JPH0684938B2 - Combustion light air-fuel ratio sensor - Google Patents

Combustion light air-fuel ratio sensor

Info

Publication number
JPH0684938B2
JPH0684938B2 JP23121085A JP23121085A JPH0684938B2 JP H0684938 B2 JPH0684938 B2 JP H0684938B2 JP 23121085 A JP23121085 A JP 23121085A JP 23121085 A JP23121085 A JP 23121085A JP H0684938 B2 JPH0684938 B2 JP H0684938B2
Authority
JP
Japan
Prior art keywords
light
fuel ratio
combustion
air
detection end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23121085A
Other languages
Japanese (ja)
Other versions
JPS6293485A (en
Inventor
弘 黒岩
宜茂 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23121085A priority Critical patent/JPH0684938B2/en
Publication of JPS6293485A publication Critical patent/JPS6293485A/en
Publication of JPH0684938B2 publication Critical patent/JPH0684938B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Testing Of Engines (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は内燃機関の燃焼火炎光の状態より空燃比を光学
的に検出するための燃焼光空燃比センサに関するもので
ある。
Description: FIELD OF THE INVENTION The present invention relates to a combustion light air-fuel ratio sensor for optically detecting the air-fuel ratio from the state of combustion flame light of an internal combustion engine.

〔発明の背景〕[Background of the Invention]

内燃機関の燃焼室内の燃焼火炎光より空燃比を検出する
方法としては、英国特許第1388384号に記載のようなも
のがあつた。これは、燃焼火炎の赤外域の光の放射強度
が空燃比によつて変化し、しかもその強度のピークが理
論空燃比と一致することに着目したものである。しか
し、この方法の場合、火炎光検出面の汚れ等によつて光
強度が変化し、十分な空燃比検出精度を得ることができ
ないという不具合いを有していた。また、理論空燃比を
ピークとした出力特性は2値特性になるから処理が複雑
になるという問題点があつた。
As a method for detecting the air-fuel ratio from the combustion flame light in the combustion chamber of an internal combustion engine, there is a method described in British Patent No. 1388384. This is because the radiation intensity of the light in the infrared region of the combustion flame changes depending on the air-fuel ratio, and the peak of the intensity coincides with the theoretical air-fuel ratio. However, in the case of this method, there is a problem in that the light intensity changes due to dirt on the flame light detection surface or the like, and sufficient air-fuel ratio detection accuracy cannot be obtained. In addition, the output characteristic having the peak of the stoichiometric air-fuel ratio becomes a binary characteristic, so that the processing becomes complicated.

〔発明の目的〕[Object of the Invention]

本発明の目的とするとろは、上記従来技術の不具合い点
である燃焼火炎光検出面の汚れに伴う空燃比検出誤差の
増大、ならびに理論空燃比をピークとした出力特性に伴
う二値特性の両問題を解消し、空燃比に対して比例的な
信号を、上記検出面の汚れの大小に関わりなく常に安定
して出力する燃焼光空燃比センサを提供することにあ
る。
The purpose of the present invention is to increase the air-fuel ratio detection error due to the contamination of the combustion flame light detection surface, which is a disadvantage of the above-mentioned conventional technology, and the binary characteristic of the output characteristics with the theoretical air-fuel ratio as the peak. It is an object of the present invention to solve the above problems and provide a combustion light air-fuel ratio sensor that constantly outputs a signal proportional to the air-fuel ratio regardless of the size of dirt on the detection surface.

〔発明の概要〕[Outline of Invention]

本発明は、上記目的を達成するために、内燃機関の燃焼
室から燃焼火炎光を外部へ導出するための燃焼火炎光検
出端と、該検出端により導出された火炎光を複数個に分
岐するための光分岐手段と、該光分岐手段からの各火炎
光を電気信号に変換するための相異なる分光感度特性を
有する受光手段と、該受光手段の各々の出力電気信号の
ピーク値を検出しさらにそれらのピーク値の比から空燃
比信号を算出する演算処理手段とを有した燃焼光空燃比
センサを提案する。
In order to achieve the above-mentioned object, the present invention branches a combustion flame light detection end for guiding the combustion flame light from the combustion chamber of the internal combustion engine to the outside, and a plurality of flame lights guided by the detection end. For detecting the peak value of the output electric signal of each of the light receiving means and the light receiving means having different spectral sensitivity characteristics for converting each flame light from the light branching means into an electric signal. Further, a combustion light air-fuel ratio sensor having an arithmetic processing means for calculating an air-fuel ratio signal from the ratio of those peak values is proposed.

