WO1989003431A1 - Cell culture monitor method - Google Patents

Cell culture monitor method Download PDF

Info

Publication number
WO1989003431A1
WO1989003431A1 PCT/JP1987/000750 JP8700750W WO8903431A1 WO 1989003431 A1 WO1989003431 A1 WO 1989003431A1 JP 8700750 W JP8700750 W JP 8700750W WO 8903431 A1 WO8903431 A1 WO 8903431A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
cells
culture
cell
cell culture
Prior art date
Application number
PCT/JP1987/000750
Other languages
French (fr)
Japanese (ja)
Inventor
Fumihiko Yonemori
Masayoshi Yamaguchi
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Priority to PCT/JP1987/000750 priority Critical patent/WO1989003431A1/en
Priority to CA000584597A priority patent/CA1325475C/en
Priority claimed from CA000584597A external-priority patent/CA1325475C/en
Publication of WO1989003431A1 publication Critical patent/WO1989003431A1/en
Priority to US07/900,791 priority patent/US5270173A/en
Priority claimed from US07/900,791 external-priority patent/US5270173A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/36Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells

Definitions

  • Akira Homoto sought a method of monitoring cell culture, and in more detail, digitized culture images captured by an image processing device, and processed live cells by processing using an air filter.
  • Cell culture monitoring which consists of measuring the number of cells and the cell culture status of the cells.
  • Another object of the present invention is to provide a cell culture method capable of accurately counting the number of cells even when having a complicated pattern and background.
  • ⁇ of Takaaki Honaki is to provide a method for monitoring a cell culture which can perform a large amount of processing in a short time.
  • the number of living cells in culture can be obtained by digitizing the cultured cell image which is embroidered on the observation means, captured by the image processing crab via the TV camera, and processed using the air filter. Also, a cell culture method specializing in measuring the proliferation state is provided.
  • the cell culture monitoring method of the present invention will be described with reference to the accompanying drawings.
  • the image of the cells in the culture vessel is input to the image processing device using a TV camera attached to the microscope, which is an observation means.
  • the size of the empty filter matrix is also nn.
  • Pixels (n ⁇ 5>) and the size of the culture production is generally 10-21a, so the size of a line from 10 / nXi to 21 / nX2 2 / ⁇ [ ⁇ and-are taken in at a rate of- If the size of the filter matrix is too large or too small, the recognition rate will deteriorate.
  • a spatial filter with a size of 5 ⁇ 5 pixels or more is used. This is because even if a pixel smaller than 5 x S pixels is used, the recognition efficiency is improved, and it is not practical.
  • the ⁇ -shape of the spatial filter is a circular shape, in which the coefficients of the periphery are negative, the coefficient of the center is positive, and the other coefficients are 0 (Z ⁇ ).
  • Fig. 3 shows the shape and coefficients of a 7x7 pixel spatial filter.
  • a filter to emphasize the production component, the shape of the target cell, and the brightness distribution pattern of the target living cell image are collected for multiple cells, and the maximum pattern is obtained by obtaining the flat pattern. be able to.
  • the spatial filtering also emphasizes the high degree of integration between the spatial filter and the shape (reference pattern).
  • the shape of the cell is the cell pattern itself.
  • Fig. 4 shows the shape and coefficients of a 7 ⁇ 7 pixel filter for a simple filter.
  • a S1- -3 ⁇ -3 x: Wandering of the gallery in front of Puerto Tarinda.
  • ⁇ tei Calculates the number of living cells according to the number of pixels of a living vesicle cell.
  • the production benefit part ( ⁇ :) may be inserted: the image after the space filter is requested.
  • Binary images binarized by fighting for the number of viable cells or binary images improperly expanded are removed from the binary image binarized and decomposed by subtracting them on the image. can do. Ama here! The process is repeated several times.
  • ⁇ ⁇ 1 If too much processing is performed, necessary images will be erased. Noise around the living cells ⁇ By performing one or more of four near-swelling or s near-swelling treatments or a combination of these on one or more images, the same as in the live case The error that occurs when converting the number of cells from birch to the number of cells. _ One g one
  • a complex image such as the presence of a living cell in a dead cell, foreign body, etc., is shifted by 30 z ffi from a fully focused state to a complex image.
  • Image processing equipment for cell images f PIAS-1 (produced by Nippon PC Systems, Inc.), the rate at which the cultured live cell sections are inscribed in a 7 ⁇ 7 pixel empty filter, that is, the i-pixel size is 1.8 # ffl X 1.
  • the image was digitized using the image processing equipment FIAS-1 with the agility rate of S m, and the image was filtered using a spatial filter with a shape extension coefficient as shown in No. 513. If the false recognition rate is within the range of 10%, the error rate is 67%, if the false recognition rate is within the range of 20%.
  • a 70% recognition rate was obtained.
  • the accusation rate and the recognition rate can be recognized by image processing.
  • Deception rate The number of raw pongs that actually exist in the original image
  • Example 2 A complex g-image ⁇ such that there is a co- ⁇ 21 of living cells in a dead cell, foreign body, etc., and the focus is shifted by 30 m from the completely focused focus state.
  • the cell image was taken into the image processor PIP-40000 (ADS ( ⁇ )) through the image reading device of the CCD camera.
  • the rate at which the outline of the cultured live cell is inscribed in the empty filter of the 7 x 7 grid that is, the rate at which the size of one pixel is 2.4 2.4 iim, is used.
  • the digital image is digitized by the image processing device PI 00-40000, and a filter with a shape and coefficient as shown in Fig. 6 is filtered and binarized based on the number of productions by visual measurement.
  • a false recognition rate of 10% was obtained in the region of 73%, and a rubber recognition rate of 205% was 8 I%. If only the binarization process is performed on the same image, the recognition rate is 5 l% in the range of 10% and the recognition rate is 60% in the range of 20%. .
  • Example 2 Except for using a binarization method based on the number of seedling cells instead of a binning bench value based on the number of living cells based on the target measurement, Example 2 I returned.
  • the spatial filter with the same shape coefficient as that of If 2 is also filtered, the recognition rate, 7 3 ⁇ ⁇ ⁇ for 1 ⁇ ⁇ , and 8 2% for 20 ⁇ ⁇ ⁇ Met.
  • the error of converting the return prime number into the number of viable cells by performing the re-expansion once for the image after binarization is 8% from 17% when the expansion process is not performed. It became%. Brief description of drawings
  • Fig. 1 is a flowchart showing the procedure for counting the number of living cells.
  • Fig. 2 ⁇ the flowchart showing the procedure for counting the number of living cells and the number of cells.
  • FIG. 3 is a diagram showing the shape and coefficient of the spatial filter of the 7 ⁇ 7 grid
  • FIG. 4 is a diagram showing the shape and coefficient of an optimized empty filter of 7 ⁇ 7 pixels.
  • FIG. 5 and FIG. 6 are diagrams showing the size and relationship of the air filters used in Example 1 and Example 2, respectively.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Urology & Nephrology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Hematology (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Cell Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)

