JPS629311B2 - - Google Patents

Info

Publication number
JPS629311B2
JPS629311B2 JP18834082A JP18834082A JPS629311B2 JP S629311 B2 JPS629311 B2 JP S629311B2 JP 18834082 A JP18834082 A JP 18834082A JP 18834082 A JP18834082 A JP 18834082A JP S629311 B2 JPS629311 B2 JP S629311B2
Authority
JP
Japan
Prior art keywords
image
cells
analysis
living
specimen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18834082A
Other languages
Japanese (ja)
Other versions
JPS5978681A (en
Inventor
Haruyuki Kawahara
Koichi Imai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP18834082A priority Critical patent/JPS5978681A/en
Publication of JPS5978681A publication Critical patent/JPS5978681A/en
Publication of JPS629311B2 publication Critical patent/JPS629311B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は培養生細胞標本から細胞を生きたまゝ
極めて短時間のうちに特殊技能を要することなく
適確に算出し得る装置に関する。この算定値は従
来の人為的な細胞数算出値より変動係数が小さく
て精度が高いものである。本発明装置によれば細
胞数のみならず細胞の形態認識迄も可能となる。 生体用修復材料及び多相系生医学材料の毒性や
組織接着性など生物学的性状に関する評価性の確
立が各方面で急がれており、その基礎となる組織
培養法にも迅速性及び高確度が要求されてきてい
る。 組織培養法は各種の生細胞を培養する傍ら上記
異物材料の生体組織に与える為害性を検査するも
のであり、異物によつて生細胞がどれ位死滅した
或はどのような細胞挙動を経て死滅もしくは異常
な活動に追い込むかなどを究明するものである
が、これ迄の組織培養法は次の理由で迅速性及び
精度に於て必ずしも十分ではなかつた。すなわ
ち、一般に実施されている核数計算法(以下NC
法とする)では培養生細胞に異物を混入して所定
の日数期間毎に標本を取り出して細胞核数を算定
する方法であるが、検査時に生細胞に細胞死滅固
定剤を含む染色剤を加えて殺して細胞活動を固定
した状態で標本を計算皿上に展延して単位体積当
りの核数を読出すものであつて一組の標本に最低
3本の試験管を組対させ対照標本(異物のないも
の)も同様3本1組とし、このような組を各日数
期間毎に多数備えねばならないので、先づ実験系
が大がかりとなること、次に計算皿上で核を算出
する場合、実際の核とゴミ、チリ、細菌等の異物
との判断がむづかしく相当な熟練が要ること、標
本の染色固定から計算皿に至る間の工程が多くな
るので人為的誤差が累積されてマスとしてはその
誤差が無視出来ない程に達すること………等が問
題点として挙げられる。 本発明は上述に鑑みてなされたもので、(a)実験
系の簡略化、(b)算定スピード迅速化、(c)人為的誤
差の排除、(d)特殊技能の撤廃、(e)情報の画像処理
………等を図つたものであり、以下に望ましい実
施例を図に採つて詳細に説明するに、図に於て第
1図は本発明装置のフローチヤート、第2図は画
像解析の原理を示す波形図、第3図は顕微鏡のセ
ルフフオーカス機構の原理説明図である。 本発明は第1図の如く、培養中の生細胞標本1
と、この標本1を接写する倒立位相差顕微鏡2
と、この顕微鏡2を通して上記生細胞標本1の顕
微鏡像を撮像するTVカメラ3と、得られた映像
信号を画像走査して画像中の生細胞の光学的濃度
により生細胞を判定し、その数を算出する画像解
析装置4と、この装置4からのデジタル解析信号
を情報処理するコンピユータ6とより成る培養生
細胞数の自動算定装置である。 本発明装置は以上のように、生細胞標本1の顕
微鏡像をTVカメラ3を介して画像走査に於て画
像解析をかけて細胞数及びその形態認識を実施せ
んとするものであり、死滅固定化された状態で検
査するのではなく生標本が被検体とされているこ
と、人間の視覚による判断によらず画像解析装置
による自動的判断に委ねられていること、画像形
成統計処理、図表作成等迄全自動化されているこ
とが特筆される点である。 以下に本発明を更に詳述する。 (i) 生細胞標本1の作成: 細胞の培養自体は従来法と変らないが、特記
すべき細胞数の算出に当つて細胞を殺さないで
生きたまゝ且つ染色しないで生標本として用い
る点である。即ち、培養は通常の生細胞(初代
培養細胞及びL、Hella、T6L等の株細胞)を
通常の培養液(MEM培養液など)で或る期間
培養する。その后培養皿としてのマルチデイシ
ユ(多数の独立した穴部を有する皿)に移して
期間を置いて培養してから本発明装置に付す
る。 (ii) 倒立位相差顕微鏡2: 培養皿(マルチデイシユ)の底面より培養中
の生標本を各穴部毎に顕微鏡視し得る公知の顕
微鏡を用いるがそのフオーカシングは手動によ
るものでもよいが、セルフフオーカス機構をも
つたものがよい。この機構の一つを本発明者が
本発明と関連して開発したので之を第3図に基
づいて原理を概説する。 試料台21はステツプモータ22、タイミン
グベルト26、プーリ23によつて昇降自在と
され、このステツプモータ22が画像解析装置
4内に内蔵されているマイクロプロセツサ素子
24に接続されており、対物レンズ筒25より
試料台21の標本1(マルチデイシユの各穴
部)を下方より接写した際、その標本画像走査
に於て光学的コントラストが1番強い点(波形
のうち波高が最も峻鋭な点)に自動的に焦点が
合つて停止するようマイクロプロセツサ24か
らステツプモータ22に信号が這入るようにな
つている。 上述は試料台21を対物レンズ筒25に対し
て進退させる例として示したが、同じ昇降手段
を用いて試料台21を固定し対物レンズ筒25
を長軸方向に進退させることも可能であり、更
には試料台21を固定し、接眼レンズ27及び
もしくは対物レンズ28間で相対移動を行わせ
所望の位置に焦点調整することも可能である。 このようなセルフフオーカス機構は検査の全
自動化に寄与する上で望ましく採択される。 (iii) TVカメラ3: TVカメラ3は顕微鏡像を撮像するもので市
販の工業用もしくは医療用のTVカメラが用い
られる。 (iv) 画像解析装置4: TVカメラ3よりのデジタル映像信号にもと
づき生細胞標本1の生画像の画像走査をして画
像中の生細胞の光学的濃度により生細胞を判定
しその数を算出するものであるが、第1図のよ
うにこの装置4個有のTVモニタ8上に標本1
の生画像が映出されると共にその生画像中に与
えられている解析の内容が同モニタ8上にスー
パーインポーズされる。 細胞数の判定の算出の内容は第2図のように
水平同期走査の波形のうち波高及び波幅が夫々
一定値以内のものを生細胞として判定、算出す
るのである。同図に於て波高△y及び波幅△x
より小さなもの即ち、○イ・○ハが生細胞として判
定算出され、○ロ・○ニはそれ以外(例えばゴミ、
細菌類)のものと判定される。この△y、△x
の値は後記の(表1)より適宜設定される。解
析が単なる細胞数だけではなく面積率算定法に
基づく解析の場合は生画像中に算定に関与して
いる或る面積域が点滅可視光によりスーパーイ
ンポーズされて解析の内容が可視される。解析
装置4からの出力信号は図の場合AD変換器5
によつてデジタル信号としてコンピユータ6に
入力される。AD変換器5を解析装置4より前
置しておくことも技術的に可能であるがコスト
の面から後置する方が得策である。生細胞の数
の他にその形態を観察するについては、生細胞
の形状、すなわち、円形、三角形、多角形、不
定形の形状のうち、外輪線の長さよりその形状
を判読する解析も(例えば円形は外輪線が最
短、多角形は最長)それに必要なアダプタの付
設により大小の区別なく形態認識判断を実施し
得るのである。生細胞のあるものが異物の存在
によつて細胞活動が死滅した場合、或は何等か
の異常な活動を続けている場合、細胞形態を可
視像の中に見出し解析によつて形態判断するこ
とは意義の深いことである。 (v) コンピユータ6: 解析装置4からのデジタル解析信号をCRT
画像表示を含む情報処理をするものであつて、
その処理の一例としては数量変換、グラフ表
示、統計処理等がある。通常のフロツピイデイ
スク、ビデオメモリ等のメモリ手段9によつて
各種の情報の記憶保存が可能となることはもち
ろんである。 (vi) その他: 第1図のようにTVカメラ3による生標本の
画像をTVモニタ7(含メモリ手段)によつて
表示することによつて該画像中における細胞数
を肉眼で判定・算出して、その結果と、コンピ
ユータ6のCRT画像の結果とを比較して本発
明装置による算定数の精度比較を行ない最適な
解析能力を決定することは後述の実施例より必
要であるが、一度その解析能力が選定された場
合はこのTVモニタ7は敢て設置しなくてもよ
い。 以上のような構成に基づき本発明装置を実施す
るについては、培養生細胞標本1を作製し、これ