燃焼火炎の可視光域の色は、空燃比によって変化する。
その理由は、空燃比により燃焼ガスのラジカル成分
(C2,CH,OH)の発光強度の比が異なるためである。
The color of the combustion flame in the visible light range changes depending on the air-fuel ratio.
The reason is that the ratio of the emission intensity of radical components (C 2 , CH, OH) of the combustion gas differs depending on the air-fuel ratio.

上記構成の本発明では、上記の現象に着目し、相異なる
分光感度特性を有する受光手段により少なくとも2種の
ラジカル成分の発光強度を個別に検出し、演算処理手段
がこれらの発光強度の出力電気信号ピーク値の比から空
燃比を算出する。
In the present invention having the above-mentioned configuration, focusing on the above-mentioned phenomenon, the light emitting means of the at least two kinds of radical components are individually detected by the light receiving means having different spectral sensitivity characteristics, and the arithmetic processing means outputs the output electricity of these light emission intensities. The air-fuel ratio is calculated from the ratio of the signal peak values.

このようにして空燃比を求めると、燃焼火炎光検出端の
検出面がカーボン等で汚れ、光の透過量が減少したとき
でも、各ラジカル成分の発光強度の比は殆ど変化しない
から、汚れの影響を受けずに空燃比の検出を精度良く行
い得ると共に、各ラジカル成分の発光強度の比は、空燃
比に対してほゞ比例的な信号となるから、従来問題とさ
れた理論空燃比をピークとした出力特性に伴う二値特性
の出現を回避できる。
When the air-fuel ratio is obtained in this manner, the detection surface of the combustion flame light detection end is contaminated with carbon or the like, and even when the amount of transmitted light is reduced, the emission intensity ratio of each radical component hardly changes. The air-fuel ratio can be detected accurately without being affected, and the ratio of the emission intensity of each radical component becomes a signal almost proportional to the air-fuel ratio. It is possible to avoid the appearance of a binary characteristic due to the peaked output characteristic.

〔発明の実施例〕Example of Invention

以下、本発明の実施例を図面を用いて詳細に説明する。
第1図は本発明になる燃焼光空燃比センサを用いたエン
ジン制御装置の全体構成を示したものである。エンジン
1の燃焼室2に開口する形で燃焼火炎光検出端3を装着
しており、これは点火プラグと一体化されている。なお
本実施例では、複数気筒エンジンの場合、代表気筒1個
のみに火炎光検出端3が設けられているものとする。こ
の燃焼火炎光検出端3により導出された燃焼火炎光は光
フアイバーケーブル4へ導かれ、二分岐されて分光感度
特性の異なる二つの受光素子5,6にそれぞれ導びかれ
る。受光素子5,6は駆動処理回路7と接続されており、
ここで光電変換が行われ、その信号はマイクロコンピユ
ータよりなるコントローラ8に導びかれる。コントロー
ラ8には、エアフローメータ9,絞り弁10の開度センサ、
クランク角センサ11、水温センサ12等の各種エンジン情
報信号が入力されている。コントローラ8では駆動処理
回路7からの2つの信号を演算処理し、空燃比の情報を
得る。そして、前記各種運転情報信号と空燃比信号より
最適燃料噴射量、点火時期を決定し、その制御信号を燃
料噴射弁13、点火時期制御装置14に送る。燃料噴射弁13
ではその制御信号により開弁時間が制御され噴射燃料量
が計量される。一方、点火時期制御装置14ではその制御
信号によつて点火プラグ3に印加する高電圧の供給時期
が調整され、送り出される。なお、ここではマルチポイ
ント式の燃料噴射システムを例にとつて示したが、シン
グルポイント式、気化器式等でも同様に構成することが
できる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 shows the overall configuration of an engine control device using a combustion light air-fuel ratio sensor according to the present invention. A combustion flame light detection end 3 is attached to the combustion chamber 2 of the engine 1 so as to be open, and this is integrated with a spark plug. In this embodiment, in the case of a multi-cylinder engine, it is assumed that the flame light detection end 3 is provided for only one representative cylinder. The combustion flame light derived by the combustion flame light detection end 3 is guided to the optical fiber cable 4, branched into two, and guided to two light receiving elements 5 and 6 having different spectral sensitivity characteristics, respectively. The light receiving elements 5 and 6 are connected to the drive processing circuit 7,
Here, photoelectric conversion is performed, and the signal is guided to the controller 8 composed of a microcomputer. The controller 8 includes an air flow meter 9, an opening sensor for the throttle valve 10,
Various engine information signals such as the crank angle sensor 11 and the water temperature sensor 12 are input. The controller 8 arithmetically processes the two signals from the drive processing circuit 7 to obtain information on the air-fuel ratio. Then, the optimum fuel injection amount and the ignition timing are determined from the various operation information signals and the air-fuel ratio signal, and the control signals are sent to the fuel injection valve 13 and the ignition timing control device 14. Fuel injection valve 13
Then, the valve opening time is controlled by the control signal and the amount of injected fuel is measured. On the other hand, in the ignition timing control device 14, the supply timing of the high voltage applied to the ignition plug 3 is adjusted by the control signal and is sent out. Although a multi-point type fuel injection system is shown as an example here, a single-point type, a carburetor type, etc. can be similarly configured.