Abstract

This invention relates to a cell culture monitor method which digitalizes a cultured cell image inputted to an image processor through a TV camera connected to an observation means, measures the number of cultured cells and the state of their propagation by conducting processing by use of a spatial filter and can thus count accurately and rapidly the number of cells.

Description

明 細 書  Specification
細胞培養モニター方法  Cell culture monitoring method
技術分野  Technical field
. 本宪明ほ、 細胞培養のモニタ一方法に鬨し、 更に詳しくほ、 画像 処理装置に取り込まれた培養钿跑画像もディ ジタル化し、 空閎フィ ル.タ を用いた処理により培養生細胞の儲数、 細胞の個敎 ¾ぴ增 殖扰態を計測することからなる钿胞培養のモニタ -"方法に閼する。 皆景技術  Akira Homoto sought a method of monitoring cell culture, and in more detail, digitized culture images captured by an image processing device, and processed live cells by processing using an air filter. Cell culture monitoring, which consists of measuring the number of cells and the cell culture status of the cells.
マイク ϋプレート、 ディ ッシュ、 培赛ビンなどの容器内で钿胞 培篓する場会、 生镝 の濃度が瀵くなりすぎ、 フルグ σ スと呼 れる状態 なると、 死滅する钿鹰が出てく る。 このおめ、 フルグ ο ース钛態になる以前に、 钿脍培養液種の交換を行ったり、 あるいほ 雜代培養する必饔がある。 この細胞培養欲種の交換あるいは继代培 - 養^行う時期の决定ほ、 これまで、 ヒ トが潁激翁を用いて容器内の 細胸增殖状態を観察し、 カンにたよって行なってきお。 しかし、 力 ンにぉよる徒来の方法でほ、 培養細胞の增齄找態 ¾ぴ生練胞爨度の 羝握ほ非常にあい昧なものとなり、 定量性がなかった。 その上、 時 閭がかかり、 大畺の培養钿跑の増殖状璲をすぺて羝握することほ困 蹇であった。 A place where cells are cultivated in containers such as microphone plates, dishes, and culture bottles. If the concentration of the production becomes too high and it becomes a state called fulgus, it will die. . It is necessary to change the culture medium or to carry out hybrid culture before it becomes fructose. So far, humans have been observing the state of fine breast breeding in containers using Ying Kang, and have decided to use this to determine when to exchange or cultivate cell culture. But force According to the conventional method, it was very ambiguous and the quantification of the cultured cells was unclear. In addition, it was very difficult to grasp the growth status of the culture of the daisies.
又、 限界希釈法によるク σ 二ンダを行う場合や、 钿鷓を分釗す る場合など、 生细稳数と ¾細膣数の両方を同,に計測しなければな らなぃ場合があるが、 血球箅定毽などを用いても、 潁徵鎵 よる目 視計灘では、 誤差が大きく、 測定に時藺もかかつお。  In addition, there are cases where it is necessary to measure both the number of production and the number of small vagina at the same time, such as when performing the sigma-binding by the limiting dilution method or when analyzing the shaku. However, even if blood cell measurement is used, the error will be large and the measurement will be irritated by the sighting system of Yingye.
- 鎮截饞による観察に^わり、 画像処理による钿齒認識方法も提唱 きれているが、 単にニ壚化おけで行なわれている為、 愨識劫率が惠 い。 これほ、 寒天培通上 できおコロニーのようなバックグラウン ドが単雜な場合にほ認議が容葛であるが、 培養容器中の紬齒には、 苑細蹿、 ゴミ, その他ぬ異钧が含まれているからパターン ¾びパ タグラウンド共に複雑である為であも。 -Instead of observing by scholarship, a method of recognizing teeth using image processing has been proposed. In this case, it is difficult to approve the background when the background such as the colony on the agar culture is simple.钧 is included, so the pattern and the background are both complex.
発 J¾©目的 - a - 本発明の目的ほ、 複雑なパターン、 パックグラウンドを有する場 合 も正確に細胞数を計測することができる細胞培養 ター方法 ^提供することにある。 Departure J¾ © Purpose Another object of the present invention is to provide a cell culture method capable of accurately counting the number of cells even when having a complicated pattern and background.
本堯明の^の目的は、 短時間に大量の処理が行える細胞培養モニ タ一方法 提供することにある。  The purpose of ^ of Takaaki Honaki is to provide a method for monitoring a cell culture which can perform a large amount of processing in a short time.
発明の構成 Structure of the invention
本発明によれば、 観察手段に接繍されお T Vカメラを介して画像 処理装蟹に取り込まれお培養細胞画像をディジタル化し、 空藺フィ . ルタ一^用いた処理により、 培養生細胞の個数及び増殖状態を計測 することを特徵とする細胞培篓乇ユタ 方法が提供され'る。  According to the present invention, the number of living cells in culture can be obtained by digitizing the cultured cell image which is embroidered on the observation means, captured by the image processing crab via the TV camera, and processed using the air filter. Also, a cell culture method specializing in measuring the proliferation state is provided.
添付図面を參照して本発明の細旖培養モニタ—方法を説明する。 観察手段である顕激鏡に接銃された T Vカメラを用いて、 画像処 瑭装置に培養容器中の細胞画像を入力する。 第 1図に示すような手 順で、 画像処理を行い、 培養生細胞数を計測する。 二値化の後に、 辗処理を行うことが好ましい。 まお、 第 2図に示すような手順で、 培養生耦鶬数及び 钿飽数の If測 ¾行える。 The cell culture monitoring method of the present invention will be described with reference to the accompanying drawings. The image of the cells in the culture vessel is input to the image processing device using a TV camera attached to the microscope, which is an observation means. Perform image processing according to the procedure shown in Fig. 1 and count the number of living cells in culture. After the binarization, it is preferable to carry out a 辗 treatment. Well, by the procedure shown in Fig. 2, If measurement of the number of cultures and the number of saturates can be performed.
