JPS6293485A - Combustion light air-fuel ratio sensor - Google Patents

Combustion light air-fuel ratio sensor

Info

Publication number
JPS6293485A
JPS6293485A JP23121085A JP23121085A JPS6293485A JP S6293485 A JPS6293485 A JP S6293485A JP 23121085 A JP23121085 A JP 23121085A JP 23121085 A JP23121085 A JP 23121085A JP S6293485 A JPS6293485 A JP S6293485A
Authority
JP
Japan
Prior art keywords
light
fuel ratio
air
combustion
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23121085A
Other languages
Japanese (ja)
Other versions
JPH0684938B2 (en
Inventor
Hiroshi Kuroiwa
弘 黒岩
Takashige Ooyama
宜茂 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23121085A priority Critical patent/JPH0684938B2/en
Publication of JPS6293485A publication Critical patent/JPS6293485A/en
Publication of JPH0684938B2 publication Critical patent/JPH0684938B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Testing Of Engines (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To enable the air-fuel ratio of high accuracy to be detected even in a case that the detection surface of flame light is stained and the transmitted quantity of light is small, by detecting the emission strength of the radical ingredients of the combustion gas of visible radiation range with both light receiving elements, and calculating the air-fuel ratio by these output signal ratios. CONSTITUTION:Combustion flame light introduced from the detection end 3 of the combustion flame light is conducted to an optical fiber cable 4, and is forked therefrom to be conducted to two light catching sensors 5, 6 which are different each other in the emission strength of the CH radical of combustion gas or a spectral sensitivity characteristic. The light receiving elements 5, 6 are connected to a driving process circuit 7 to carry out photoelectric transferring therein, and the signals are conducted to a controller 8 which consists of a microprocessor. In the controller 8, the signals from the driving process circuit 7 are calculated and processed, and the information of an air-fuel ratio is obtained. When the air-fuel ratio is rich, the combustion light is reddish and its wave length is big, and when the air-fuel ratio is lean, the combustion light becomes bluish and its wave length becomes small. Thereby, which wave length ranges of flame become many can be discriminated by taking the ratio of the output signals, so that the judgement of the air-fuel ratio can be obtained.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は内燃機関の燃焼火炎光の状態より空燃比を・光
学的に検出するための燃焼光空燃比センサに関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a combustion light air-fuel ratio sensor for optically detecting an air-fuel ratio from the state of combustion flame light of an internal combustion engine.

〔発明の背景・] 内燃機関の燃焼室内の燃焼火炎光より空燃比を検出する
方法としては、英国特許第1388384号に記載のよ
うなものがあった。これは、燃焼火炎の赤外域の光の放
射強度が空燃比によって変化し、しかもその強度のピー
クが理論空燃比と一致することに着目したものである。
[Background of the Invention] As a method of detecting an air-fuel ratio from combustion flame light in a combustion chamber of an internal combustion engine, there is a method as described in British Patent No. 1,388,384. This method focuses on the fact that the radiation intensity of infrared light from a combustion flame changes depending on the air-fuel ratio, and the peak of the intensity coincides with the stoichiometric air-fuel ratio.

しかし、この方法の場合、火炎光検出面の汚れ等によっ
て光強度が変化し、十分な空燃比検出精度を得ることが
できないという不具合いを有していた。また、理論空燃
比をピークとした出力特性は2値特性になるから処理が
複雑になるという問題点があった。
However, this method has the disadvantage that the light intensity changes due to dirt or the like on the flame light detection surface, making it impossible to obtain sufficient air-fuel ratio detection accuracy. Furthermore, since the output characteristic with the peak at the stoichiometric air-fuel ratio becomes a binary characteristic, there is a problem in that processing becomes complicated.

〔発明の目的〕[Purpose of the invention]

本発明の目的とするどろは、上記従来技術の不具合い点
である燃焼火炎光検出面の汚れに伴う空燃比検出誤差の
増大、ならびに理論空燃比をピークとした出力特性に伴
う二値特性の両問題を解消し、空燃比に対して比例的な
信号を1.lユ記検出面の汚れの大小に関わりなく常に
安定して出力する燃焼光空燃比センサを提供することに
ある。
The aim of the present invention is to solve the problem of the conventional technology described above, which is an increase in the air-fuel ratio detection error due to dirt on the combustion flame light detection surface, and an increase in the binary characteristic due to the output characteristic with the peak of the stoichiometric air-fuel ratio. Both problems are solved and a signal proportional to the air-fuel ratio is created by 1. An object of the present invention is to provide a combustion optical air-fuel ratio sensor that always outputs stably regardless of the amount of dirt on a detection surface.