第2図は燃焼火炎光検出端3の詳細図であつて、燃焼火
炎光導出のため、直径約1mmの石英ガラスフアイバ15を
点火プラグの中心軸を貫通する形で配設してある。すな
わち、中心電極16、高圧端子軸17の中心軸部を開口し、
ここに石英ガラスフアイバ15を入れ、この三者及び碍子
18の固着と気密保持は銅入りガラスシール材19を第2図
のごとく入れ、加熱炉で加熱して溶融状態となつたとこ
ろで高圧端子17を上方より下方にプレスすることにより
各部隙間に流動させて封着したものである。火炎光の検
出面15aは、燃焼室全域からの光をとり込めるように球
状あるいは円錐状に構成され、これによつて燃焼室内の
平均的な空燃比が検出可能となる。なお、栓体20は通常
の点火プラグのもので十分であり、その先端に側方電極
21が付設していることも同様である。
FIG. 2 is a detailed view of the combustion flame light detecting end 3. In order to derive the combustion flame light, a quartz glass fiber 15 having a diameter of about 1 mm is arranged so as to penetrate the central axis of the ignition plug. That is, the central electrode portion 16, the central shaft portion of the high voltage terminal shaft 17 is opened,
Put the quartz glass fiber 15 here, and the three parties and the insulator
To fix 18 and maintain airtightness, insert a glass sealing material 19 containing copper as shown in FIG. 2, and when it is in a molten state by being heated in a heating furnace, press the high-voltage terminal 17 downward from above to make it flow into the gaps between the parts. It has been sealed. The flame light detection surface 15a is formed into a spherical shape or a conical shape so that light from the entire combustion chamber can be taken in, whereby an average air-fuel ratio in the combustion chamber can be detected. It should be noted that the plug 20 may be a normal spark plug, and the tip of the plug may be a side electrode.
The fact that 21 is attached is also the same.

第3図は燃焼火炎光検出端3から受光素子5,6までの光
伝送系の詳細図の一例である。燃焼火炎光検出端3の燃
焼室と反対側の石英フアイバ部はコネクタ22によつてバ
ンドルフアイバ23と連接されている。また、このコネク
タ22と一体的に固着された形で高圧端子24が装着されて
いる。これは一例であり、光フアイバの場合、周知のよ
うに電気的に無誘導性であるので点火プラグの高圧コー
ドと前記バンドルフアイバーを一本化して構成すること
もでき、用途に応じてその構成法を決めればよい。な
お、受光素子5,6に燃焼火炎光を導くためのバンドルフ
アイバ23とは、周知のように被覆材25によつて数本から
数10本のフアイバを束ねたもので(断面A)、この例で
は直径250μm(コア径220μm、クラツド径250μm)
の多成分ガラスフアイバを19本束ねてその外径は前記石
英フアイバ径とほぼ同じ大きさの約1.2mm程度としてい
る。このように径をそろえることによつて結合部での損
失を極力小さくするようにしている。このバンドルフア
イバを分岐部27で分岐し、断面B及びCに示したような
ガラスフアイバ10本と9本のバンドルフアイバとし、コ
ネクタ28,29を介して受光素子5,6に燃焼火炎光を導く構
成としている。なお、バンドルフアイバ23に代つて通常
の単芯フアイバを用いることもできるが、そのときは単
芯フアイバの後端に光分岐器を設置して各受光素子へ火
炎光を導く。
FIG. 3 is an example of a detailed diagram of an optical transmission system from the combustion flame light detection end 3 to the light receiving elements 5 and 6. The quartz fiber portion on the side opposite to the combustion chamber of the combustion flame light detection end 3 is connected to the bundle fiber 23 by the connector 22. Further, the high voltage terminal 24 is mounted integrally with the connector 22. This is an example, and in the case of an optical fiber, as is well known, it is electrically non-inductive, so it is possible to integrate the high-voltage cord of the ignition plug and the bundle fiber into a single unit, and configure it according to the application. Just decide the law. The bundle fiber 23 for guiding the combustion flame light to the light receiving elements 5 and 6 is, as is well known, a bundle of several to several tens of fibers with a covering material 25 (cross section A). In the example, the diameter is 250 μm (core diameter 220 μm, cladding diameter 250 μm)
19 multi-component glass fibers are bundled and the outer diameter thereof is about 1.2 mm, which is almost the same as the quartz fiber diameter. By arranging the diameters in this way, the loss at the joint is minimized. This bundle fiber is branched at a branching portion 27 into 10 glass fibers and 9 bundle fibers as shown in the cross sections B and C, and combustion flame light is guided to the light receiving elements 5 and 6 through the connectors 28 and 29. It is configured. An ordinary single-core fiber can be used instead of the bundle fiber 23. In that case, an optical branching device is installed at the rear end of the single-core fiber to guide flame light to each light receiving element.