培養鎺跑画像の取り Sみは、 焦点が完全に合 た状態から焦点を  Cultivation 鎺 跑 image acquisition
; - ずらし、 培養生钿隐の中心部の輝度が明るく、 かつ周 部の輝度が 暗い铮郭がはっき.りしお像が得られる焦点位蠹において行う。 通常、 顕教鏡の焦点を土 5〜± 250#ιηずらすことによって、 生細砲の 锒ほ、 周 Sの輝度が下がり暗くなり、 '中心部の緯度は明るい像とな る。 焦点のずれが 5 #β未篛では、 生钿腱全面暗い像のままであり-、 ずれが 250 より大きいと、 像が不明確となってしまうので、 ±5〜土 250 の範 S内で焦点 ずらすのが適当である。  -Displacement is performed at the focal point allocation where the brightness of the center of the culture is bright and the brightness of the periphery is dark. Normally, by shifting the focus of the incisor by 5 ~ ± 250 # ιη, the brightness of the 細 ho and the circumference S of the live artillery is reduced and the image becomes darker, and the center latitude becomes a brighter image. If the defocus is less than 5 # β, the entire raw tendon remains a dark image.If the defocus is larger than 250, the image becomes unclear, so within the range S of ± 5 to 250 It is appropriate to shift the focus.
この抉笾で、 一個の培赛生鏔臈が、 指定したサイズの空閽フィル ーマトリ クスの正方^に ρ¾接する接率となった時点、.すなわち 空閻フィルタ一マトリ 'Jクスのサイズも n n 画素(n≥ 5〉としお 塲会、 培養生铖跑の大ききは一般に 1 0-2 1 aであるので、 一 画索の大きさが 1 0/nX i から 2 1/nX 2 ί /η 〔 ίπθ と -なる掊率で、 培養細鵜梟を取り込む。 これほ、 生細胞像が揩定した サイズの空藺フィルターマトリックスより大きすぎても、 反対に小 きすぎても認赣劲率が悪くなるためである。 空間フィルタ一 トリ ッ タスは、 5 X 5画素以上のサイズのもの^用いる。 5 x S画素より 小さいサイズのものを用いても認識効率が惠くなり、 実堉とならな いからである。 At this point, when one of the cultures has a contact ratio of ρ in contact with the square of the specified size of the empty matrix, that is, the size of the empty filter matrix is also nn. Pixels (n≥5>) and the size of the culture production is generally 10-21a, so the size of a line from 10 / nXi to 21 / nX2 2 / η [Ίπθ and-are taken in at a rate of- If the size of the filter matrix is too large or too small, the recognition rate will deteriorate. A spatial filter with a size of 5 × 5 pixels or more is used. This is because even if a pixel smaller than 5 x S pixels is used, the recognition efficiency is improved, and it is not practical.
空間フィルタ一の^状は、 円形で、 周辺郁の係数が負であり、 かつ中心部の係数が正、 それ以外の係数が 0 (ゼ σ )のものを画像全面 にフィルタリングすることによ て、 生钿跑部分だけを強绸するこ とができる。 一例として、 7 X 7画素の空間フィルターの 状と係 数を第 3図に示す。 ,  The ^ -shape of the spatial filter is a circular shape, in which the coefficients of the periphery are negative, the coefficient of the center is positive, and the other coefficients are 0 (Zσ). However, only the production area can be enhanced. As an example, Fig. 3 shows the shape and coefficients of a 7x7 pixel spatial filter. ,
生钿 ϋ茚分を強調するためのフィルタ一係数、 形伏ほ、 対象とな る生細胞像の輝度分布パターンを複数辆胞分集め、 その平 ¾パター . ンを求めること よって最遒化することができる。 これは、 空間フィ ル リ ングが空間フィルタ—形状(基準バタ一ン)との相閼の高い却 ' 分も強調することになる為、 相閧が一番高くなるのは、 空間フィル タ一形状が細胞鐸度バターンそのものの場合であるからである。 一 冽として、 7 X 7画素の聶邋化しお空簡フィルタ一の形扰と係数を 第 4図に示す。 A filter to emphasize the production component, the shape of the target cell, and the brightness distribution pattern of the target living cell image are collected for multiple cells, and the maximum pattern is obtained by obtaining the flat pattern. be able to. This is because the spatial filtering also emphasizes the high degree of integration between the spatial filter and the shape (reference pattern). This is because the shape of the cell is the cell pattern itself. Fig. 4 shows the shape and coefficients of a 7 × 7 pixel filter for a simple filter.
この場合、 中心画素 y ijの値ほ、 式:  In this case, the value of the center pixel y ij is given by:
— 1 + 3 + 3 — 1 + 3 + 3
A S1- -3 η= -3 x : プィルタリンダ前の画索の徨 .  A S1- -3 η = -3 x: Wandering of the gallery in front of Puerto Tarinda.
y フィルタリング後の国素の嫿  y 素 of the national element after filtering
A ·: 係数  A ·: Coefficient
ίιΗη : フィルタ一の各画素の邦分に対 する係教 ίι Ηη : Teacher of each pixel of filter 1
^徒って決定される。 ϋ当な閾値にてニ植化し、 生細胞のある部分 の画素ほ 無い茚分の画素は" 0,とする δ このニ攛化の胬饞は、 1つの豳瘃における目榛計測生钿胞數又は実際の生钿齒数と、 二値 化後の生細胞が有るとされる4 ·の画素の壊の値数が一 ¾するよう な最遨ニ値化閾値を求め、 それの複数画像分の平均値も固定ニ植化 闞镇として いることができる。 これは、 パックグラン の輝度に 閼係なく、 ^伏の相関を'見ている為である。 生細跑があるとしお都 — _ 分の圃索数 Γ 1 "となった繭素数)に基づき生細跑数^箅出する d 1 個の生細胞が、 占有する画素致がほぼ一定になるので、 武; Decisions are made. and two Ueka in ϋ those threshold, the pixel of the pixel ho no茚分the portion of the living cells, "0, to δ胬饞the two攛化the eyes at one豳瘃hazel measured raw钿胞Calculate the maximum binarization threshold value such that the number or actual number of living teeth and the number of broken pixels of 4 pixels that are considered to have living cells after binarization are the same, and obtain multiple images The average value of the minute can also be regarded as the fixed planting。 because the brightness of Pacglan is not related to the brightness and the correlation of the floor is observed. — The number of d 1 living cells that are generated based on the number of 索 mins of field 1 "cocoon prime number) becomes almost constant, and the pixel occupancy is almost constant.
^ tei —生細生胞細胞 1個ががあ占る有とすしたる画画素素教数 に従って生钿跑数を箅出する。  ^ tei — Calculates the number of living cells according to the number of pixels of a living vesicle cell.