を倒立位相差顕微鏡2にて接写し、その生標本像
をTVカメラ3にて撮像し画像解析装置4にて画
像走査しつつ細胞の判読と細胞数の算出とを行な
いAD変換された解析信号をコンピユータでCRT
表示したり更に数量変換、グラフ表示等を行うも
のであり、更にメモリ手段9によつて生細胞像の
データを経時的に自動録画して各種の解析データ
と共に演算をして各種の表示を実行することが可
能となる。 なお、顕微鏡2とTVカメラ3とにより、撮像
面で4倍、テレビモニタ8〔および7〕で120倍
の生細胞像が得られたが、これら光学系の改善に
よつては像の拡大率は更に改良される筈である。 以下に本発明装置の実験例、実施例を比較例と
共に示す。 実験例 本発明装置に於ける生細胞標本像からの細胞数
算定値の誤差を少なくし得る解析能力(波形処
理)を見出すために、TVモニタ7上に写し出さ
れた細胞像から肉眼で数えた細胞実数と、解析の
ための波形処理(感度)及びゴミ、細菌等の夾雑
物を細胞から明確に区別するための被写体の大き
さとを種々変えた時の本発明による細胞数算定値
の閾値を調べた結果を(表1)に示す。なお、こ
の実験例に於ける生細胞の培養は実施例と同一で
ある。(表1)より閾値が1に近い(最も誤差の
少ない)場合は波高感度が6.0、波幅が0.4の時で
あつたので、解析装置4における解析能力(濃度
の波形処理)は△y=6.0、△x=0.4に照準を合
わせた。
The present invention relates to an apparatus that can accurately calculate living cells from a cultured living cell specimen in a very short period of time and without requiring special skills. This calculated value has a smaller coefficient of variation and is more accurate than the conventional artificial cell count calculation value. According to the device of the present invention, it is possible to recognize not only the number of cells but also the shape of the cells. There is an urgent need in various fields to establish the ability to evaluate biological properties such as toxicity and tissue adhesion of biological repair materials and multiphasic biomedical materials, and the tissue culture methods that serve as the basis for this are also rapidly and highly efficient. Accuracy is required. The tissue culture method involves cultivating various types of living cells while testing the harmful effects of the foreign material on living tissues.It is a method to examine how many living cells are killed by the foreign material and what kind of cell behavior occurs when the cells die. However, conventional tissue culture methods have not always been sufficiently rapid and accurate for the following reasons. In other words, the commonly used nuclear number calculation method (NC
In this method, a foreign substance is mixed into cultured living cells and samples are taken out every predetermined number of days to calculate the number of cell nuclei. The number of nuclei per unit volume is read out by spreading the sample on a calculation plate with the cells killed and cell activity fixed.One set of samples is paired with at least three test tubes, and a control sample ( Similarly, a set of 3 (no foreign matter) is used, and since a large number of such sets must be prepared for each period of days, firstly, the experimental system becomes large-scale, and secondly, it is difficult to calculate the nucleus on a calculation plate. However, it is difficult to distinguish between actual nuclei and foreign substances such as dirt, dust, bacteria, etc., and considerable skill is required.There are many steps from staining and fixing the specimen to the calculation plate, which results in the accumulation of human errors. Problems include the fact that the error reaches a level that cannot be ignored as a mass. The present invention has been made in view of the above, and includes (a) simplification of the experimental system, (b) acceleration of calculation speed, (c) elimination of human error, (d) elimination of special skills, and (e) information A preferred embodiment will be described in detail below with reference to the drawings. In the drawings, Fig. 1 is a flowchart of the apparatus of the present invention, and Fig. 2 is an image processing method. A waveform diagram showing the principle of analysis, and FIG. 3 is a diagram explaining the principle of the self-focusing mechanism of the microscope. As shown in FIG.
and an inverted phase contrast microscope 2 that takes a close-up photo of this specimen 1.