第4図は受光素子5及び6の分光感度特性a及びbを示
す。受光素子5は430nm付近にピークがあり、これは燃
焼ガスのCHラジカルの発光波長432nmに近く、このCHラ
ジカルの発光強度の検出を行う。また、受光素子6は52
0nm付近にピークがあり、これはC2・ラジカルの発光波
長516nmに近く、このC2・ラジカル発光強度の検出を行
う。この様な受光素子は色検出を行うフオトダイオー
ド、いわゆるカラーセンサのうち、青色検出用(a特性
相当)、緑色検出用(b特性相当)を用いれば容易に実
現できる。
FIG. 4 shows the spectral sensitivity characteristics a and b of the light receiving elements 5 and 6. The light receiving element 5 has a peak near 430 nm, which is close to the emission wavelength of 432 nm of the CH radical of the combustion gas, and the emission intensity of this CH radical is detected. In addition, the light receiving element 6 is 52
There is a peak near 0 nm, which is close to the emission wavelength of C 2 · radicals of 516 nm, and this C 2 · radical emission intensity is detected. Such a light receiving element can be easily realized by using a photodiode for color detection, that is, a so-called color sensor for blue detection (corresponding to a characteristic) and green detection (corresponding to b characteristic).

このような受光素子は一般に第5図に示したごとく、照
度に対して出力信号が変化する特性を有しており、エン
ジンの運転状態が変化し、燃焼状態が変化することに伴
う火炎光の照度変化を何らかの方法により補正すること
が必要となつてくる。そのために本発明では受光素子5
と6の出力信号の比をとる。すなわち、前述したよう
に、濃い空燃比のときは燃焼火炎は赤色を帯び(波長が
大きく)、薄い空燃比になると青色を帯び(波長が小さ
く)てくるので、上記出力信号の比をとることにより、
いずれの波長帯の火炎が多くなつてきたが判別でき空燃
比を類推することができる。
As shown in FIG. 5, such a light receiving element generally has a characteristic that the output signal changes with the illuminance, and when the operating state of the engine changes and the combustion state changes, It is necessary to correct the illuminance change by some method. Therefore, in the present invention, the light receiving element 5
And take the ratio of the output signals of 6. That is, as described above, when the air-fuel ratio is rich, the combustion flame is reddish (wavelength is large), and when the air-fuel ratio is thin, it is blue (wavelength is small). Due to
The number of flames in any wavelength band has increased, and it is possible to identify and to infer the air-fuel ratio.

第6図は受光素子5,6の駆動処理回路7と、コントロー
ラ8内のマイクロコンピユータ35、A/Dコンバータ34を
示したもので、受光素子5,6はそれぞれ演算増幅器30,31
に第6図に示したような複数の抵抗を配して回路構成
し、信号増幅を行う。ここで用いた演算増幅器は両電源
タイプのものであり、出力信号は一から十まで電圧レベ
ルで変化する。ここで得られたアナログの出力電圧はそ
れぞれピークホールド回路32,33を介してA/Dコンバータ
34に導びかれ、デイジタル信号に変換された後にマイク
ロコンピユータ35へ入力され、両信号の比より空燃比信
号を求める演算処理が実行される。この第6図の制御の
タイムチヤートは、第7図に示されており、クランク角
センサ11より求まる上死点信号S11(第1図)より少し
遅れて受光素子6及び5からの出力信号S6,S5のピーク
が生じる。従つてこれをピークホールド回路33,32によ
つてホールド(第7図S6,S5の点線)、更に上死点S11か
らクランク角θ及びθだけ遅れたサンプリングバル
スSP1,SP2(マイクロコンピユータ35からA/Dコンバータ
34へ与えられる)によつてA/Dコンバータ34へ取り込ま
れ、ここでデイジタル信号に変換され、続いてマイクロ
コンピユータ35で両者の比の演算が実行されて空燃比が
求められる。なお、各出力信号S6,S5のホールド値は、
上死点S11からクランク角θ(θ,θより大で数
度〜数十度)の点でマイクロコンピユータ35からの指令
M1,M2によつてリセツトされる。
FIG. 6 shows the drive processing circuit 7 for the light receiving elements 5 and 6, the microcomputer 35 and the A / D converter 34 in the controller 8. The light receiving elements 5 and 6 are operational amplifiers 30 and 31, respectively.
A plurality of resistors as shown in FIG. 6 are arranged in the circuit configuration to amplify the signal. The operational amplifier used here is a dual power supply type, and the output signal changes from 1 to 10 at the voltage level. The analog output voltage obtained here is sent to the A / D converter via the peak hold circuits 32 and 33, respectively.
After being guided to 34 and converted into a digital signal, it is inputted to the microcomputer 35, and an arithmetic process for obtaining an air-fuel ratio signal from the ratio of both signals is executed. The time chart of the control of FIG. 6 is shown in FIG. 7, and the output signal S6 from the light receiving elements 6 and 5 is slightly delayed after the top dead center signal S11 (FIG. 1) obtained from the crank angle sensor 11. , S5 peak occurs. Therefore, this is held by the peak hold circuits 33 and 32 (dotted lines in S6 and S5 in FIG. 7), and sampling pulses SP1 and SP2 (microcomputer 35 which are delayed from the top dead center S11 by crank angles θ 1 and θ 2). To A / D converter
(Provided to 34) is taken into the A / D converter 34, where it is converted into a digital signal, and then the ratio of the two is calculated in the micro computer 35 to obtain the air-fuel ratio. The hold value of each output signal S6, S5 is
A command from the micro computer 35 at the crank angle θ 3 (greater than θ 1 , θ 2 and several degrees to several tens of degrees) from the top dead center S11.
It is reset by M 1 and M 2 .

