JPS6293352A - Austenitic heat resisting steel - Google Patents

Austenitic heat resisting steel

Info

Publication number
JPS6293352A
JPS6293352A JP22980585A JP22980585A JPS6293352A JP S6293352 A JPS6293352 A JP S6293352A JP 22980585 A JP22980585 A JP 22980585A JP 22980585 A JP22980585 A JP 22980585A JP S6293352 A JPS6293352 A JP S6293352A
Authority
JP
Japan
Prior art keywords
strength
austenitic heat
heat resisting
steel
resisting steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22980585A
Other languages
Japanese (ja)
Inventor
Kiyoshi Imai
潔 今井
Masaru Yamamoto
優 山本
Yoichi Tsuda
陽一 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22980585A priority Critical patent/JPS6293352A/en
Publication of JPS6293352A publication Critical patent/JPS6293352A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To develop a heat resisting steel causing no deterioration in strength at high temp. even if temp. of steam to be used is elevated, by using an austenitic heat resisting steel containing specific amounts of Ti as a stock for blades and bolts of steam turbine. CONSTITUTION:The blades and bolts of steam turbine are manufactured out of austenitic heat resisting steel containing, by weight, <0.1% C, <0.5% Si, <2.0% Mn, 10-20% Cr, 30-50% Ni, 1.2-4.0% Mo, 2.0-4.0% Ti, 0.3-1.0% Al, 0.1-0.5% V, 0.001-0.01% B and <0.1% Zr. In this steel, Ti combines with Ni and Al to form an intermetallic compound [Ni3(TiAl)], which is finely distributed in a base alloy to improve its strength at high temp., so that, on application of this steel, no deterioration occurs in strength at high temp. of turbine blades and bolts even in a steam turbine driven by high-temp. steam of 600 deg.C.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はオーステナイト系耐熱鋼に関し、ざらに詳しく
は、作動流体温度600°C以上のタービン羽根・ボル
ト等に好適なオーステナイト系耐熱鋼に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an austenitic heat-resistant steel, and more particularly to an austenitic heat-resistant steel suitable for turbine blades, bolts, etc. where the working fluid temperature is 600° C. or higher.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来蒸気タービンは、蒸気温度が566°C以下でラシ
、羽根・ボルト用材料としては120r基鋼が主として
使用されてきた。しかしながら、熱効率向上の見地から
蒸気タービンの蒸気条件は高温化の傾向にらる。この場
合 蒸気温度が600°C以上の高温蒸気タービンにお
いては、従来の12Or基鋼ではクリープ破断強度が十
分でなく、よシ優れた高温強度の材料が必要となる。6
00°C以上の高温で優れた高温強度をもつ材料として
は、γ′相(Ni3(Al、Ti))によって強化され
たFe基耐熱合金JISSUH660があるが、これを
蒸気温度60000以上のタービン羽根・ボルトとして
使用するためには、高温強度をよシ向上させる必要が生
じる。一般にγ′相によって強化されたFe基耐熱合金
の強度を向上させるには)Io r T t *Al 
 の増量が有効であるが、一方オーステナイト母相の不
安低化や、延性・靭性の低下を伴う。
Conventionally, in steam turbines where the steam temperature is 566°C or less, 120R base steel has been mainly used as the material for the trusses, blades, and bolts. However, from the standpoint of improving thermal efficiency, the steam conditions of steam turbines tend to be higher. In this case, in a high-temperature steam turbine where the steam temperature is 600° C. or higher, the conventional 12Or base steel does not have sufficient creep rupture strength, and a material with better high-temperature strength is required. 6
An example of a material that has excellent high-temperature strength at temperatures above 00°C is Fe-based heat-resistant alloy JISSUH660, which is strengthened by the γ' phase (Ni3(Al, Ti)).・In order to use it as a bolt, it is necessary to improve its high-temperature strength. In general, to improve the strength of Fe-based heat-resistant alloys strengthened by γ' phase) Io r T t *Al
Increasing the amount of steel is effective, but this is accompanied by a decrease in the instability of the austenite matrix and a decrease in ductility and toughness.

〔発明の目的〕[Purpose of the invention]

本発明は上述の点に鑑みてなされたものであり、作動流
体温度600°C以上のタービン羽根・ボルトに使用さ
れて好適な高温強度・延性の優れたオーステナイト系耐
熱鋼を提供することを目的とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide an austenitic heat-resistant steel having excellent high-temperature strength and ductility and suitable for use in turbine blades and bolts where the working fluid temperature is 600°C or higher. shall be.