ニ儻囫像から画素数を算出する前^:、 二値画像を 4近铮膨 §1処理、 D: Before calculating the number of pixels from the image ^:
8近揆膨張処璉又はその組み合わせを 1回ないし複数回行うことに よゥて、 画素敎 細胞数に換算するときに生じる鼷差を齄缄するこ とができる。 これは、 膨張処理を行うことによって、 ニ德化の藤 、 欠けた繭像を修復することができることと、 1細鹧の占有する画素 数が大きくなるので、 1画素の增玆の童みが少なくなるからである。 空藺フィルタ リ ングによって齒調した後の画像を、 生钿跑を求め ると.きとは别の闢镇、 多くは低い闞値にて再度ニ懊化し、 .きらに反 転し、 死钿遛が存在する郞分の圃素を "、 無い郯分の画素を - 0 ". とする。 ^細胞があるとした郅分の画素数 By performing one or more of the 8 recent inflation treatments or a combination thereof, it is possible to determine the difference that occurs when the number of pixels is converted into the number of cells. This is because by performing the expansion process, it is possible to repair the degenerated wisteria and the missing cocoon image, and because the number of pixels occupied by one cell increases, the child of one pixel becomes a child. It is because it becomes less. When the image after the tooth alignment by the empty ring filter ring is found, the birth of kito is the beginning of many years, many of which are re-delicated at a low value, invert to the bira and die. The field element of the area where 存在 exists is set as “、”, and the pixel of the area where 钿 遛 does not exist is set as “-0”. ^ Number of pixels per minute assuming there are cells
(· となった豳素数)に基づき死細胞数を算出する。 1餹の死細胞 が占有する画素数がほぽ一定になるので、 式: Calculate the number of dead cells based on (· prime number). 1 餹 dead cells Since the number of pixels occupied by is approximately constant, the equation:
^^ ^ - ¾飆跑があるときれた画素敎—  ^^ ^-Pixels when there is ¾
^m m '- 死钿趂 1橱が 胄する画素数 ^ mm '-Death 画素 1 橱
に従って、 苑細鷓敎を箅出する。 Follow the steps to find the garden.
このとき、 鬬植によっては、 生钿跑 恩 部(翰郭部:)が入ゥてし : まうことがあるが、 空闉フィルタリンダ後の画像を、 宛钿跑敎を求 める闞镇で二値化、 反耘した二攛画傺から、 生細胞数を求める闘攛 で二値化した二値画像、 又は違当回膨鹱処理した二値画像も、 画像 上で差し引くこと より除去することができる。 ここでの摩!!処理 は、 数回が遒当である。 趦 §1処理を多ぐ行いすぎると、 必荽な画像 まで消してしまうからである。 生細胞の周 部のノイズ ^除去しお ニ镇画像について、 1回又は複数回、 4近谤膨疆処理もしくは s近 挎膨張処理又ほその組み合わせを行うことによって、 生钿鸱の場合 と同樺に、 画素数から.細胞数に換算するときに生じる誤差 箨翁で 発明の勃! _ 一 g一 At this time, depending on the plant, the production benefit part (翰 :) may be inserted: the image after the space filter is requested. Binary images binarized by fighting for the number of viable cells or binary images improperly expanded are removed from the binary image binarized and decomposed by subtracting them on the image. can do. Ama here! The process is repeated several times. § §1 If too much processing is performed, necessary images will be erased. Noise around the living cells ^ By performing one or more of four near-swelling or s near-swelling treatments or a combination of these on one or more images, the same as in the live case The error that occurs when converting the number of cells from birch to the number of cells. _ One g one
¾の周辺部の輝度が暗く、 中心部の輝度が明るくなる焦点 位鬵における画像取り込みと空閬プィルターによる生細胞画像強闞 との組み合わ^により、 生細胞の形状及び特镦奁持った細胞のみを 抽出することができるので、 生細胞と死細胞との分離が容易に行え、 複維なパターン、 パックグラウンド中 存在する培養生細胞を抽出 して、 正確な細胞数を計測することができる。 また、 短時閬に大量 の培養細胞を処理することができる。  The combination of image capture at the focal point where the brightness of the surrounding area is dark and the brightness of the central area is bright, and the live cell image enhancement using an empty filter ^, only the cells having the shape and characteristics of living cells As a result, live cells and dead cells can be easily separated, and the number of living cells in a complex pattern and in the background can be extracted to accurately count the number of cells. In addition, a large amount of cultured cells can be processed in a short time.
従って、 钿飽培養被種の交換 &び齄代培養時期の決定が迅逮かつ 適切に行うごとが可能になる。  Therefore, it is possible to quickly and appropriately determine the timing of exchanging the cultivated seeds and determining the culture time.
実施例 Example
以下に実施例を示す。  Examples will be described below.
実施例 1 "  Example 1 "
死钿胞、 異物等の中に培養生細胞のコ口二 が存在するような、 複雑な画像を、 焦点が完全に合った状態から焦点も 3 0 z ffiずらし、 O C Dカメラに接練され 顕微鏡を介して、 細胞画像を画像処理装 f P I A S - 1 (日本ピーシーシステムズ製)に取り込んだ, 掊率としてほ、 7 X 7画素の空闉フィルターに培養生細胞输郭が 内接する掊率、 すなわち i画素の大きさが 1 . 8 # ffl X 1 . S mにな る俊率を用いお 画像挺理装氧 F I A S— 1により画像をデジタル化し、 第 513に 示すような形拔及ぴ係数の空閬フィルターをフィル夕リングした; 合、 誤鎵識率が 1 0 %の範囲で 6 7 ¾、 誤認識率が 2 0 %の範囲で A complex image, such as the presence of a living cell in a dead cell, foreign body, etc., is shifted by 30 z ffi from a fully focused state to a complex image. Image processing equipment for cell images f PIAS-1 (produced by Nippon PC Systems, Inc.), the rate at which the cultured live cell sections are inscribed in a 7 × 7 pixel empty filter, that is, the i-pixel size is 1.8 # ffl X 1. The image was digitized using the image processing equipment FIAS-1 with the agility rate of S m, and the image was filtered using a spatial filter with a shape extension coefficient as shown in No. 513. If the false recognition rate is within the range of 10%, the error rate is 67%, if the false recognition rate is within the range of 20%.