ところで、受光素子5,6からの出力信号S5,S6は、毎サイ
クルごとにそのピーク値が変動している。これは、エン
ジン燃焼室に供給される混合気の空燃比が毎サイクルご
とに変動しているためであり、このサイクルごとの空燃
比信号により燃料量の閉ループ制御をその都度実行する
と、さらに変動を増長した不安定な制御系となる恐れが
ある。したがつて、今第iサイクルの出力信号をS5
(i)、S6(i)とかくと、第nサイクルの時点では V5={S5(n)+S5(n−1)+…+S5(n−N+
1)}/N …(1) V6={S6(n)+S6(n−1)+…+S6(n−N+
1)}/N …(2) のごとくN回分の平均値V5,V6を求め、この両者の比よ
り空燃比を求めて制御を行うようにするのがよい。
By the way, the output signals S5 and S6 from the light receiving elements 5 and 6 have their peak values varying in each cycle. This is because the air-fuel ratio of the air-fuel mixture supplied to the engine combustion chamber fluctuates in each cycle, and if the closed-loop control of the fuel amount is executed each time by the air-fuel ratio signal in each cycle, the fluctuation will further fluctuate. There is a risk of an increased and unstable control system. Therefore, the output signal of the i-th cycle is now S5.
(I), S6 (i) To meantime, at the time of the n cycle V 5 = {S5 (n) + S5 (n-1) + ... + S5 (n-N +
1)} / N ... (1 ) V 6 = {S6 (n) + S6 (n-1) + ... + S6 (n-N +
1)} / N (2) The average values V 5 and V 6 for N times are calculated, and the air-fuel ratio is calculated from the ratio of the two to perform control.

第8図はこのようにして空燃比に対する上記V5,V6を求
めた結果であり、両者とも理論空燃比A/F=14.7付近で
最も出力が大きく、それより濃くても、薄くても出力は
小さくなる傾向にある。これは、燃焼火炎の照度そのも
のが濃い領域になるほど、また薄い領域になるほど小さ
くなることに起因している。したがつてこの両者の比 r=V6/V5 …(3) を求めると、第9図のような特性が得られる。すなわ
ち、濃い領域(Rich)ではCHラジカル(432nm)に比べ
てC2ラジカル(516nm)の発光強度が大きくなり(火炎
が赤みを帯びてくる)、その比rは大きくなる。一方、
逆に薄い空燃比領域(Lean)になると、CHに比べてC2
の発光強度が小さくなり、火炎は青みを帯びてくるた
め、その比rは小さくなり、結局、第9図に示すように
空燃比変化に対してほぼ比例的な信号rを得ることがで
きる。したがつて、第9図の特性を予めマイクロコンピ
ユータ35に関数として記憶させておくか、あるいはマツ
プ値として記憶させておくことにより、rの値から空燃
比A/Fの信号を求めることができる。また、A/Fの絶対値
が必要ない場合はrの値そのものを利用して、所定の設
定値からの偏差修正制御を実行しても良い。
Fig. 8 shows the results of the above V 5 and V 6 with respect to the air-fuel ratio in this way. Both have the highest output near the theoretical air-fuel ratio A / F = 14.7, and the output is richer or thinner. The output tends to be smaller. This is because the illuminance itself of the combustion flame becomes smaller in a darker region and in a darker region. Therefore, when the ratio of the two, r = V 6 / V 5 (3), is obtained, the characteristics shown in FIG. 9 are obtained. That is, in the dark region (Rich), the emission intensity of C 2 radicals (516 nm) is higher than that of CH radicals (432 nm) (flame becomes reddish), and the ratio r thereof is large. on the other hand,
On the contrary, when the air-fuel ratio region (Lean) becomes thin, C 2 ·
Since the intensity of light emission becomes smaller and the flame becomes bluish, the ratio r becomes smaller, and as a result, a signal r almost proportional to the change in the air-fuel ratio can be obtained as shown in FIG. Therefore, the signal of the air-fuel ratio A / F can be obtained from the value of r by previously storing the characteristic of FIG. 9 as a function in the microcomputer 35 or by storing it as a map value. . If the absolute value of A / F is not required, the deviation correction control from the predetermined set value may be executed using the value of r itself.