〔発明の概要〕[Summary of the invention]

本発明は、燃焼火炎の可視光域の火炎の色が空燃比によ
って変化することに着目し、この可視光域の燃焼ガスの
ラジカル成分(C2+ CH+0TT)の発光強度をそ
れぞれ受光素子で検出し、これらの強度比、すなオ)ち
出力信号比より空燃比を求める方法を案出したものであ
る。この方法により、火炎光検出面が汚れ、火炎光の透
過光量が小さくなった場合でも精度良く空燃比を検出す
ることができ、実用性のある燃焼光空燃比センサを構築
できる。
The present invention focuses on the fact that the color of combustion flame in the visible light range changes depending on the air-fuel ratio, and detects the emission intensity of the radical component (C2+ CH+0TT) of the combustion gas in the visible light range with a light receiving element, We devised a method for determining the air-fuel ratio from these intensity ratios, that is, the output signal ratios. By this method, the air-fuel ratio can be detected with high accuracy even when the flame light detection surface is dirty and the amount of transmitted flame light is small, and a practical combustion light air-fuel ratio sensor can be constructed.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面を用いて詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明になる燃焼光空燃比センサを用いたエン
ジン制御装置の全体構成を示したものである。エンジン
1の燃焼室2に開口する形で燃焼火炎光検出端3を装着
しており、これは点火プラグと一体化されている。なお
本実施例では、複数低部エンジンの場合、代表気筒1個
のみに火炎光検出端;3が設けられているものとする。
FIG. 1 shows the overall configuration of an engine control device using a combustion optical air-fuel ratio sensor according to the present invention. A combustion flame light detection end 3 is installed to open into the combustion chamber 2 of the engine 1, and is integrated with a spark plug. In this embodiment, in the case of a plurality of lower engine engines, it is assumed that only one representative cylinder is provided with the flame light detection end 3.

この燃焼火炎光検出端3により導出された燃焼火炎光は
光フアイバーケーブル4へ導かれ、二分岐されて分光感
度持性の異なる二つの受光素子5,6にそれぞれ導びか
れる。受光素子5.6は駆動処理回路7と接続されてお
り、ここで光電変換が行われ、その信号はマイクロコン
ピュータよりなるコントローラ8に導びかれる。コント
ローラ8には、エアフローメータ9.絞り弁10の開度
センサ、クランク角センサ11、水温センサ12等の各
種エンジン情報信号が人力されている。コントローラ8
では駆動処理回路7からの2つの信号を演算処理し、空
燃比の情報をmる。そして、前記各種運転情報信号と空
燃比倍1)より最適燃料噴射に、点火時期を決定し、そ
の制御信号を燃料噴射弁13、点火時期制御装置14に
送る。燃料噴射弁]3ではその制御信号により開弁時間
が制御され噴射燃料社が計獣される。−・方5点火時期
制御装置14ではその制御信号によって点火プラグ;(
に印加する高電圧の供給時期が調整され、送り出される
。なお、ここではマルチポイント式の燃料噴射システム
を例にとって示したが、シングルポイント式、気化器式
等でも同様に構成することができる。
The combustion flame light led out by this combustion flame light detection end 3 is guided to an optical fiber cable 4, branched into two, and guided to two light receiving elements 5 and 6 having different spectral sensitivities. The light receiving element 5.6 is connected to a drive processing circuit 7, where photoelectric conversion is performed, and the signal is guided to a controller 8 consisting of a microcomputer. The controller 8 includes an air flow meter 9. Various engine information signals such as an opening sensor for the throttle valve 10, a crank angle sensor 11, and a water temperature sensor 12 are manually generated. controller 8
Then, the two signals from the drive processing circuit 7 are processed to obtain information on the air-fuel ratio. Then, the ignition timing is determined for optimum fuel injection based on the various operating information signals and the air-fuel ratio multiplied by 1), and the control signal is sent to the fuel injection valve 13 and the ignition timing control device 14. In the fuel injection valve 3, the valve opening time is controlled by the control signal, and the amount of fuel injected is measured. -・5 The ignition timing control device 14 uses the control signal to plug the ignition plug; (
The supply timing of the high voltage applied to the is adjusted and sent out. Although a multi-point fuel injection system is shown here as an example, a single-point fuel injection system, a carburetor type, etc. can be similarly configured.