7 0 %の認鷂率が得られた。 ここで、 認讒率、 及ぴ鼷認識率は 画像処理により認識できお実際 A 70% recognition rate was obtained. Here, the accusation rate and the recognition rate can be recognized by image processing.
存在する生細胞数 一  Number of living cells present
鎵讒率- 原衝像で実際に存在する生紬砲数 原画像でほ存在しないにも拘わらず画  Deception rate-The number of raw pongs that actually exist in the original image
像処理では存在するとした生細胞数__  Number of live cells assumed to exist in image processing __
誤認識率  False recognition rate
画像処理により存在するとされた 佥生細胞数 で求めた。 実施例 2 死細跑、 異物等の中 培養生細胞のコ σ二一が存在するような, 複維な g像 ¾、 焦点が完全に合った找態から焦点を 3 0 mずらし CCDカメラに接読された潁徼鏠を介して、 細胞画像を画像^理装 置 P I P - 4 0 0 0 (AD S (铮)製)に取り込んだ。 The number of viable cells determined to be present by image processing was determined. Example 2 A complex g-image コ such that there is a co-σ 21 of living cells in a dead cell, foreign body, etc., and the focus is shifted by 30 m from the completely focused focus state. The cell image was taken into the image processor PIP-40000 (ADS (铮)) through the image reading device of the CCD camera.
. 倍率としては、 7 X 7画索の空閻フィルターに培養生細胞輪郭が 内接する俊率、 すなおち 1画素の大ききが 2.4 2.4 iimにな る掊率奁用いお。 As the magnification, the rate at which the outline of the cultured live cell is inscribed in the empty filter of the 7 x 7 grid, that is, the rate at which the size of one pixel is 2.4 2.4 iim, is used.
画像処理装置 P I Ρ - 4 00 0により闺像をデジタル化し、 第 6 図に示すような形状及び係数の空藺プィルターをフィルタリ ングし、 目視^測による生钿跑数を基準とする二値化閾値を用いお場合、 誤 認識率が 1 0%©範國で 73%、 謨認識率が 205¾の範囲で 8 I % の認識率が得られた。 尚、 同一の画像について単に二値化だけの処 理を行った場合、 誤認識率が 1 0%の範囲で 5 l % 認識率が 2 0 %の範囲で 6 0%の認識率であつお。  The digital image is digitized by the image processing device PI 00-40000, and a filter with a shape and coefficient as shown in Fig. 6 is filtered and binarized based on the number of productions by visual measurement. When the threshold was used, a false recognition rate of 10% was obtained in the region of 73%, and a rubber recognition rate of 205% was 8 I%. If only the binarization process is performed on the same image, the recognition rate is 5 l% in the range of 10% and the recognition rate is 60% in the range of 20%. .
生細胞と死細胞がまばらに存在するような闺像を上記方法で取り 込み、 生钿胞敎及び死紬跑数をそれぞれ計測した。 生細胞数につい ては目視計測数 4 7個に対して画像処理計測数 δ 0锢で誤差が 6 , 4 %であり、 細胞数については目視 ϊナ測繫 4 5 3癍に対して画像 処理計剷数 4 5 3値で誤差が 0 %であつお。 又、 総钿跑数(生細跑 数 + %钿齒数)の 3 9サンブルでの計測誤差の標寧儒差は、 1 シグ マで土 1 0 , 2 %であった β ここで誤差は、 画像処理 t測数 -目視計澍数 An image in which live cells and dead cells existed sparsely was captured by the above method, and the numbers of live cells and dead cells were counted. Regarding the number of viable cells, the number of image processing measurement δ 0 The cell number was 4%, and the error was 0% in the total value of the number of image processing cells, which was 45.3 in comparison with the visual observation. Further, ShimegiYasushi儒差measurement error in 3 9 Samburu total钿跑number (viable Hoso跑number +%钿齒number) is soil 1 in 1 Sigma 0, 2% and was the β where error , Image processing t measurement-visual measurement
目镍計測数 で求めた。 実旌 3 目裰計測による生钿胞数を基準とする二植化闥値に代えて実生細 胞数を基準とする二値化闞攛を用いる以外ほ、 実施例 2め手頗も鞣 り返した。 実施 If 2と同様の形吠 ¾び係数の空間フィルタ一もプィ ルタリングしお場合 、 認識率ほ、 鼷籙讒率 1 こおいて 7 3 ¾, 誤鎵饞率 2 0 % おいて 8 2 %であった。 又、 二値化後の画像について 8近揆膨張^理奁 1回行うことによ り、 歸素数を生細胞数に換算する瘵の誤差は、 膨張処理も行わない 時の 1 7 %から 8 %になゥた。 図面の簡単な篛明 It was determined by the target number of measurements. Example 2 Except for using a binarization method based on the number of seedling cells instead of a binning bench value based on the number of living cells based on the target measurement, Example 2 I returned. Implementation If the spatial filter with the same shape coefficient as that of If 2 is also filtered, the recognition rate, 7 3 お い て for 1 鼷 籙, and 8 2% for 20 お い てMet. Also, the error of converting the return prime number into the number of viable cells by performing the re-expansion once for the image after binarization is 8% from 17% when the expansion process is not performed. It became%. Brief description of drawings
第 1図は、 生細胞数 計測する場合の手順を示すフローチャ ー ト 第 2図^、 生細胞数及び宛細跑数を計測する場合の手順を示すフ Fig. 1 is a flowchart showing the procedure for counting the number of living cells. Fig. 2 ^, the flowchart showing the procedure for counting the number of living cells and the number of cells.
O ""チヤ ト、 O "" chart,
第 3図は、 7 X 7画索の空間フィルターの形伏と係数を示す図、 第 4図は、 7 X 7画素の最適化した空藺フィ ルタ一の形状と係数 を示す図、  FIG. 3 is a diagram showing the shape and coefficient of the spatial filter of the 7 × 7 grid, and FIG. 4 is a diagram showing the shape and coefficient of an optimized empty filter of 7 × 7 pixels.
第 5図及び第 6図ほ、 それぞれ実施例 1 ¾ぴ実施例 2で用いた空 閬フィルターの开さ状と係钕を示す図である。  FIG. 5 and FIG. 6 are diagrams showing the size and relationship of the air filters used in Example 1 and Example 2, respectively.