以上の実施例に於ては、代表気筒に1個だけ燃焼光空燃
比センサをとりつけるものとしたが、これを各気筒に設
置して各気筒毎の空燃比を検出し、各気筒毎に燃料量を
制御すれば、よりち密な空燃比制御が可能となる。但し
この構成では、例えば4気筒エンジンの場合、受光素子
の数は2×4=8ケ必要となり、バンドルフアイバも2
分岐のものが4本必要となる。さらに他の情報(ノツク
信号、燃焼開始時期信号)を同時に抽出しようとすると
さらにフアイバ数、受光素子数が増え、複雑化するとと
もにコストアツプともなつてくる。第10図はこれらの問
題を解決するための実施例を示したもので、各気筒の火
炎光検出器3A〜3Dからそれぞれ光フアイバ4A〜4Dで光結
合器48に光を導びき、ここで4本を結合する。四サイク
ルエンジンの場合約3/4は暗視野であり、各気筒間は交
互に爆発工程(明視野)となるので、このように各気筒
分を一つにまとめても、どの気筒の信号であるかの判別
は電気信号に変換されたのちに容易に行える。光結合器
48でまとめた光信号はその後、光分岐器49に導びき必要
な光路の数に分岐する。第10図では空燃比検出用の受光
素子50,51に伝送するものとノツク、燃焼開始時期検出
用受光素子52に伝送するものとに分けてある。破線の部
分53は光モジユール化すればさらにコンパクトな構造に
できる。本実施例によると、多気筒エンジンの場合の各
気筒での空燃比検出及びノツク信号等の検出を行う場合
にも光フアイバや受光素子数を節約できる。
In the above embodiment, only one combustion light air-fuel ratio sensor is attached to the representative cylinder, but this is installed in each cylinder to detect the air-fuel ratio of each cylinder, and the fuel is supplied to each cylinder. If the amount is controlled, more detailed air-fuel ratio control becomes possible. However, in this configuration, for example, in the case of a 4-cylinder engine, the number of light receiving elements is 2 × 4 = 8, and the bundle fiber is also 2
4 branches are required. If other information (knock signal, combustion start timing signal) is to be extracted at the same time, the number of fibers and the number of light receiving elements will increase, which will be complicated and costly. FIG. 10 shows an embodiment for solving these problems, in which light is guided from the flame photodetectors 3A to 3D of each cylinder to the optical coupler 48 by the optical fibers 4A to 4D, respectively. Combine four. In the case of a four-cycle engine, about 3/4 is darkfield, and the explosion process (brightfield) alternates between the cylinders. It can be easily discriminated whether or not there is an electric signal. Optical coupler
The optical signals summarized in 48 are then guided to the optical branching device 49 and branched into the required number of optical paths. In FIG. 10, the light is transmitted to the light receiving elements 50 and 51 for detecting the air-fuel ratio, and the light is transmitted to the light receiving element 52 for detecting the knock and the combustion start timing. If the broken line portion 53 is converted into an optical module, a more compact structure can be obtained. According to this embodiment, the number of optical fibers and the number of light receiving elements can be saved even when the air-fuel ratio detection and the knock signal detection in each cylinder in the case of a multi-cylinder engine are performed.

また、以上では空燃比の検出をC2ラジカル及びCHラジカ
ルの発光波表の強度から行うものとしたが、これをCHラ
ジカルとOHラジカルの同様な計測で行うようにしてもほ
ぼ同様な結果が得られ、またC2,CH,OH各ラジカルをすべ
て利用すればより検出精度を高めることができる。
Further, in the above, the detection of the air-fuel ratio is performed from the intensity of the emission wave table of the C 2 radical and the CH radical, but even if this is performed by the similar measurement of the CH radical and the OH radical, almost the same result is obtained. The detection accuracy can be further improved by using all the C 2 , CH, and OH radicals obtained.