A TV camera 3 captures a microscopic image of the living cell specimen 1 through the microscope 2, and the obtained video signal is image scanned to determine the number of living cells based on the optical density of the living cells in the image. This is an automatic calculation device for the number of cultured living cells, which is composed of an image analysis device 4 that calculates , and a computer 6 that processes digital analysis signals from this device 4 . As described above, the apparatus of the present invention attempts to recognize the number of cells and their morphology by scanning the microscopic image of the living cell specimen 1 through the TV camera 3 and performing image analysis to recognize the number of cells and their morphology. The test subject is a live specimen rather than an analysed state; automatic judgment is left to the image analysis device rather than human visual judgment; image formation, statistical processing, and chart creation. It is noteworthy that everything is fully automated. The present invention will be explained in further detail below. (i) Preparation of live cell specimen 1: The cell culture itself is the same as the conventional method, but it should be noted that when calculating the number of cells, the cells are kept alive without being killed and used as a living specimen without staining. be. That is, culture involves culturing normal living cells (primary culture cells and cell lines such as L, Hella, T6L, etc.) in a normal culture solution (MEM culture solution, etc.) for a certain period of time. Thereafter, the cells are transferred to a multi-dish (a dish having a large number of independent holes) as a culture dish, cultured for a period of time, and then subjected to the apparatus of the present invention. (ii) Inverted phase-contrast microscope 2: A known microscope is used that can microscopically view the live specimen being cultured from the bottom of the culture dish (multi-dish) in each hole.The focusing can be done manually, but self-focusing is also possible. It is better to have a scrap mechanism. One of these mechanisms was developed by the present inventor in conjunction with the present invention, and its principle will be outlined based on FIG. The sample stage 21 can be moved up and down by a step motor 22, a timing belt 26, and a pulley 23. This step motor 22 is connected to a microprocessor element 24 built in the image analysis device 4, and the objective lens When the specimen 1 (each hole of the multi-dish) on the specimen stage 21 is taken close-up from below from the cylinder 25, the point where the optical contrast is strongest in the specimen image scanning (the point where the wave height is the steepest in the waveform) A signal is sent from the microprocessor 24 to the step motor 22 to automatically focus and stop the image. The above description is an example in which the sample stage 21 is moved forward and backward relative to the objective lens barrel 25, but the sample stage 21 is fixed using the same elevating means and the objective lens barrel 25 is
It is also possible to move the sample table 21 forward and backward in the longitudinal direction, and further, it is also possible to fix the sample stage 21 and perform relative movement between the eyepiece lens 27 and/or the objective lens 28 to adjust the focus to a desired position. Such a self-focus mechanism is preferably adopted in order to contribute to full automation of inspection. (iii) TV camera 3: The TV camera 3 captures a microscopic image, and is a commercially available industrial or medical TV camera. (iv) Image analysis device 4: Scans the raw image of the living cell specimen 1 based on the digital video signal from the TV camera 3, determines live cells based on the optical density of the live cells in the image, and calculates the number of live cells. As shown in Figure 1, specimen 1 is displayed on the TV monitor 8 of this device, which has 4 units.
The raw image is displayed, and the content of the analysis given in the raw image is superimposed on the monitor 8. As shown in FIG. 2, the number of cells is determined and calculated as living cells if the waveform of horizontal synchronous scanning has a wave height and a wave width within a certain value. In the same figure, wave height △y and wave width △x
Smaller cells, i.e., ○i and ○ha, are determined to be living cells, and ○ro and ○ni are determined to be living cells (for example, garbage,
It is determined to be caused by bacteria (bacteria). This △y, △x