第2図は燃焼火炎光検出端3の詳細図であって、燃焼火
炎光導出のため、直径約1. awuの石英ガラスファ
イバ15を点火プラグの中心軸を貫通する形で配設しで
ある。すなわち、中心電極16、高圧端子軸17の中心
軸部を開口し、ここに石英ガラスファイバ15を入れ、
この三者及び碍子18の固着と気密保持は銅入りガラス
シール材19を第2図のごとく入れ、加熱炉で加熱して
溶融状態となったところで高圧端子17をに方より下方
にプレスすることにより各部隙間に流動させて封着した
ものである。火炎光の検出面15 aは、燃焼室全域か
らの光をとり込めるように球状あるいは円錐状に構成さ
れ、これによって燃焼室内の平均的な空燃比が検出可能
となる。なお、栓体20は通常の点火プラグのもので十
分であり、その先端に側方電極21が付設していること
も同様である。
FIG. 2 is a detailed view of the combustion flame light detection end 3, which has a diameter of about 1 mm for guiding the combustion flame light. A quartz glass fiber 15 of AWU is disposed so as to pass through the central axis of the spark plug. That is, the central shaft portions of the center electrode 16 and the high voltage terminal shaft 17 are opened, and the quartz glass fiber 15 is inserted therein.
To fix these three parts and the insulator 18 and maintain airtightness, put the copper-containing glass sealing material 19 as shown in Fig. 2, heat it in a heating furnace, and when it becomes molten, press the high voltage terminal 17 downward from the side. The material was sealed by allowing it to flow into the gaps between parts. The flame light detection surface 15a is configured in a spherical or conical shape so as to capture light from the entire area of the combustion chamber, thereby making it possible to detect the average air-fuel ratio within the combustion chamber. Note that a normal spark plug is sufficient as the plug body 20, and a side electrode 21 attached to the tip thereof is also the same.

第3図は燃焼火炎光検出端3から受光素子5゜6までの
光伝送系の詳細図の一例である。燃焼火炎光検出端3の
燃焼室と反対側の石英ファイバ部はコネクタ22によっ
てバンドルファイバ23と連接されている。また、この
=1ネクタ22と−・体内に固着された形で高圧端子2
4が装着されている。これは−例であり、光ファイバの
場合、周知のように電気的に無誘導性であるので点火プ
ラグの高圧コートと前記バンドルファイバーを−・本化
して構成することもでき、用途に応じてその構成法を決
めればよい。なお、受光素子5,6に燃焼火炎光を導く
ためのバンドルファイバ23とは、周知のように被覆材
25によって数本から数10本のファイバを束ねたもの
で(断面A)、この例では直径250μm(コア径22
0μm、クラツド径250μm)の多成分ガラスファイ
バを19本束ねてその外径は前記石英ファイバ径とほぼ
同じ大きさの約1.2+nmPA度としている。このよ
うに径をそろえることによって結合部での損失を極力小
さくするようにしている。このバンドルファイバを分岐
部27で分岐し、断面13及びCに示したようなガラス
ファイバ10本と1)本のバンドルファイバとし、コネ
クタ28,2nを介して受光素子5,6に燃焼火炎光を
導く構成としている。
FIG. 3 is an example of a detailed diagram of the optical transmission system from the combustion flame light detection end 3 to the light receiving element 5.6. A quartz fiber portion of the combustion flame light detection end 3 on the side opposite to the combustion chamber is connected to a bundle fiber 23 by a connector 22. In addition, this =1 connector 22 and the high voltage terminal 2 are fixed inside the body.
4 is installed. This is just an example; as is well known, optical fiber is electrically non-inductive, so it is possible to combine the high-voltage coat of the spark plug with the bundle fiber, depending on the application. All you have to do is decide how to configure it. The bundle fiber 23 for guiding the combustion flame light to the light-receiving elements 5 and 6 is, as is well known, a bundle of several to several dozen fibers bound together with a covering material 25 (cross section A). Diameter 250 μm (core diameter 22
Nineteen multi-component glass fibers each having a diameter of 0 μm and a cladding diameter of 250 μm are bundled together and have an outer diameter of approximately 1.2+nm PA degree, which is approximately the same as the diameter of the quartz fiber. By aligning the diameters in this way, loss at the joint is minimized. This bundle fiber is branched at the branching part 27 to form 10 glass fibers and 1) bundle fiber as shown in the cross sections 13 and C, and the combustion flame light is transmitted to the light receiving elements 5 and 6 via the connectors 28 and 2n. The structure is designed to guide

な才?、バンドルファイバ23に代って通常の琳芯ファ
イバを用いることもできるが、そのときは貼芯ファイバ
の後端に光分岐器を設置して各受光素子へ火炎光を導く
What talent? In place of the bundle fiber 23, a normal phosphor cored fiber may be used, but in that case, an optical splitter is installed at the rear end of the cored fiber to guide the flame light to each light receiving element.