〔発明のa要〕[A essential point of the invention]

上記目的を達成するため、本発明のオーステナイト系耐
熱鋼は、重量パーセントで、C0,1以下、Si 0.
5以下、M、n2.O以下、0r10〜20、Nl 3
0を越え50マで、Mo 1.2〜4.0 、 Ti 
2.0〜4.0゜Afflo、3〜1.0 、 V 0
.1〜0,5 、 B 0.001〜0.01゜Zr0
.1以下、残部Feおよび付随的不純物よりなるFe基
オーステナイト系耐熱鋼である。
In order to achieve the above object, the austenitic heat-resistant steel of the present invention has C0.1 or less and Si 0.1 in weight percent.
5 or less, M, n2. O or less, 0r10-20, Nl 3
More than 0 in 50 ma, Mo 1.2-4.0, Ti
2.0~4.0゜Afflo, 3~1.0, V 0
.. 1~0,5, B 0.001~0.01°Zr0
.. 1 or less, the balance is Fe-based austenitic heat-resistant steel consisting of Fe and incidental impurities.

合金中の各成分の添加目的ならびに組成限定の理由は次
の通シでらる。
The purpose of adding each component in the alloy and the reason for limiting the composition are as follows.

Cは、高温強度を高めるために必要不可欠の元素でロシ
、C量の増加とともに高温強度は向上するが、一方Cが
多すぎるとTiと反応してMo型の粗大炭化物を形成し
て、合金の延性を低下させるので、C量は0.1%以下
とする。
C is an essential element for increasing high-temperature strength, and as the amount of C increases, high-temperature strength improves, but on the other hand, if too much C reacts with Ti and forms Mo-type coarse carbides, the alloy deteriorates. Since the ductility of C is reduced, the amount of C is set to 0.1% or less.

Siは、脱酸剤として作用するが、多量に添加するとN
i、Tiと結合して、粒界にG相として析出し、合金の
延性を低下させるので0.5 %以下とする。
Si acts as a deoxidizing agent, but when added in large amounts, N
Since it combines with Ti and Ti and precipitates as a G phase at grain boundaries, reducing the ductility of the alloy, it should be kept at 0.5% or less.

Mnは、脱酸剤として作用するが、多量に添加すると耐
酸化性を劣化させるので、添加量は2.0−以下とする
Mn acts as a deoxidizing agent, but if added in a large amount, the oxidation resistance deteriorates, so the amount added is set at 2.0- or less.

Orは健全な耐酸化性被膜を形成し、材料に耐酸化・耐
腐食性を付与するのに有効な元素であるが、10q6未
満では十分な面1酸化・耐食性はIIられず、一方20
q6を越えると高温で長時間使用に際し、脆化相である
O相を生成するため、10〜20 %とする。
Or is an effective element for forming a healthy oxidation-resistant film and imparting oxidation and corrosion resistance to materials.
If it exceeds q6, O phase, which is a brittle phase, will be generated when used at high temperatures for a long time, so the content should be set at 10 to 20%.

Moは、オーステナイト相に固溶して固溶強化に有効な
元素であるが、1.2チ未満ではその効果は得られず、
また多量に添加するとオーステナイト母相を不安定にし
て、高温延性を低下するので、その範囲を1.2〜4.
0チとする。
Mo is an element that dissolves in solid solution in the austenite phase and is effective for solid solution strengthening, but if it is less than 1.2%, the effect cannot be obtained.
Also, if added in a large amount, the austenite matrix becomes unstable and the high temperature ductility decreases, so the range is 1.2 to 4.
Let it be 0chi.

Tiは本発明合金の高温強度をj’IQ大させるため最
も重要な元素でらり、Ni、Alと共に金属間化合物γ
′相(Ni、(Ti 、AA) )を生成し、基体合金
中に微細に分布して本発明合金の高温強度を高める。し
かして、2.0%以下ではその効果は少なく、多量に添
加するとη相(Ni3Ti)が粒界から層状に析出して
延性を損なうので4%以下とする。
Ti is the most important element for increasing the high-temperature strength j'IQ of the alloy of the present invention, and together with Ni and Al, it is an intermetallic compound γ.
' phase (Ni, (Ti, AA)) is produced and finely distributed in the base alloy, increasing the high temperature strength of the alloy of the present invention. However, if it is less than 2.0%, the effect will be small, and if it is added in a large amount, the η phase (Ni3Ti) will precipitate in layers from the grain boundaries, impairing ductility, so the content should be less than 4%.

Alは上記Tiと同様、本発明合金の温湿強度を高める
ために重要な元素であり、Niと結合してγ′相(Ni
、 (Ti 、Affl) )を形成する。また、耐酸
化性を付与するためにも有益な元素であるが、0.3%
以下ではその効果は少な(’、1.0%以上となると加
工性を悪化させる。
Like Ti, Al is an important element for increasing the temperature and humidity strength of the alloy of the present invention, and combines with Ni to form the γ' phase (Ni
, (Ti, Affl)). It is also a useful element for imparting oxidation resistance, but 0.3%
If the content is less than 1.0%, the effect will be small (', if it is more than 1.0%, the processability will be deteriorated.

Niはオーステナイト安定化のために必要な元素であり
、かつTiおよびAAと結合して金属間化合物γ′相(
Ni3(Ti 、Al) )を形成して、高温強度を向
上するのに必要である。このためには、上記Or及びM
o量の範囲に対して30チを越える量が必要で多いほど
好ましいが、高価となるので50%を上限とする。
Ni is an element necessary for stabilizing austenite, and combines with Ti and AA to form the intermetallic compound γ' phase (
It is necessary to form Ni3(Ti,Al)) to improve high temperature strength. For this purpose, the above Or and M
It is preferable that the amount exceeds 30% for the range of 0.0%, and the larger the amount is, the more preferable it is, but since it becomes expensive, the upper limit is set at 50%.

■は、高温切欠しん性を増すとともに炭化物を形成して
高温強度を向上するのに有効な元素でらるが、0.1%
未満ではその効果は十分でない。また多量に添加しても
強度向上には寄与しないので、0.1〜0.5%とする
■ is an element effective in increasing high-temperature notch toughness and forming carbides to improve high-temperature strength, but 0.1%
If it is less than that, the effect is not sufficient. Further, even if added in a large amount, it does not contribute to improving the strength, so it is set at 0.1 to 0.5%.

Bは、粒界に偏析して粒界を強化するのに有効で、高温
延性を向上する。そのためには0.001%以上が必要
でらるが、多すぎると熱間加工性を損うので、上限を0
.01%とする。
B segregates to the grain boundaries, is effective in strengthening the grain boundaries, and improves high-temperature ductility. For this purpose, 0.001% or more is required, but too much will impair hot workability, so the upper limit should be set to 0.001% or more.
.. 01%.

Zrは粒界を強化して、ラブチャー強度とともに高温延
性を向上させるのに有効な元素でらるが、一方多量に添
加すると熱間加工性を損うので、0.1チ以下とする。
Zr is an effective element for strengthening grain boundaries and improving Loveture strength and high-temperature ductility, but on the other hand, if added in a large amount, it impairs hot workability, so it is limited to 0.1 inch or less.

本発明のオーステナイト系耐熱鋼は以下の手順で得られ
る。
The austenitic heat-resistant steel of the present invention can be obtained by the following procedure.

まず原料となる各素材金属を真空あるいは大気下で混合
溶解し、脱酸後において実質的に上記組成のFe基耐熱
合金溶易を得る。ついでこれを鋳造して鋼塊とするが、
ざらにこの鋼塊に真空アーク再熔解あるいはエレクトロ
スラグ再溶解を適用することは、高温延性を向上する上
で好ましい。このようにして製造された鋼塊を鍛造また
は圧延し、必要な熱処理を施すことにより、本発明のオ
ーステナイト系耐熱鋼が得られる。
First, raw material metals are mixed and melted in a vacuum or in the atmosphere, and after deoxidation, a melted Fe-based heat-resistant alloy having substantially the above composition is obtained. This is then cast into a steel ingot,
It is preferable to apply vacuum arc remelting or electroslag remelting to this steel ingot in order to improve high-temperature ductility. The austenitic heat-resistant steel of the present invention can be obtained by forging or rolling the steel ingot produced in this manner and subjecting it to necessary heat treatment.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明を実施例によシサらに詳細に説明する。 The present invention will be explained in detail by way of Examples below.

第1表に示す組成を有する3種の合金試料を高周波炉に
て各2004溶製し、これを電極として工レフトロスラ
グ再溶解を行なって鋼塊を得た。これを圧延し、980
0Cにおいて4時間の溶体化処理および720°Cにお
いて16時間の時効処理を施した素材から試験片を採取
し、引張試験、クリープラブチャー試験を実施した。そ
の結果は第2表と第3表に示す通シである。本発明より
なる実施例1.2は比較例と比べて室温と650°Cに
おける引強さや耐力は同等または向上しておシ、かつ伸
び・絞りは同等で延性に低下は見られない。一方策3表
のクリープ破断寿命も実施例1.2は比較例に比し著し
く向上しているのに対し、破断伸び、絞シは同等である
ことが理解される。
Three types of alloy samples having the compositions shown in Table 1 were each melted in a high frequency furnace, and remelted with engineered leftover slag using the samples as electrodes to obtain steel ingots. Roll this to 980
A test piece was taken from a material that had been subjected to solution treatment at 0C for 4 hours and aging treatment at 720C for 16 hours, and a tensile test and a creep-loveture test were conducted. The results are shown in Tables 2 and 3. Examples 1 and 2 of the present invention have the same or improved tensile strength and yield strength at room temperature and 650°C as compared to the comparative example, and the elongation and reduction of area are the same and no decrease in ductility is observed. On the other hand, it is understood that the creep rupture life in Table 3 is also significantly improved in Example 1.2 compared to the comparative example, while the elongation at break and the shrinkage are the same.

(以下余白) 第  2  表 第  3  表 〔発明の効果〕 上記実施例の試験結果から明らかなようにに、本発明の
オーステナイト系耐熱鋼は従来材よりも優れた高温強度
を示し、かつ十分な高温延性を備えている。したがって
本発明のオーステナイト系耐熱鋼は、600°C以上の
高温で作動する蒸気タービンの羽根やボルト材として信
頼性が高く好適でおる。
(Leaving space below) Table 2 Table 3 [Effects of the invention] As is clear from the test results of the above examples, the austenitic heat-resistant steel of the present invention exhibits superior high-temperature strength than conventional materials, and has sufficient strength. It has high temperature ductility. Therefore, the austenitic heat-resistant steel of the present invention has high reliability and is suitable as a material for blades and bolts of steam turbines that operate at high temperatures of 600° C. or higher.

代理人 弁理士 則 近 憲 佑 同  三俣弘文Agent: Patent Attorney Noriyuki Chika Same as Hirofumi Mitsumata

Claims (1)

【特許請求の範囲】[Claims] 重量比で、C0.1%以下、Si0.5%以下、Mn2
.0%以下、Cr10〜20%、Ni30を越え50%
まで、Mo1.2〜4.0%、Ti2.0〜4.0%、
Al0.3〜1.0%、V0.1〜0.5%、B0.0
01〜0.01%、Zr0.1%以下、残部Feおよび
付随的不純物よりなるオーステナイト系耐熱鋼。
Weight ratio: C0.1% or less, Si0.5% or less, Mn2
.. 0% or less, Cr10-20%, Ni over 30 and 50%
up to, Mo1.2-4.0%, Ti2.0-4.0%,
Al0.3-1.0%, V0.1-0.5%, B0.0
Austenitic heat-resistant steel consisting of 0.01 to 0.01%, Zr of 0.1% or less, and the remainder Fe and incidental impurities.
JP22980585A 1985-10-17 1985-10-17 Austenitic heat resisting steel Pending JPS6293352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22980585A JPS6293352A (en) 1985-10-17 1985-10-17 Austenitic heat resisting steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22980585A JPS6293352A (en) 1985-10-17 1985-10-17 Austenitic heat resisting steel

Publications (1)

Publication Number Publication Date
JPS6293352A true JPS6293352A (en) 1987-04-28

Family

ID=16897942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22980585A Pending JPS6293352A (en) 1985-10-17 1985-10-17 Austenitic heat resisting steel

Country Status (1)

Country Link
JP (1) JPS6293352A (en)

Similar Documents

Publication Publication Date Title
JP4037929B2 (en) Low thermal expansion Ni-base superalloy and process for producing the same
JPH02290950A (en) Ferritic heat resisting steel excellent in strength at high temperature
US5942055A (en) Silicide composite with niobium-based metallic phase and silicon-modified Laves-type phase
JP3781402B2 (en) Low thermal expansion Ni-base superalloy
JPH0114305B2 (en)
US5997809A (en) Alloys for high temperature service in aggressive environments
JPS616256A (en) 12% cr heat resisting steel
US3806337A (en) Austenitic stainless steel resistant to stress corrosion cracking
US3540881A (en) High temperature ferrous alloy containing nickel,chromium and aluminum
JP3424314B2 (en) Heat resistant steel
JPH06287667A (en) Heat resistant cast co-base alloy
JPH07300643A (en) Heat resistant cast cobalt-base alloy
JPS6293352A (en) Austenitic heat resisting steel
JPS6293353A (en) Austenitic heat resisting alloy
JPS61217555A (en) Heat resistant austenitic steel
JP3281685B2 (en) Hot bolt material for steam turbine
US4049432A (en) High strength ferritic alloy-D53
JPH0222435A (en) Heat-resistant titanium alloy
JPS61217556A (en) Heat resistant austenitic alloy
JPS613859A (en) High-strength heat-resistant co alloy for gas turbine
JPS62199752A (en) Heat resistant austenitic steel
JPS61546A (en) High-strength heat-resistant co alloy for gas turbine
JP3840762B2 (en) Heat resistant steel with excellent cold workability
JPS6147900B2 (en)
JP3137426B2 (en) High temperature bolt material