The value of is appropriately set from (Table 1) described later. If the analysis is based not only on the mere number of cells but also on the area ratio calculation method, a certain area area involved in the calculation is superimposed on the raw image by flashing visible light, making the content of the analysis visible. The output signal from the analyzer 4 is the AD converter 5 in the case of the figure.
is input to the computer 6 as a digital signal. Although it is technically possible to place the AD converter 5 before the analysis device 4, it is better to place it after the analyzer 4 in terms of cost. In order to observe the morphology of living cells in addition to the number of living cells, analysis that determines the shape of living cells from the length of the outer ring line among circular, triangular, polygonal, and amorphous shapes (for example, (For circles, the outer ring wire is the shortest; for polygons, the outer ring wire is the longest.) By attaching the necessary adapter, shape recognition judgment can be performed regardless of size. When some living cells die due to the presence of a foreign substance, or when some kind of abnormal activity continues, the morphology of the cells is determined by finding the cell morphology in the visible image and analyzing it. This is of deep significance. (v) Computer 6: Converts digital analysis signals from analysis device 4 to CRT
A device that processes information including image display,
Examples of such processing include quantitative conversion, graph display, and statistical processing. It goes without saying that the memory means 9, such as an ordinary floppy disk or video memory, can store and save various information. (vi) Others: As shown in Figure 1, by displaying an image of a living specimen taken by a TV camera 3 on a TV monitor 7 (including memory means), the number of cells in the image can be determined and calculated with the naked eye. It is necessary to compare the results with the results of the CRT image of the computer 6 to compare the accuracy of the calculation numbers by the device of the present invention and determine the optimal analysis ability from the example described later. If analysis capability is selected, the TV monitor 7 does not need to be installed. To carry out the apparatus of the present invention based on the above-described configuration, a cultured living cell specimen 1 is prepared, a close-up image of this is taken with an inverted phase contrast microscope 2, and an image of the living specimen is captured with a TV camera 3 to obtain an image. Analyzer 4 scans the image and interprets the cells and calculates the number of cells, and the AD-converted analysis signal is sent to CRT using a computer.
It also performs quantitative conversion, graph display, etc., and furthermore, the memory means 9 automatically records living cell image data over time and performs calculations with various analysis data to perform various displays. It becomes possible to do so. Although we were able to obtain live cell images with a magnification of 4x on the imaging surface and a magnification of 120x on TV monitors 8 and 7 using the microscope 2 and the TV camera 3, improvements in these optical systems may reduce the magnification of the image. should be further improved. Experimental examples and working examples of the apparatus of the present invention are shown below along with comparative examples. Experimental Example In order to discover the analysis ability (waveform processing) that can reduce the error in the cell count calculation value from the live cell sample image in the device of the present invention, we counted the cells visually from the cell image projected on the TV monitor 7. The threshold value of the cell number calculation value according to the present invention when the actual number of cells, the waveform processing for analysis (sensitivity), and the size of the object to clearly distinguish contaminants such as dust and bacteria from cells are varied. The results of the investigation are shown in (Table 1). The culture of living cells in this experimental example was the same as in the example. (Table 1) When the threshold value is close to 1 (least error), the wave height sensitivity is 6.0 and the wave width is 0.4, so the analysis ability (concentration waveform processing) of the analyzer 4 is △y = 6.0 , aimed at △x=0.4.

