囲第1項記載の脱酸素剤。
[Claims] 1. An oxygen scavenger characterized by containing ferrous carbonate, quicklime and/or ettringite. 2. The oxygen scavenger according to claim 1, which contains 100 parts by weight of ferrous carbonate and 6 to 25 parts by weight of quicklime. 3 100 parts by weight of ferrous carbonate and ettringite
The oxygen scavenger according to claim 1, containing 12 to 50 parts by weight. 4. The oxygen scavenger according to claim 1, which contains 100 parts by weight of ferrous carbonate, 4 to 20 parts by weight of quicklime, and 10 to 40 parts by weight of ettringite. 5. The oxygen scavenger according to claim 1, which contains 100 parts by weight of ferrous carbonate, 3 to 18 parts by weight of quicklime, 8 to 35 parts by weight of ettringite, and 4 to 16 parts by weight of an alkali metal hydroxide. 6. The oxygen scavenger according to claim 1, which contains 100 parts by weight of ferrous carbonate, 3 to 18 parts by weight of quicklime, 8 to 35 parts by weight of ettringite, and 4 to 16 parts by weight of alkaline earth hydroxide.
JP8554179A 1978-10-23 1979-07-06 Constant pressure type deoxidizer Granted JPS5610328A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP8554179A JPS5610328A (en) 1979-07-06 1979-07-06 Constant pressure type deoxidizer
US06/087,498 US4299719A (en) 1978-10-23 1979-10-23 Deoxidizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8554179A JPS5610328A (en) 1979-07-06 1979-07-06 Constant pressure type deoxidizer

Publications (2)

Publication Number Publication Date
JPS5610328A JPS5610328A (en) 1981-02-02
JPS629375B2 true JPS629375B2 (en) 1987-02-27

Family

ID=13861721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8554179A Granted JPS5610328A (en) 1978-10-23 1979-07-06 Constant pressure type deoxidizer

Country Status (1)

Country Link
JP (1) JPS5610328A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3538549A1 (en) * 1985-10-30 1987-05-07 Hoechst Ag WATER-DETERMINABLE PRINTING INK BINDING SYSTEM AND ITS USE AS PRINTING INK
US10559479B2 (en) 2018-02-27 2020-02-11 Toshiba Memory Corporation Semiconductor manufacturing apparatus and manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JPS5610328A (en) 1981-02-02

Similar Documents

Publication Publication Date Title
US4299719A (en) Deoxidizer
US4384972A (en) Foodstuff freshness keeping agents
US3419400A (en) Packaging foods-production of oxygen-free packages
US5322701A (en) Carbon dioxide absorbent packet and process
US4166807A (en) Oxygen absorbent
US6274210B1 (en) Oxygen scavenging compositions with low migration
EP1550506B1 (en) Oxygen scavenger composition
KR20080066780A (en) Moisture-resistant deoxidant
US5993688A (en) Oxygen scavenging metal-loaded ion-exchange compositions
CA2324595C (en) Oxygen scavenging compositions and methods for making same
US5798055A (en) Oxygen scavenging metal-loaded ion-exchange compositions
JPS629375B2 (en)
US4102803A (en) Oxygen-consuming composition
JPH0130530B2 (en)
CA1318742C (en) Packaging sheet for perishable goods
JPS629376B2 (en)
JPS59210844A (en) Preservation of coffee
JPS626846B2 (en)
KR830001818B1 (en) Deoxidant
JPS6141606B2 (en)
JPS6120339B2 (en)
JP2822440B2 (en) Oxygen scavenger
JPS63233769A (en) Freshness-keeping agent
JPS59205942A (en) Preservation of coffee
JPS6261298B2 (en)