Claims

請求の範囲 The scope of the claims
(1 )観察手段 接錡された TVカメラ奁介して画像処理袋置に取 り込まれた培養細胞画像をディ ジタル化し、 空藺プィルタ ^ "を用い お処理により、 培養钿跑の锢敎及び増殖扰篛を計測することを特徵 とする細胞培養モニタ 方法 β (1) Observation means Images of cultured cells captured in the image processing bag via a connected TV camera are digitized, and processed using a blank filter. Cell culture monitoring method characterized by measuring proliferation 扰 篛
2)培養生細胞の個数を I測する請求の範囲第 1項記載 紬跑培 養モニタ一方法。  2) The method of claim 1, wherein the number of living cells in culture is measured.
(3〉培養生钿跑 ¾び 細胞の镅钹を 測する請求の範囲第 1項言 a 載の钿跑培養モニター方法。  (3) The method of monitoring the culture of claim 1, wherein the method of measuring the production of cultured cells and cells is described.
(4)焦点が完全に合った状態から瘭点をずらし、 培養生細跑の中 心郐の嬅 gが明るく、 かつ周 S部の輝度が暗い翰郭がば きりした 像,が得られる焦点位橐において培養貓跑像を取り込むことを特钹と する請求の範園第 ί〜 3項のいずれかに記載の細胞培養モニタ ^方  (4) The focus is shifted from the point of perfect focus to obtain an image in which the center of the cultured culture is bright and the circumference of the periphery is dark. The cell culture monitor according to any one of claims 1 to 3, characterized in that a culture image is captured at the position.
(5)焦点が宪全に合つお钛態から 士 5〜土 250 j ra焦点もずら 一 1 δ (5) From the point where the focus is perfectly focused. One 1 δ
した位蠻において培養細 ϋ像を取り込む :と^特徵とする請泶の範 趣第 4項 ia載の钿跑培養モニタ—方法。  Incorporating culture images in a new market: and the method of monitoring cultures described in item 4 ia of the specialty of the contract.
(6)空聞フィルタ ""のサイズが、 n X n 圃素  (6) The size of the air filter "" is n x n
(ti 5)であることを特徵とする請求の範囲第 5項記載の細胞培養 5 &ニタ 方法 e (ti 5), wherein the cell culture 5 & nita method e according to claim 5
(7)培褰細胞の轎郭が、 設定しおサイズの空間フィルターのマト リ ツクス正方 内接する俊率で培養钿跑画像を取り込むことも持 徼とする請求の範囲第 6頊記載の細胞培養モニタ 方法。  (7) The cell culture according to claim 6, wherein the carrier of the cultured cells is capable of taking in culture images at an inscribing rate of matrix square of a set-size spatial filter. Monitor method.
(8) 1画索の大きさが、 1 0/n-21 /n κιとなる掊率で培養 細胞画像を取り込むことを特徵とする請求の範囲第 6項または第 7 項に記載の細胞培養モニタ ""方法。  (8) The cell culture according to claim 6 or 7, wherein the image of the cultured cell is taken in at a rate such that the size of one branch is 10 / n-21 / nκι. Monitor "how".
(9)設定したサイズの空藺プィルターの形伏が円形であり、 中心 郎の係数が正、 周辺茚の係数が負又は 0である空藺ブイルターを闱 いて培養生細胞画像を強調することを特徵とする請求の範豳第 1項、 第 6項まおは第 8項に記載の钿嗨培養モニタ一方法。 (1 0)設定したサイズの空藺フィルターの形状が、 钿胞輝度分布 パターンの平均パタ ンより求めた形扰を有する空閻フィルターを(9) It is important to emphasize the cultured live cell image using an empty rush filter with a set size of a circular rush filter having a circular shape, a central coefficient of positive and a peripheral coefficient of negative or 0. 9. The method for monitoring a culture according to claim 1, claim 6, or claim 8 in the claims. (10) The shape of the blank filter with the set size is the same as the shape of the blank filter obtained from the average pattern of the cell luminance distribution pattern.
¾いて、 培養細胞画像も強調することを特徵とする辯求の範-超第 1 項、 第 6項、 第 8項またほ第 9項に記载の細胞培養モニタ一方法。 In addition, a method for monitoring a cell culture according to any one of the first, sixth, eighth, and ninth aspects of the present invention, which is characterized by enhancing a cultured cell image.
(1 1)空間フィルタリング処瑝後の画像をニ艨化し、 二値画像か ら、  (1 1) The image after the spatial filtering processing is binarized, and from the binary image,