【表】【table】

【表】 実施例 (a) 生細胞標本の作成:L細胞を5%仔牛血清加
MEM培養液で7日間隔で予備培養し、4日間
の本培養の後24穴マルチデイシユに分配した後
2日、4日、7日培養後本発明装置にかけた。
なお、標本個数は30個である。 (b) 解析能力:△y=6.0、△x=0.4 (c) 拡大率:TVモニタで120倍 (d) 結 果:上記条件で得られた結果から変動率
(即ち誤差のバラツキ)を調べた結果を(表
3)に示す。 比較例 上記実施例と全く同一の標本を作製し従来の
NC法に従つて得た細胞数を(表2)に示す。
[Table] Example (a) Preparation of living cell specimen: L cells were added with 5% calf serum.
Preliminary culture was performed in MEM culture solution at 7-day intervals, and after 4 days of main culture, the cells were divided into 24-well multi-dishes, and after 2, 4, and 7 days of culture, they were applied to the apparatus of the present invention.
Note that the number of samples was 30. (b) Analysis ability: △y = 6.0, △x = 0.4 (c) Magnification: 120x on TV monitor (d) Results: Examine the rate of variation (that is, the variation in error) from the results obtained under the above conditions. The results are shown in (Table 3). Comparative example A specimen exactly the same as in the above example was prepared, and the conventional
The cell numbers obtained according to the NC method are shown in (Table 2).

【表】【table】

【表】 (表2)、(表3)から明らかなように、NC法
の場合、実験開始から2時間で変動係数が29.3
%、2日後で29.3%、4日後で12.2%の値を示し
たのに対し、本発明装置によると、変動係数が実
験開始後2時間で5.56%、2日後で2.7%、4日
後で2.25%とNC法に較べて遥かに減少してお
り、精度が飛躍的に改善されていることが判る。 本発明装置は以上の如く培養生細胞標本の顕微
鏡像をTVカメラで撮像したものを画像表示をか
けながら画像解析を実施して生細胞数の判定、算
出を行うものであるので、算出スピードが迅速化
され得ること、人為的誤差がないこと、実験系を
小規模なものとして算定経費を低廉とし得るこ
と、処理能力を大きく出来ること、細胞の増殖度
も連続的、定期的に記録し、保存し得ること、新
旧両データを基に各種の対比、判断が可能となつ
たこと、生細胞の形態認識も出来る………等、従
来方式の問題点を一掃し得る優れた効果を備えた
ものである。
[Table] As is clear from Tables 2 and 3, in the case of the NC method, the coefficient of variation was 29.3 within 2 hours from the start of the experiment.
%, 29.3% after 2 days and 12.2% after 4 days, whereas according to the device of the present invention, the coefficient of variation was 5.56% 2 hours after the start of the experiment, 2.7% after 2 days, and 2.25 after 4 days. %, which is much lower than that of the NC method, and it can be seen that the accuracy has been dramatically improved. As described above, the device of the present invention performs image analysis while displaying the microscopic image of a cultured living cell specimen taken with a TV camera to determine and calculate the number of living cells, so the calculation speed is faster. It can be done quickly, there is no human error, the experimental system can be small-scale and the calculation costs can be kept low, the processing capacity can be increased, and the degree of cell proliferation can be continuously and regularly recorded. It has excellent effects that can eliminate the problems of conventional methods, such as being able to store data, making it possible to make various comparisons and judgments based on old and new data, and being able to recognize the morphology of living cells. It is something.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置のフローチヤート、第2図
は画像解析の原理を示す波形図、第3図は顕微鏡
のセルフフオーカス機構の原理説明図である。 (符号の説明)、1……生細胞標本、2……倒
立位相差顕微鏡、3……TVカメラ、4……画像
解析装置、5……AD変換器、6……コンピユー
タ、7,8……TVモニタ、9……メモリ手段。
FIG. 1 is a flowchart of the apparatus of the present invention, FIG. 2 is a waveform diagram showing the principle of image analysis, and FIG. 3 is a diagram explaining the principle of the self-focusing mechanism of the microscope. (Explanation of symbols), 1... Living cell specimen, 2... Inverted phase contrast microscope, 3... TV camera, 4... Image analysis device, 5... AD converter, 6... Computer, 7, 8... ...TV monitor, 9...memory means.

Claims (1)

【特許請求の範囲】 1 培養中の生細胞標本1と、この標本1を接写
する倒立位相差顕微鏡2と、この顕微鏡2を通し
て上記生細胞標本1の顕微鏡像を撮像するTVカ
メラ3と、得られた映像信号を画像走査して画像
中の生細胞の光学的濃度により生細胞を判定しそ
の数を算出する画像解析装置4と、この装置4か
らのデジタル解析信号を情報処理するコンピユー
タ6とより成る培養生細胞数の自動算定装置。 2 画像解析装置4による生細胞の判定算出が画
像の水平走査の濃度波形の波高及び波幅によつて
実施される特許請求の範囲第1項記載の装置。 3 TVカメラ3の映像信号がTVモニタ7によつ
て映像され、画像解析装置4の解析像が個有の
TVモニタ8により映像され該装置4のアナログ
解析信号がAD変換器5を経てコンピユータ6に
入力される特許請求の範囲第1項記載の装置。 4 AD変換器5よりのデジタル解析信号がメモ
リ手段9によつて記憶保存される特許請求の範囲
第3項記載の装置。 5 倒立位相差顕微鏡2がセルフフオーカス機構
を含んでいる特許請求の範囲第1項記載の装置。
[Claims] 1. A living cell specimen 1 in culture, an inverted phase contrast microscope 2 for taking a close-up photo of the specimen 1, a TV camera 3 for taking a microscopic image of the living cell specimen 1 through the microscope 2, and a TV camera 3 for taking a microscopic image of the living cell specimen 1 through the microscope 2; an image analysis device 4 that scans the image signal of the image, determines the number of living cells based on the optical density of the living cells in the image, and calculates the number of living cells; and a computer 6 that processes the digital analysis signal from this device 4. An automatic counting device for the number of viable cells in culture. 2. The apparatus according to claim 1, wherein the determination calculation of living cells by the image analysis apparatus 4 is performed based on the wave height and wave width of the concentration waveform of the horizontal scan of the image. 3 The video signal of the TV camera 3 is displayed on the TV monitor 7, and the analysis image of the image analysis device 4 is displayed as a unique image.
2. The device according to claim 1, wherein the analog analysis signal of the device 4, which is imaged on a TV monitor 8, is inputted to the computer 6 via the AD converter 5. 4. The apparatus according to claim 3, wherein the digital analysis signal from the AD converter 5 is stored and stored in the memory means 9. 5. The apparatus according to claim 1, wherein the inverted phase contrast microscope 2 includes a self-focusing mechanism.
JP18834082A 1982-10-26 1982-10-26 Automatic calculator of viable cell count in cultivation Granted JPS5978681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18834082A JPS5978681A (en) 1982-10-26 1982-10-26 Automatic calculator of viable cell count in cultivation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18834082A JPS5978681A (en) 1982-10-26 1982-10-26 Automatic calculator of viable cell count in cultivation

Publications (2)

Publication Number Publication Date
JPS5978681A JPS5978681A (en) 1984-05-07
JPS629311B2 true JPS629311B2 (en) 1987-02-27

Family

ID=16221898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18834082A Granted JPS5978681A (en) 1982-10-26 1982-10-26 Automatic calculator of viable cell count in cultivation

Country Status (1)

Country Link
JP (1) JPS5978681A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59187777A (en) * 1983-04-11 1984-10-24 Hitachi Electronics Eng Co Ltd Apparatus for automatic screening of colony
JPS6135798A (en) * 1984-07-28 1986-02-20 Nishihara Environ Sanit Res Corp Automatic determination of biota
EP0195088B1 (en) * 1984-09-18 1992-12-09 Sumitomo Electric Industries Limited Apparatus for sorting cells
US5270173A (en) * 1987-10-06 1993-12-14 Sumitomo Electric Industries, Ltd. Method of monitoring cell culture
WO1989003431A1 (en) * 1987-10-06 1989-04-20 Sumitomo Electric Industries, Ltd. Cell culture monitor method
JP2008212017A (en) * 2007-03-01 2008-09-18 Nikon Corp Apparatus for determining cell state, and method for determining cell state
JP6098277B2 (en) * 2013-03-26 2017-03-22 富士通株式会社 Evaluation support apparatus, evaluation support method, and evaluation support program

Also Published As

Publication number Publication date
JPS5978681A (en) 1984-05-07

Similar Documents

Publication Publication Date Title
US6320174B1 (en) Composing microscope
US4700298A (en) Dynamic microscope image processing scanner
US6002789A (en) Bacteria colony counter and classifier
JP3586695B2 (en) Method and apparatus for continuously monitoring and predicting slide and specimen preparation for biological specimens
CN101702053B (en) Method for automatically focusing microscope system in urinary sediment examination equipment
JPH03255365A (en) Method and device for measuring a plurality of optical characteristics of living specimen
JPH0484884A (en) Image recognizing system and image recognizing control system
CN112150446A (en) Microscope examination and film reading scanning method, computer equipment and system
JPWO2019181053A1 (en) Defocus metering device, method and program, and discriminator
JPS629311B2 (en)
JP2008046305A (en) Automatic focusing device, microscope, and automatic focusing method
Lila Smith et al. Direct quantification of in vitro cell growth through image analysis
WO2006095896A1 (en) Cultured cell monitoring system
EP0146621A4 (en) A method of determining the diagnostic significance of the content of a volume of biological sample containing particles.
JPH08287261A (en) Image recognition system and image recognition control system
GREEN et al. The design, operation and evaluation of a high speed automatic metaphase finder
JP6571210B2 (en) Observation device
JP2960327B2 (en) Biological image processing method and processing system for fisheries
Korthof et al. Tests of performance of four semiautomatic metaphase‐finding and karyotyping systems
CN112241953B (en) Sample image fusion method and device based on multi-focus image fusion and HDR algorithm
JPH10206421A (en) Scan type cell measuring apparatus
Wald et al. Automatic screening of metaphase spreads for chromosome analysis
JP2599942B2 (en) Reticulocyte counter
Hyodo et al. Application of the confocal scanning laser microscope for observing biological specimens: Detection of glomerular bleeding
CN114442296B (en) Picture acquisition method for microscope, medical detection device and storage medium