〔発明の効果〕〔The invention's effect〕

以上のように、本発明によれば、燃焼火炎光検出端の検
出面がカーボン等で汚れ、光の透過量が減少したときで
も、各波長の光量の比は殆ど変化しないから、汚れの影
響を受けずに空燃比の検出が行えるという効果があり、
また従来の排気管に設ける空燃比センサ等とはちがつて
各気筒へとりつけて気筒ごとの空燃比制御を大きな遅れ
時間なしで行え、高速制御、排気浄化、燃費低減、その
他運転性の向上をはかれる。更に検出値と空燃比が一対
一の単調な特性であるから、制御の場合には空燃比の正
確な値は必要でなく、演算で求めた比rをそのまま用い
ることができ、制御系統の処理量をへらすことができる
という効果もある。
As described above, according to the present invention, the detection surface of the combustion flame light detection end is contaminated with carbon or the like, and even when the amount of transmitted light is reduced, the ratio of the amount of light of each wavelength hardly changes. There is an effect that the air-fuel ratio can be detected without receiving
Unlike the conventional air-fuel ratio sensor installed in the exhaust pipe, it can be attached to each cylinder to perform air-fuel ratio control for each cylinder without a large delay time, and achieve high-speed control, exhaust gas purification, fuel consumption reduction, and other drivability improvements. . Furthermore, since the detected value and the air-fuel ratio have a one-to-one monotonic characteristic, an accurate value of the air-fuel ratio is not necessary in the case of control, and the ratio r obtained by calculation can be used as it is. There is also an effect that the amount can be reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明になる燃焼光空燃比センサを用いたエン
ジン制御装置の全体構成図、第2図は燃焼火炎光検出端
の構造図、第3図は燃焼火炎光検出端から光電変換部ま
での光伝送部の詳細図、第4図は受光素子の分光感度特
性図、第5図はその照度に対する特性図、第6図は光電
変換信号処理部の回路構成図、第7図はそのタイムチヤ
ート、第8図は空燃比と受光素子出力平均値との関係を
示す図、第9図は空燃比と受光素子出力の比の関係を示
す図、第10図は複数気筒の空燃比検出に適した本発明の
他の実施例を示す図である。 3……燃焼火炎光検出端、5,6……受光素子、7……起
動処理回路、8……コントローラ。
FIG. 1 is an overall configuration diagram of an engine control device using a combustion light air-fuel ratio sensor according to the present invention, FIG. 2 is a structural diagram of a combustion flame light detection end, and FIG. 3 is a photoelectric conversion unit from the combustion flame light detection end. 4 is a detailed view of the optical transmission section up to FIG. 4, FIG. 4 is a spectral sensitivity characteristic diagram of the light receiving element, FIG. 5 is a characteristic diagram with respect to its illuminance, FIG. 6 is a circuit configuration diagram of the photoelectric conversion signal processing section, and FIG. Time chart, FIG. 8 is a diagram showing the relationship between the air-fuel ratio and the average value of the light-receiving element output, FIG. 9 is a diagram showing the relationship between the air-fuel ratio and the light-receiving element output ratio, and FIG. 10 is the air-fuel ratio detection of multiple cylinders. It is a figure which shows the other Example of this invention suitable for. 3 ... Combustion flame light detection end, 5,6 ... Light receiving element, 7 ... Startup processing circuit, 8 ... Controller.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】内燃機関の燃焼室から燃焼火炎光を外部へ
導出するための燃焼火炎光検出端と、該検出端により導
出された火炎光を複数個に分岐するための光分岐手段
と、該光分岐手段からの各火炎光を電気信号に変換する
ための相異なる分光感度特性を有する受光手段と、該受
光手段の各々の出力電気信号のピーク値を検出しさらに
それらのピーク値の比から空燃比信号を算出する演算処
理手段とを有したことを特徴とする燃焼光空燃比セン
サ。
1. A combustion flame light detection end for leading out combustion flame light from a combustion chamber of an internal combustion engine to the outside, and an optical branching means for branching the flame light led out by the detection end into a plurality of parts. A light receiving means having different spectral sensitivity characteristics for converting each flame light from the light branching means into an electric signal, and a peak value of each output electric signal of the light receiving means is detected and a ratio of the peak values is detected. And a calculation processing unit for calculating an air-fuel ratio signal from the combustion-light air-fuel ratio sensor.
【請求項2】特許請求の範囲第1項において、前記演算
処理手段は、前記分光感度特性の異なる各々の受光手段
からの電気信号のピーク値を、エンジンサイクルのN回
分(Nは任意の複数回数を示す)の電気信号ピーク値の
平均値より算出する演算機能を備えてなることを特徴と
する燃焼光空燃比センサ。
2. The arithmetic processing means according to claim 1, wherein the peak value of the electric signal from each of the light receiving means having different spectral sensitivity characteristics is N times in an engine cycle (N is an arbitrary plural number). (Indicating the number of times), a combustion light air-fuel ratio sensor having an arithmetic function of calculating from an average value of electric signal peak values.
【請求項3】特許請求の範囲第1項又は第2項におい
て、前記燃焼火炎光検出端は、エンジンの複数気筒のう
ちの一つに代表して設けてあることを特徴とする燃焼光
空燃比センサ。
3. The combustion light space according to claim 1 or 2, wherein the combustion flame light detection end is provided on behalf of one of a plurality of cylinders of an engine. Fuel ratio sensor.
【請求項4】特許請求の範囲第1項又は第2項におい
て、前記燃焼火炎光検出端は、エンジンの各気筒に配設
され、これらの燃焼火炎光検出端を有する光ファイバが
光結合手段により統合されて、前記光分岐手段と光学的
に接続してあることを特徴とする燃焼光空燃比センサ。
4. The combustion flame light detection end according to claim 1 or 2, wherein the combustion flame light detection end is arranged in each cylinder of the engine, and an optical fiber having the combustion flame light detection end is an optical coupling means. And a light-air-fuel ratio sensor for combustion light, wherein the light-air-fuel ratio sensor is optically connected to the light branching means.
JP23121085A 1985-10-18 1985-10-18 Combustion light air-fuel ratio sensor Expired - Lifetime JPH0684938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23121085A JPH0684938B2 (en) 1985-10-18 1985-10-18 Combustion light air-fuel ratio sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23121085A JPH0684938B2 (en) 1985-10-18 1985-10-18 Combustion light air-fuel ratio sensor

Publications (2)

Publication Number Publication Date
JPS6293485A JPS6293485A (en) 1987-04-28
JPH0684938B2 true JPH0684938B2 (en) 1994-10-26

Family

ID=16920060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23121085A Expired - Lifetime JPH0684938B2 (en) 1985-10-18 1985-10-18 Combustion light air-fuel ratio sensor

Country Status (1)

Country Link
JP (1) JPH0684938B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2229808A (en) * 1989-03-08 1990-10-03 Austin Rover Group Method of controlling an internal combustion engine
JPH0378639A (en) * 1989-08-22 1991-04-03 Hitachi Ltd Evaluating and controlling devices of combustion
WO2005045379A1 (en) * 2003-11-05 2005-05-19 Yamatake Corporation Flame detection method and flame detection device
CN102680090A (en) * 2012-05-16 2012-09-19 常州第二电子仪器有限公司 Light radiation detecting device

Also Published As

Publication number Publication date
JPS6293485A (en) 1987-04-28

Similar Documents

Publication Publication Date Title
KR930000346B1 (en) Lean burn controller in internal combustion engine
KR960016168B1 (en) Air-fuel ratio detecting sensor
US4444169A (en) Air-fuel ratio controlling device for internal combustion engines
US5659133A (en) High-temperature optical combustion chamber sensor
US6622549B1 (en) Fuel injectors with integral fiber optic pressure sensors and associated compensation and status monitoring devices
US7207214B1 (en) Glow plug integrated pressure sensor
US4437334A (en) Method and apparatus for detecting knocking combustion
Shi et al. Measurement of temperature and soot (KL) distributions in spray flames of diesel-butanol blends by two-color method using high-speed RGB video camera
JPH0684938B2 (en) Combustion light air-fuel ratio sensor
JPS6291840A (en) Fuel characteristic detector
GB2098756A (en) Fibre optic vehicle control arrangements and methods
JP3784768B2 (en) Gas concentration sensor
JPS6123928A (en) Spectral analyzing device for combustion flame using optical fiber
WO2008097227A2 (en) Glow plug integrated pressure sensor improvements
JPH0629822B2 (en) Cylinder pressure detection type engine control device
JPH01247740A (en) Detecting device for local air-fuel ratio
JPH048285Y2 (en)
JPS6435081A (en) Engine controller
Ohyama et al. Study on Optical Combustion Sensor for Spark Ignition Engine
JPS62249033A (en) Detecting device for smoke density of internal combustion engine
JPS62261819A (en) Air-fuel ratio detector
JPS62195610A (en) Photodetecting device
KR19990001657A (en) Combustion pressure sensor in car
JPS57186040A (en) Air-fuel ratio feedback controller
Sasayama et al. An advanced engine control system using combustion pressure sensors