Am ^- 生細胞があるとされた全画素数 ■ Am ^ -Total number of pixels with live cells ■
細 ^ =="TS¾生細齒が占有する画素数 Fine ^ == "Number of pixels occupied by TS¾ raw fine teeth
で求められる培養生钿龃数を算出する::とを特徵とする請隶範囲第Calculate the number of cultures required by ::
2〜1 0項のいずれかに記载邾跑培養モニター方法。 The method for monitoring culture according to any one of Items 2 to 10.
C1 2)1画像における目镍計測生钿胞载又ほ実生銪^数と、 二値 化後の生細麒があるとする瑰の値数が一致するような'ニ攛化閾値を 複数画面分泶め、 その平均楦¾、 固定二據化閼値としてニ镇化する ことを特齄とする請求の範趣第 ί 1頊記載の細跑培篓 二ター方法。  C1 2) Multiple digitization thresholds such that the number of target measurement cells and the number of seedlings in one image match the number of roses that indicate that there is a post-binary raw fine The method of claim 1, wherein the classification, the average value, and the fixed binary value are reduced.
C13〉空閭プィルタリ ング後 ©繭像も二値化し、 4近徬膨張又は 8近徬膨張処理 ¾ I回又は複数回行った後の画素数より、 生細胞数 を求めること奎特徵とする請求の範囲第 2〜 1 1項のいずれかに記 载の钿跑培養モニタ一方法。 C13> After Kuoryu filtering © The cocoon image is binarized, and the number of viable cells is calculated based on the number of pixels after 4 or 8 dilations. The method for monitoring a culture according to any one of claims 2 to 11, wherein the method is characterized in that:
( 1 4 )空閭フィルタリ ング後の画像を、 生細胞数を求める閾値よ り低い闞値にて二値化、更に反耘し、 (14) The image after emptying filtering was binarized at a 闞 value lower than the threshold value for determining the number of viable cells, and further recultivated.
死細胞があるとされお全画 数  It is assumed that there are dead cells.
 Female
1値の死細胞が占有する画素数  Number of pixels occupied by 1-value dead cells
で求められる死細胞數を箅出することを特徵とする請求の範囲第 3  Claim 3 characterized in that the number of dead cells required in the step is calculated.
- 1 2項のいずれかに記載の細胞培養 ニタ 1 ""方法。 - 1 2 wherein the cell culture Nita 1 "" The method according to any one of.
( 1 5 )空藺プィルタリング後の画像を、 死細胞数を求める閾値で 二値化、 反耘した二値画像から、 生細胞数を求める闞镇で二値化し たニ値豳像、 又は適当回膨張処理を施した二値豳像奁画面上で差し 引き、 死細胞に対 ί¾する郐分も抽出すること^特徵とする請求の範 囲第 1 4項記載の細胞培篓¾二ター方法。 (15) Binary binarization of the image after blanking filtering using a threshold for determining the number of dead cells, and binarization from the binary image that has been re-tiled, with binarizing the number of viable cells, or 15. The cell culture device according to claim 14, wherein the binary image subjected to the appropriate expansion process is subtracted on a screen to extract a component corresponding to dead cells. Method.
( 1 6 )死細胞に対応する郎分を抽出したニ値豳像について、 1 回 又は複数回、 4近傍膨張、 8近谤膨獲処理又はその組み合わせ 行つ た後に、 ¾細跑数を求めることも特徵とする請求の範囲第 5 項のいずれかに記載の細胞培養モニタ一方法 δ (16) With respect to the binary image from which a portion corresponding to a dead cell is extracted, one or more times, 4 near expansion, 8 near expansion processing, or a combination thereof is performed, and then a fine number is obtained. Claim 5 Item 5. A method for monitoring a cell culture according to any one of the items δ.
PCT/JP1987/000750 1987-10-06 1987-10-06 Cell culture monitor method WO1989003431A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP1987/000750 WO1989003431A1 (en) 1987-10-06 1987-10-06 Cell culture monitor method
CA000584597A CA1325475C (en) 1987-10-06 1988-11-30 Method of monitoring cell culture
US07/900,791 US5270173A (en) 1987-10-06 1992-06-22 Method of monitoring cell culture