第4図は受光素子5及び6の分光感度持性a及びbを示
す。受光素子5は430nm付近にピークがあり、これ
は燃焼ガスのCTTラジカルの発光波長432. n 
mに近く、このCHラジカルの発光強度の検出を行う。
FIG. 4 shows the spectral sensitivities a and b of the light receiving elements 5 and 6. The light receiving element 5 has a peak around 430 nm, which corresponds to the emission wavelength of CTT radicals in the combustion gas, 432. n
m, and the emission intensity of this CH radical is detected.

また、受光素子6は520nm付近にピークがあり、こ
れはC2・ラジカルの発光波長51.6 n mに近く
、とのC2・ラジカル発光強度の検出を行う。この様な
受光素子は色検出を行うフォトダイオード、いわゆるカ
ラーセンサのうち、青色検出用(a特性相当)、緑色検
出用(b特性相当)を用いれば容易に実現できる。
Further, the light receiving element 6 detects the C2 radical emission intensity, which has a peak near 520 nm, which is close to the C2 radical emission wavelength of 51.6 nm. Such a light-receiving element can be easily realized by using a photodiode for color detection, a so-called color sensor, for blue detection (equivalent to A characteristic) and for green detection (equivalent to B characteristic).

このような受光素子は一般に第5図に示したごとく、照
度に対して出力信号が変化する特性を有しており、エン
ジンの運転状態が変化し、燃焼状態が変化することに伴
う火炎光の照度変化を何らかの方法により補正すること
が必要となってくる。
As shown in Figure 5, such light-receiving elements generally have the characteristic that the output signal changes depending on the illuminance, and the flame light changes as the engine operating condition changes and the combustion condition changes. It becomes necessary to correct illuminance changes by some method.

そのために本発明では受光素子5と6の出力信号の比を
とる。すなわち、前述したように、濃い空燃比のときは
燃焼火炎は赤色を帯び(波長が大きく)、薄い空燃比に
なると青色を帯び(波長が小さく)でくるので、上記出
力信号の比をとることにより、いずれの波長帯の火炎が
多くなってきたが判別でき空燃比を類推することができ
る。
To this end, in the present invention, the ratio of the output signals of the light receiving elements 5 and 6 is determined. In other words, as mentioned above, when the air-fuel ratio is rich, the combustion flame becomes reddish (larger wavelength), and when the air-fuel ratio becomes leaner, it becomes bluerish (smaller wavelength), so the ratio of the above output signals should be taken. This makes it possible to determine which wavelength band the number of flames is increasing, and to infer the air-fuel ratio.

第6文は受光素子5,6の駆動処理回M7と、コントロ
ーラ8内のマイクロコンピュータ35、A/Dコンバー
タ34を示したもので、受光素子5.6はそれぞれ演算
増幅器30.31に第6図に示したような複数の抵抗を
配して回路′4杖し、信号増幅を行う。ここで用いた演
算増幅器は両電源タイプのものであり、出力信号は−か
ら十まで電圧レベルで変化する。ここで得られたアナロ
グの出力電圧はそれぞれピークホールド回路32゜33
を介してA/Dニンバータ34に導びかれ、ディジタル
信号に変換された後にマイクロコンピュータ35へ入力
され、両信号の比より空燃比信号を求める演算処理が実
行される。この第6図の制御のタイl−チャートは、第
7図に示されており、クランク角センサ11より求まる
上死点信号S11 (第1回)より少し遅れて受光素子
6及び5からの出力信号S6,85のピークが生じる。
The sixth sentence shows the drive processing circuit M7 for the light receiving elements 5 and 6, the microcomputer 35 in the controller 8, and the A/D converter 34. Signal amplification is performed by arranging a plurality of resistors as shown in the figure to form a circuit '4. The operational amplifier used here is of a dual power supply type, and the output signal changes in voltage level from - to 10. The analog output voltage obtained here is peak hold circuit 32°33
The signal is led to the A/D inverter 34 via the A/D inverter 34, converted into a digital signal, and then input to the microcomputer 35, where arithmetic processing is executed to obtain an air-fuel ratio signal from the ratio of both signals. The control tie chart of FIG. 6 is shown in FIG. A peak of signal S6,85 occurs.

従ってこれをピークホールド回路33.32によってホ
ールド(第7図86.S5の点線)、更に」二死点S 
]、 1からクランク角fix及びθ2だけ遅れたサン
プリングパルスSPi、SP2 (マイクロコンピュー
タ35からAIDコンバータ34へ与えられる)によっ
てA/Dコンバータ34へ取り込まれ、ここでディジタ
ル信号に変換され、続いてマイクロコンピュータ;35
で両者の比の演算が実行されて空燃比が求められる。な
お、各出力信号86.S5のホールド値は、上死点Sl
lからクランク角Oδ (01,θ2より大で数度〜数
十度)の点でマイクロコンピュータ35からの指令Ml
 、Mxによってリセットされる。
Therefore, this is held by the peak hold circuit 33.32 (dotted line in Fig. 7, 86.S5), and further
], Sampling pulses SPi and SP2 (given from the microcomputer 35 to the AID converter 34) delayed from 1 by the crank angle fix and θ2 are taken into the A/D converter 34, where they are converted into digital signals, and then the microcomputer Computer; 35
The calculation of the ratio between the two is executed to obtain the air-fuel ratio. Note that each output signal 86. The hold value of S5 is top dead center Sl
The command Ml from the microcomputer 35 at the crank angle Oδ (01, larger than θ2, several degrees to several tens of degrees) from l.
, Mx.

ところで、受光素子5,6からの出力信号S5゜S6は
、毎サイクルごどにそのピーク値が変動している。これ
は、エンジン燃焼室に供給される混金気の空燃比が毎サ
イクルごとに変!!l+ tノでいるためであり、この
サイクルごとの空燃比信号により燃料量の閉ループ制御
をその都度実行すると、さらに変動を増長した不安定な
制御系となる恐れがある。したがって、分節iサイクル
の出力信号を85 (i) 、86 (i)とかくと、
第nサイクルの時点では V+s = (85(n) +85 (n−1) 十−
+85 (n−N+1))/N−(1)Vs = (8
6(n) +86 (n−1) 十−+86 (n−N
+1) ) /11・・(2)のごとくN回分の平均値
VI!、Ve を求め、この両者の比より空燃比を求め
て制御を行うようにするのがよい。
Incidentally, the peak values of the output signals S5 and S6 from the light receiving elements 5 and 6 vary every cycle. This is because the air-fuel ratio of the metal mixture supplied to the engine combustion chamber changes every cycle! ! This is because the air-fuel ratio signal remains at 1+t.If closed-loop control of the fuel amount is executed each time based on the air-fuel ratio signal for each cycle, there is a risk that the control system will become unstable with even more fluctuations. Therefore, if the output signals of segment i cycle are written as 85 (i) and 86 (i), then
At the time of the nth cycle, V+s = (85(n) +85 (n-1) 10-
+85 (n-N+1))/N-(1)Vs = (8
6(n) +86 (n-1) 10-+86 (n-N
+1) ) /11... Average value VI of N times as shown in (2)! , Ve are determined, and the air-fuel ratio is determined from the ratio of the two to perform control.

第8図はこのようにして空燃比に対する上記VFI。FIG. 8 thus shows the above VFI with respect to the air-fuel ratio.

v6を求めた結果であり1両者とも理論空燃比A/F=
14.7 付近で最も出力が大きく、それより濃くても
、薄くても出力は小さくなる傾向にある。これは、燃焼
火炎の照度そのものが濃い領域になるほど、また薄い領
域になるほど小さくなることに起因している。したがっ
てこの両者の比r = V e / V e     
        ・・・(3)を求めると、第9図のよ
うな特性が得られる。すなわち、濃い領域(旧Ch)で
はOHラジカル(432n m)に比べてC2ラジカル
(5]6nm)の発光強度が大きくなり(火炎が赤みを
帯びてくる)、その比rは大きくなる。一方、逆に薄い
空燃比領域(1,θan)になると、CHに比べて’C
x・の発光強度が小さくなり、火炎は青みを帯びてくる
ため、その比rは小さくなり、結局、第9図に示すよう
に空燃比変化に対してほぼ比例的な信号rを得ることが
できる。したがって、第9図の特性を予めマイクロコン
ピュータ35に関数として記憶させておくか、あるいは
マツプ値として記憶させておくことにより、rの値から
空燃比A/Fの信号を求めることができる。また、A/
Fの絶対値が必要ない場合はrの値そのものを利用して
、所定の設定値からの偏差修正制御を実行しても良い。
This is the result of finding v6, and both are the theoretical air-fuel ratio A/F=
The output is highest near 14.7, and the output tends to be smaller even if it is darker or thinner than that. This is due to the fact that the illuminance of the combustion flame itself becomes smaller as the area becomes darker and as the area becomes thinner. Therefore, the ratio between the two is r = Ve/Ve
...When (3) is determined, the characteristics shown in FIG. 9 are obtained. That is, in the dark region (old Ch), the emission intensity of C2 radicals (5]6 nm) is greater than that of OH radicals (432 nm) (the flame becomes reddish), and the ratio r becomes large. On the other hand, in the thin air-fuel ratio region (1, θan), 'C
As the light emission intensity of can. Therefore, by storing the characteristics shown in FIG. 9 in advance in the microcomputer 35 as a function or as a map value, the signal of the air-fuel ratio A/F can be obtained from the value of r. Also, A/
If the absolute value of F is not required, the value of r itself may be used to perform deviation correction control from a predetermined set value.

以上の実施例に於ては、代表気筒に1個だけ燃暁光空燃
比センサをとりつけるものとしたが、これを各気筒に設
置して各気筒毎の空燃比を検出し、各気筒毎に燃料敏を
制御すれば、よりち密な空燃比制御が可能となる。但し
この構成では、例えば4気筒エンジンの場合、受光素子
の数け2×4−8ケ必要となり、バンドルファイバも2
分岐のものが4本必要となる。さらに他の情報(ノック
信号、燃焼開始時期信号)を同時に抽出しようとすると
さらにファイバ数、受光素子数が増え、複雑化するとと
もにニス1−アップともなってくる。第10図はこれら
の問題に解決するための実施例を示したもので、各気筒
の火炎光検出器3 A −3nからそれぞれ光ファイバ
4Δ〜−′IDで光結合器48に光を導びき、ここで4
本を結合する。四サイクルエンジンの場合約3/4は暗
視野であり、各気筒間は交互に爆発行程(明視野)とな
るので、このように各気筒分を−・つにまとめても、ど
の気筒の信号であるかの判別は電低信号に変換されたの
ちに容易に行える。光結合器48でまとめた光信号はそ
の後、光分岐器49に導びき必要な光路の数に分岐する
。第10図では空燃比検出用の受光素子50.51に伝
送するものとノック、燃焼開始時期検出用受光素子52
に伝送するものとに分けである。破線の部分53は光モ
ジユール化すればさらにコンパクトな構造にできる。本
実施例によると、多気筒エンジンの場合の各気筒での空
燃比検出及びノック信号等の検出を行う場合にも光ファ
イバや受光素子数を節約できる。
In the above embodiment, only one fuel-dawn optical air-fuel ratio sensor is attached to the representative cylinder, but this sensor is installed in each cylinder to detect the air-fuel ratio of each cylinder, and to detect the air-fuel ratio of each cylinder. By controlling the air-fuel ratio, it becomes possible to control the air-fuel ratio more precisely. However, with this configuration, for example, in the case of a 4-cylinder engine, 2 x 4-8 light receiving elements are required, and 2 bundle fibers are required.
Four branches are required. Furthermore, if other information (knock signal, combustion start timing signal) is to be extracted at the same time, the number of fibers and the number of light-receiving elements will further increase, which will make the system more complicated and will also result in an increase in varnish. FIG. 10 shows an embodiment for solving these problems, in which light is guided from the flame photodetector 3A-3n of each cylinder to the optical coupler 48 through optical fibers 4Δ to -'ID. , where 4
Combine books. In the case of a four-cycle engine, about 3/4 is dark field, and the explosion stroke (bright field) alternates between each cylinder, so even if you combine each cylinder into one in this way, the signal of any cylinder will be different. This can be easily determined after it is converted into a low voltage signal. The optical signals combined by the optical coupler 48 are then guided to an optical splitter 49 and branched into the required number of optical paths. Fig. 10 shows what is transmitted to the light receiving elements 50 and 51 for air-fuel ratio detection, and the light receiving element 52 for knock and combustion start timing detection.
It is divided into what is transmitted and what is transmitted. The broken line portion 53 can be made into a more compact structure by forming it into an optical module. According to this embodiment, the number of optical fibers and light receiving elements can be saved when detecting the air-fuel ratio and the knock signal in each cylinder in a multi-cylinder engine.

また、以−I−では空燃比の検出を02ラジカル及びC
IIラジカルの発光波浪の強度から行うものとしたが、
これをCI−TラジカルとOHラジカルの同様な計測で
行うようにしてもほぼ同様な結果が得られ、またCx、
 C)T 、 OT■各ラジカルをすべて利用すればよ
り検出精度を高めることができる。
In addition, in the following I-I, the air-fuel ratio is detected using 02 radicals and C
This was done based on the intensity of the emission waves of II radicals, but
Almost similar results were obtained even if this was done by measuring CI-T radicals and OH radicals in the same way, and Cx,
C) T, OT■ If all of each radical is used, detection accuracy can be further improved.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば、燃焼火炎光検出端の検
出面がカーボン等で汚れ、光の透過量が減少したときで
も、各波長の光量の比は殆ど変化しないから、汚れの影
響を受けずに空燃比の検出が行えるという効果があり、
また従来の排気管に設ける空燃比センサ等とはちがって
各気筒へとりつけて気筒ごとの空燃比制御を大きな遅れ
時間なしで行え、高速制御、排気浄化、燃費低減、その
他運転性の向−Lをはかれる。更に検出値と空燃比が一
対一の単調な特性であるから、制御の場合には空燃比の
正確な値は必要でなく、演算で求めた比rをそのまま用
いることができ、制御系統の処理量をへらすことができ
るという効果もある。
As described above, according to the present invention, even when the detection surface of the combustion flame light detection end is contaminated with carbon etc. and the amount of transmitted light is reduced, the ratio of the amount of light of each wavelength hardly changes, so the influence of the dirt The effect is that the air-fuel ratio can be detected without being affected by
Also, unlike conventional air-fuel ratio sensors installed in the exhaust pipe, it can be attached to each cylinder to control the air-fuel ratio for each cylinder without a large delay time, improving high-speed control, exhaust purification, fuel efficiency reduction, and other drivability improvements. be measured. Furthermore, since the detected value and the air-fuel ratio have a monotonous one-to-one characteristic, an accurate value of the air-fuel ratio is not required for control, and the ratio r obtained by calculation can be used as is, and the control system processing It also has the effect of reducing the amount.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明になる燃焼光空燃比センサを用いたエン
ジン制御装置の全体構成図、第2図は燃焼火炎光検出端
の構造図、第3図は燃焼火炎光検出端から光電変換部ま
での光伝送部の詳細図、第4図は受光素子の分光感度持
性図、第5図はその照度に対する特性図、第6図は光電
変換信号処理部の回路構成図、第7図はそのタイムチャ
ート、第8図は空燃比と受光素子出力平均値との関係を
示す図、第9図は空燃比と受光素子出力の比の関係を示
す図、第10図は複数気筒の空燃比検出に適した本発明
の他の実施例を示す図である。 3・・・燃焼火炎光検出端、5,6・・・受光素子、7
・・・起動処理回路、8・・・コントローラ。
Fig. 1 is an overall configuration diagram of an engine control device using the combustion light air-fuel ratio sensor according to the present invention, Fig. 2 is a structural diagram of the combustion flame light detection end, and Fig. 3 is a photoelectric conversion section from the combustion flame light detection end. Figure 4 is a diagram of the spectral sensitivity of the light-receiving element, Figure 5 is its characteristic diagram with respect to illuminance, Figure 6 is a circuit configuration diagram of the photoelectric conversion signal processing unit, and Figure 7 is a detailed diagram of the optical transmission section up to The time chart, Figure 8 is a diagram showing the relationship between the air-fuel ratio and the average light-receiving element output value, Figure 9 is a diagram showing the relationship between the air-fuel ratio and the ratio of the light-receiving element output, and Figure 10 is the air-fuel ratio of multiple cylinders. FIG. 6 shows another embodiment of the invention suitable for detection. 3... Combustion flame light detection end, 5, 6... Light receiving element, 7
...Start-up processing circuit, 8...Controller.

Claims (1)

【特許請求の範囲】[Claims] 1.内燃機関の燃焼室から焼燃火炎光を外部へ導出する
ための燃焼火炎光検出端と、該検出端により導出された
火炎光を複数個に分岐するための光分岐手段と、該手段
からの各火炎光を電気信号に変換するための相異なる分
光感度持性を有する受光手段と、該受光手段の各々の出
力電気信号のピーク値を検出しさらにそれらのピーク値
の比から空燃比信号を算出する演算処理手段とを有した
ことを特徴とする燃焼光空燃比センサ。
1. A combustion flame light detection end for guiding combustion flame light from the combustion chamber of an internal combustion engine to the outside, a light branching means for branching the flame light derived from the detection end into a plurality of parts, and a light branching means for branching the flame light derived from the detection end into a plurality of pieces, A light receiving means having different spectral sensitivities for converting each flame light into an electric signal, detecting the peak value of each output electric signal of the light receiving means, and further detecting an air-fuel ratio signal from the ratio of these peak values. 1. A combustion optical air-fuel ratio sensor comprising: arithmetic processing means for calculating.
JP23121085A 1985-10-18 1985-10-18 Combustion light air-fuel ratio sensor Expired - Lifetime JPH0684938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23121085A JPH0684938B2 (en) 1985-10-18 1985-10-18 Combustion light air-fuel ratio sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23121085A JPH0684938B2 (en) 1985-10-18 1985-10-18 Combustion light air-fuel ratio sensor

Publications (2)

Publication Number Publication Date
JPS6293485A true JPS6293485A (en) 1987-04-28
JPH0684938B2 JPH0684938B2 (en) 1994-10-26

Family

ID=16920060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23121085A Expired - Lifetime JPH0684938B2 (en) 1985-10-18 1985-10-18 Combustion light air-fuel ratio sensor

Country Status (1)

Country Link
JP (1) JPH0684938B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0378639A (en) * 1989-08-22 1991-04-03 Hitachi Ltd Evaluating and controlling devices of combustion
US5033434A (en) * 1989-03-08 1991-07-23 Rover Group Limited Method of controlling an internal combustion engine
WO2005045379A1 (en) * 2003-11-05 2005-05-19 Yamatake Corporation Flame detection method and flame detection device
CN102680090A (en) * 2012-05-16 2012-09-19 常州第二电子仪器有限公司 Light radiation detecting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5033434A (en) * 1989-03-08 1991-07-23 Rover Group Limited Method of controlling an internal combustion engine
JPH0378639A (en) * 1989-08-22 1991-04-03 Hitachi Ltd Evaluating and controlling devices of combustion
WO2005045379A1 (en) * 2003-11-05 2005-05-19 Yamatake Corporation Flame detection method and flame detection device
CN102680090A (en) * 2012-05-16 2012-09-19 常州第二电子仪器有限公司 Light radiation detecting device

Also Published As

Publication number Publication date
JPH0684938B2 (en) 1994-10-26

Similar Documents

Publication Publication Date Title
KR930000346B1 (en) Lean burn controller in internal combustion engine
US5659133A (en) High-temperature optical combustion chamber sensor
KR960016168B1 (en) Air-fuel ratio detecting sensor
US4444169A (en) Air-fuel ratio controlling device for internal combustion engines
US7207214B1 (en) Glow plug integrated pressure sensor
US4437334A (en) Method and apparatus for detecting knocking combustion
SE8006561L (en) PROBLEM FOR Saturation of acid content in exhaust gas from internal combustion engines
JPS6293485A (en) Combustion light air-fuel ratio sensor
MXPA02008499A (en) Exhaust port gasket with cylinder-specific electronic oxygen sensors.
JPS6017239A (en) Control device of combustion in internal-combustion engine
GB2098756A (en) Fibre optic vehicle control arrangements and methods
JP3784768B2 (en) Gas concentration sensor
JPS6123928A (en) Spectral analyzing device for combustion flame using optical fiber
DE3039879A1 (en) Optical probe for IC engine combustion chamber - has several phototransistors coupled by optical fibre cable to combustion chamber window, each responsive to different wavelength
JPS63302163A (en) Lean burn control device
JPS60166739A (en) Actuation timing controller for internal-combustion engine
JPH048285Y2 (en)
JPS62261819A (en) Air-fuel ratio detector
JPS61247839A (en) Fuel ratio control system
JPH01247740A (en) Detecting device for local air-fuel ratio
JPS6435081A (en) Engine controller
KR0169629B1 (en) A lambda sensor with thermister
JPH01305342A (en) Measuring device for air fuel ratio of engine
JPS60113126A (en) Intra-cylinder pressure detection type engine controller
Ohyama et al. Study on Optical Combustion Sensor for Spark Ignition Engine