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/JP1987/000750 WO1989003431A1 (en) 1987-10-06 1987-10-06 Cell culture monitor method
CA000584597A CA1325475C (en) 1987-10-06 1988-11-30 Method of monitoring cell culture
US07/900,791 US5270173A (en) 1987-10-06 1992-06-22 Method of monitoring cell culture

Publications (1)

Publication Number Publication Date
WO1989003431A1 true WO1989003431A1 (en) 1989-04-20

Family

ID=27168115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1987/000750 WO1989003431A1 (en) 1987-10-06 1987-10-06 Cell culture monitor method

Country Status (1)

Country Link
WO (1) WO1989003431A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110628700A (en) * 2019-10-14 2019-12-31 广东省中医院(广州中医药大学第二附属医院、广州中医药大学第二临床医学院、广东省中医药科学院) Standard method for screening cell culture conditions

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4879537A (en) * 1972-01-24 1973-10-25
JPS5068039A (en) * 1973-10-17 1975-06-07
JPS5978681A (en) * 1982-10-26 1984-05-07 Haruyuki Kawahara Automatic calculator of viable cell count in cultivation
JPS60225284A (en) * 1984-04-23 1985-11-09 Toshiba Corp Picture processing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4879537A (en) * 1972-01-24 1973-10-25
JPS5068039A (en) * 1973-10-17 1975-06-07
JPS5978681A (en) * 1982-10-26 1984-05-07 Haruyuki Kawahara Automatic calculator of viable cell count in cultivation
JPS60225284A (en) * 1984-04-23 1985-11-09 Toshiba Corp Picture processing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110628700A (en) * 2019-10-14 2019-12-31 广东省中医院(广州中医药大学第二附属医院、广州中医药大学第二临床医学院、广东省中医药科学院) Standard method for screening cell culture conditions
CN110628700B (en) * 2019-10-14 2023-10-17 广东省中医院(广州中医药大学第二附属医院、广州中医药大学第二临床医学院、广东省中医药科学院) Standard method for screening cell culture conditions

Similar Documents

Publication Publication Date Title
US5270173A (en) Method of monitoring cell culture
CN102096917B (en) Automatic eliminating method for redundant image data of capsule endoscope
CN108095683A (en) The method and apparatus of processing eye fundus image based on deep learning
CN107610122B (en) Micro-CT-based single-grain cereal internal insect pest detection method
CN105574897A (en) Crop growth situation monitoring Internet of Things system based on visual inspection
CN111462058B (en) Method for rapidly detecting effective rice ears
CN105420107A (en) Automatic bacterial colony screening method based on bacterial colony morphological characteristics
CN108346147A (en) A kind of macerals is fast automatic to accurately identify technical method
CN102945505A (en) Chlorella automatic counting method
CN116757972A (en) Fabric defect detection method capable of resisting influence of shadow noise
CN110827375B (en) Infrared image true color coloring method and system based on low-light-level image
CN110619297B (en) Bean fruiting body image batch acquisition and recognition method and device
CN116402824A (en) Endocrine abnormality detection method based on children bone age X-ray film
CN113139937B (en) Digestive tract endoscope video image identification method based on deep learning
CN106530226A (en) Realization method for obtaining high-resolution high-definition industrial image
CN115131346A (en) Fermentation tank processing procedure detection method and system based on artificial intelligence
CN117764994B (en) Biliary pancreas imaging system and method based on artificial intelligence
Zeng et al. High dynamic range infrared image compression and denoising
WO1989003431A1 (en) Cell culture monitor method
CN104933681A (en) Image processing apparatus and an image processing program
JPH08287261A (en) Image recognition system and image recognition control system
Peres et al. Automatic segmentation of digital images applied in cardiac medical images
JPH0513570B2 (en)
JP7141537B2 (en) particle quantifier
CN113361633A (en) Medical image big data 3D residual error network classification method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE