JPS6292315A - Correction method and correction circuit for position of projection of charged beam - Google Patents

Correction method and correction circuit for position of projection of charged beam

Info

Publication number
JPS6292315A
JPS6292315A JP23098685A JP23098685A JPS6292315A JP S6292315 A JPS6292315 A JP S6292315A JP 23098685 A JP23098685 A JP 23098685A JP 23098685 A JP23098685 A JP 23098685A JP S6292315 A JPS6292315 A JP S6292315A
Authority
JP
Japan
Prior art keywords
deflection distortion
deflection
height
correction
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23098685A
Other languages
Japanese (ja)
Inventor
Kiichi Takamoto
喜一 高本
Tsuneo Okubo
恒夫 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP23098685A priority Critical patent/JPS6292315A/en
Publication of JPS6292315A publication Critical patent/JPS6292315A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the scale of a digital circuit by computing a deflection strain correction factor except secondary order or more of deflection strain correction of pattern-position data by height and obtaining input data for a positional pattern in which deflection strain is corrected. CONSTITUTION:The position of projection of charged beams is corrected by an arithmetic circuit for correcting deflection strain. The height of an irradiation region is measured regarding an upper surface and a low surface at that time, thus acquiring deflection strain. A deflection strain correction factor except secondary order or more of deflection strain correction of pattern-position data by height is computed. Consequently, input data for a positional pattern in which deflection strain is corrected are obtained. Accordingly, the scale of a digital circuit is reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体集積回路などの製造に必要な荷電ビー
ム照射装置の照射位置の補正方法および補正回路に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and a correction circuit for correcting the irradiation position of a charged beam irradiation device necessary for manufacturing semiconductor integrated circuits and the like.

〔従来の技術〕[Conventional technology]

荷電ビームを用いた露光装置には、イオンビーム露光装
置や電子ビーム震光装置などがあるが、ここでは電子ビ
ーム露光装置を例にとり、従来の技術を説明する。
Exposure apparatuses using charged beams include ion beam exposure apparatuses and electron beam seismic apparatuses, but here, conventional techniques will be explained using an electron beam exposure apparatus as an example.

電子ビーム霞光装置により試料面上にパタンを露光する
場合、上記パタンを翻光すべき位置にビームを高精度に
位置決めすることが要求されるが、電子ビーム霞光装置
の構成要素である電子光学系には偏向歪が存在するため
、1−記偏向歪を補正しなければならない。従来の偏向
歪補正方法は、つぎに示す高木ばか「高精度電子ビーム
癲光装置−EB55(研究実用化報告、第30巻7号、
p、18:(:(,1981)上記高されている。電子
ビーム霞光装置によりシリコンウェハにパタンを直接描
画する場合、−に記つェハが3次元的に変形しているた
め、上記ウェハの高さに応じて偏向歪を補正する必要が
ある。上記偏向歪を測定するための標準マークを第2図
に示す。第2図において1はXYステージのトップテー
ブル、2はウェハ、3はレーザ測長用ミラー、10は低
面の標準マーク、20は高面の標準マークである。標準
マーク10および20は上記トラ、ブチ−プル1上に固
定されている。標準マーク10と標準マーク20との高
さの差は約200卯である。
When exposing a pattern on a sample surface using an electron beam haze device, it is required to position the beam with high precision to the position where the pattern is to be reflected. Since there is a deflection distortion in , it is necessary to correct the 1-th deflection distortion. The conventional deflection distortion correction method is described by Baka Takagi, "High Precision Electron Beam Reflector - EB55 (Research and Practical Application Report, Vol. 30, No. 7,
p, 18: (: (, 1981) The height is above. When drawing a pattern directly on a silicon wafer using an electron beam haze optical device, the wafer indicated by - is deformed three-dimensionally. It is necessary to correct the deflection distortion according to the height of the deflection distortion.Standard marks for measuring the above deflection distortion are shown in Fig. 2.In Fig. 2, 1 is the top table of the XY stage, 2 is the wafer, and 3 is the top table of the XY stage. In the mirror for laser length measurement, 10 is a standard mark on the lower side, and 20 is a standard mark on the higher side.Standard marks 10 and 20 are fixed on the above-mentioned tiger and buttock pull 1.Standard mark 10 and standard mark The difference in height from 20 is about 200 m.

電子ビーム霞光装置に入力されるパタンデータにおいて
、露光するパタンの位置を表わすデータを(、X、Y)
とする。(X、 Y)を(X /、y’)ニ変換し、(
X′、Y’)をビーム偏向器への入力データとして、ビ
ームを偏向した場合に、試料面上での照射位置が(x、
y)になるようにする。このため(X、Y)を(X’、
Y’)へ変換する偏向歪補正式は、 X’=X+Ao+A□X+A2Y+A3X2十A4X、
Y+A5Y2+A、X3 +A、X”Y+A、X、Y”+A、Y3Y’=Y+Bo
+B1X+R2Y+B3X”+114XY +115Y
2+BbXJ +13□X2Y+I(llXY2+lS、Y3・・・・
・・ (’l) で表わされる。ここで係数Ai、 13; (] −0
〜9)は偏向歪補正係数である。偏向歪は標準マーク1
0および20を用い、高低2而に才?いて求める。レー
ザ測長用ミラーX3を用い標準マーク10で測長した偏
向歪から算出した偏向歪補正係数を、A1.1−BIH
(i=0〜9)、標準マーク20で測長した偏向歪から
算出した偏向歪補正係数を、A旧、B旧(i−0〜9)
とする。標準マーク10の高さをz=L、標準マーク2
0の高さをZ=Hとすれば、任意の高さZにおける偏向
歪補正係数をA Z i、Bzl(i=o−9)とする
と、A Z i、B 2 iはつぎに示す補完式によっ
て求められる。
In the pattern data input to the electron beam haze device, data representing the position of the pattern to be exposed is (,X,Y).
shall be. Convert (X, Y) to (X /, y'), and (
When the beam is deflected using input data (X', Y') to the beam deflector, the irradiation position on the sample surface becomes (x, Y').
y). Therefore, (X, Y) becomes (X',
The deflection distortion correction formula to convert to Y') is: X'=X+Ao+A□X+A2Y+A3X20A4X,
Y+A5Y2+A, X3 +A, X"Y+A, X, Y"+A, Y3Y'=Y+Bo
+B1X+R2Y+B3X”+114XY +115Y
2+BbXJ +13□X2Y+I(llXY2+lS, Y3...
... Represented by ('l). Here the coefficient Ai, 13; (] −0
~9) are deflection distortion correction coefficients. Deflection distortion is standard mark 1
Using 0 and 20, high and low 2 and skill? I ask. The deflection distortion correction coefficient calculated from the deflection distortion measured with the standard mark 10 using the laser length measurement mirror
(i=0 to 9), the deflection distortion correction coefficient calculated from the deflection distortion measured with the standard mark 20, A old, B old (i-0 to 9)
shall be. The height of standard mark 10 is z = L, standard mark 2
If the height of 0 is Z=H, and the deflection distortion correction coefficients at any height Z are A Z i, Bzl (i=o-9), then A Z i, B 2 i are the following complementary equations. It is determined by

・・・・・・(2) 電子ビーム露光装置によりウェハ2上にパタンを露光す
る場合、まずパタンを露光する領域の高さZをレーザ測
長用ミラー3により測定する。つぎに(2)式から測定
した高さZにおける偏向歪補正係数A、 Z i、Bz
; (i =O−9)を算出し、(1)式の係数At、
B; (i =0〜9)にA 2 i、nzr (j=
O〜9)を代入する。そして係数A Z i、nz;(
i=o〜9)を有する(1)式によりパタンの位置デー
タ(X、Y)を(X /、y / )に変換する。(1
)式によるパタンの位置データの変換および(2)式に
よる偏向歪補正係数の算出は高速度に実行する必要があ
るため、電子ビーム露光装置は(1)式および(2)式
を演算するためのディジタル回路を有している。このデ
ィジタル回路の構成を第3図に示す。ここで高速度な演
算を可能にするために、(2)式の演算回路は、各偏向
歪補正係数についてそれぞれ有している。
(2) When exposing a pattern on the wafer 2 using an electron beam exposure device, first the height Z of the area where the pattern is to be exposed is measured using the laser length measuring mirror 3. Next, the deflection distortion correction coefficients A, Z i, Bz at the height Z measured from equation (2)
; Calculate (i = O-9), and calculate the coefficient At of equation (1),
B; A 2 i, nzr (j=
Substitute 0 to 9). And the coefficient A Z i, nz; (
The pattern position data (X, Y) is converted into (X/, y/) using equation (1) with i=o to 9). (1
) conversion of pattern position data using equation (2) and calculation of the deflection distortion correction coefficient using equation (2) need to be executed at high speed. It has several digital circuits. The configuration of this digital circuit is shown in FIG. In order to enable high-speed calculation, the calculation circuit of equation (2) is provided for each deflection distortion correction coefficient.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の偏向歪補正は、1本の電子ビームを用いる電子ビ
ーム露光装置に適用される。ところで複数本の電子ビー
ムを同時に発生し制御する電子ビーム霞光装置において
は、ディジタル回路の規模を縮小することが製造コスト
髪低減する−にで重要になる。複数本の電子ビームを用
いる電子ビーム露光装置に、従来の偏向歪補正方法を実
行するディジタル回路をそのまま適用すると、ディジタ
ル回路の規模が膨大となり、実用的ではない。
The above deflection distortion correction is applied to an electron beam exposure apparatus that uses one electron beam. By the way, in an electron beam haze device that simultaneously generates and controls a plurality of electron beams, it is important to reduce the scale of the digital circuit in order to significantly reduce manufacturing costs. If a digital circuit that performs a conventional deflection distortion correction method is applied as is to an electron beam exposure apparatus that uses a plurality of electron beams, the scale of the digital circuit would become enormous and would be impractical.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、電子ビーム照射位置の偏向歪補正において、
高次項の偏向歪が高さによりほとんど変化しないの髪見
出したことにより、従来技術では高次項の歪まで高さに
対して補正していたが、高さに対する歪の補正を高次項
では行わないように、ディジタル回路の規模を縮小して
電子ビーム照射位置の補正を行うようにしたものである
The present invention provides deflection distortion correction of an electron beam irradiation position.
After discovering that the deflection distortion of higher-order terms hardly changes with height, conventional technology corrects the distortion of higher-order terms for height, but the distortion for height is not corrected for higher-order terms. In this way, the scale of the digital circuit is reduced to correct the electron beam irradiation position.

〔作用〕[Effect]

高低2面の標準マークによって偏向歪を測定した結果を
第4図に示す。低面の標準マークの高さを2=[、とし
、高面の標準マークの高さをz=Hで表わすと、z=r
、とz=kTとの差は約200pである。
Figure 4 shows the results of measuring deflection distortion using standard marks on two high and low surfaces. If the height of the standard mark on the lower side is 2=[, and the height of the standard mark on the higher side is expressed as z=H, then z=r
, and z=kT is about 200p.

8111長に用いた電子ビーム露光装置の偏向フィール
1くの寸法は2.6mm X 2.6ml1である。偏
向歪の測定は、偏向フィールド内の5×5の格子点につ
いて行った。第4図に示した偏向歪を(1)式によって
補正する。第4図の偏向歪を補正するための補正係数を
第5図に示す。第5図の偏向歪補正係数は(2)式のA
口、PI l−i、A旧、But(i=o〜9)に相当
する。つぎにパタンの位置データが(X、Y) =: 
(1250岬、12507m)の場合について、(1)
式の右辺の各項が偏向歪の補正量に寄与する量を第5図
の偏向歪補正係数を用いて求め、その結果を第6図に示
す。第6図において、A、X2゜A4XY%A5Y2、
AGX’、A7X2Y、Al1xY2、A、 Y3、B
3x2、B、XY、B、Y2、B、X3、B7X”Y、
B、XY”、B、Y3の各項に関する寄与鼠は、z=r
、とz=Hとでほぼ一致し、それらの差は最大でも0.
02#I11である。パタンの位置データ(X、 Y)
 = (1250虜、1250虜)は、パタンの位置デ
ータのなかでも最大に近い値である。したがってX、Y
の2次以上の歪がZ=Lと2=T(と0.02癖以内で
一致することが、偏向フィールド内で成立する。すなわ
ち、偏向歪補正係数(A3−Ag、B3−B、)につい
ては、z=r、あるいは2=T(の11hを用いればよ
く、従来の偏向歪補正で行っていた(2)式による高さ
Zの偏向歪補正係数の算出が不要になる。
The dimensions of the deflection field 1 of the electron beam exposure apparatus used for the 8111 length were 2.6 mm x 2.6 ml. Deflection distortion was measured at 5×5 grid points within the deflection field. The deflection distortion shown in FIG. 4 is corrected using equation (1). FIG. 5 shows correction coefficients for correcting the deflection distortion shown in FIG. 4. The deflection distortion correction coefficient in Fig. 5 is A in equation (2).
Corresponds to 口, PI l-i, A old, But (i=o~9). Next, the pattern position data is (X, Y) =:
For the case of (1250 Cape, 12507m), (1)
The amount that each term on the right side of the equation contributes to the correction amount of deflection distortion is determined using the deflection distortion correction coefficient shown in FIG. 5, and the results are shown in FIG. In Figure 6, A, X2°A4XY%A5Y2,
AGX', A7X2Y, Al1xY2, A, Y3, B
3x2, B, XY, B, Y2, B, X3, B7X”Y,
The contribution for each term of B, XY'', B, Y3 is z=r
, and z=H are almost the same, and the difference between them is at most 0.
It is 02#I11. Pattern position data (X, Y)
= (1250 prisoners, 1250 prisoners) is a value close to the maximum among the pattern position data. Therefore, X, Y
It is established within the deflection field that the second-order or higher distortion of Z = L and 2 = T (to within 0.02 degrees). In other words, the deflection distortion correction coefficients (A3-Ag, B3-B,) 11h of z=r or 2=T (11h) may be used for z=r or 2=T (11h), and calculation of the deflection distortion correction coefficient of the height Z using equation (2), which was performed in the conventional deflection distortion correction, becomes unnecessary.

〔実施例〕〔Example〕

つぎに本発明の実施例を図面とともに説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明による電子ビーム照射装置の偏向歪補正
回路の一実施例を示す構成図である。本発明による電子
ビーム照射装置では、第1図に示す偏向歪補正回路行す
るディジタル回路において、偏向歪補正係数(A、〜A
3、B a−B s )について(2)式を演算するた
めのディジタル回路部分を有していない。偏向歪補正係
数(AI−3〜Al−5、BL、〜nLs)を直接偏向
歪補正演算回路にセットしている。このようにすること
によって、本実施例ではパタン位置データの2次以」−
の偏向歪補正を省いているが、(2)式の演算回路は第
1図に示すように、Azo、 Azi、 AZ2、BZ
o、 BZx、BZaだけでよくなる。(2)式の演算
には最低1つの乗算器を必要とするが、本発明にもとづ
く偏向歪補正用ディジタル回路では、上記のように乗算
器の数が従来の装置より14個少なくてすむ。また補正
係数を格納するレジスタの数も従来よりも14個少なく
てすむことになる。
FIG. 1 is a block diagram showing an embodiment of a deflection distortion correction circuit of an electron beam irradiation apparatus according to the present invention. In the electron beam irradiation apparatus according to the present invention, in the digital circuit implementing the deflection distortion correction circuit shown in FIG.
3, B a - B s ), it does not have a digital circuit part for calculating equation (2). The deflection distortion correction coefficients (AI-3 to Al-5, BL, to nLs) are directly set in the deflection distortion correction calculation circuit. By doing this, in this embodiment, the pattern position data is
Although the deflection distortion correction of (2) is omitted, the calculation circuit of equation (2) is as shown in Fig. 1.
o, BZx, and BZa are all you need. Although at least one multiplier is required to calculate equation (2), the deflection distortion correction digital circuit according to the present invention requires 14 fewer multipliers than the conventional device as described above. Also, the number of registers for storing correction coefficients is 14 fewer than in the conventional case.

上記に説明した電子ビーム露光装置は、1本の電子ビー
ムを用いた場合について記したが、複数本の電子ビーム
を用いる電子ビーム露光装置に本発明を適用した場合に
は1乗算器の数およびレジスタの減少効果が顕著であり
、ディジタル回路のコスト低減効果が著しい。
The electron beam exposure apparatus described above uses one electron beam, but when the present invention is applied to an electron beam exposure apparatus using multiple electron beams, the number of multipliers and The effect of reducing the number of registers is remarkable, and the effect of reducing the cost of digital circuits is remarkable.

上記説明ならびに実施例は、いずれも電子ビーム露光装
置について記したが、電子ビーム露光装置に限らず、荷
電ビーム照射装置の照射位置の補正においても、全く同
様である。
Although the above description and embodiments have all been described with respect to an electron beam exposure apparatus, the same applies not only to electron beam exposure apparatuses but also to correction of the irradiation position of a charged beam irradiation apparatus.

〔発明の効果〕〔Effect of the invention〕

上記のように本発明による荷電ビーム照射位置補正方法
および補正回路は、偏向歪補正を行うための演算回路を
有する荷電ビーム照射位置補正力法および補正回路にお
いて、照射領域の高さを」1面と下面につき測定して偏
向歪を求め、−1−、記高さによるパタン位置データの
2次以上の偏向歪補正を除く偏向歪補正係数を算出する
ことによって、偏向歪を補正した位置パタンの入力デー
タを得るため、高さZに対する補正が必要ないパタン位
置データ(x、y)の2次以上の偏向歪を補正するディ
ジタル回路を省略し、ディジタル回路の規模を縮小する
ことにより上記ディジタル回路のコストを低減すること
ができる。なお本発明を複数本ビームを発生する荷電ビ
ーム照射装置に適用した場合は、ディジタル回路の規模
の縮小とコスト低減の効果がさらに著しい。
As described above, the charged beam irradiation position correction method and correction circuit according to the present invention have a charged beam irradiation position correction force method and a correction circuit that have an arithmetic circuit for correcting deflection distortion. The deflection distortion is determined by measuring the lower surface of the pattern, and by calculating the deflection distortion correction coefficient excluding the secondary or higher order deflection distortion correction of the pattern position data based on the recorded height, the position pattern with the deflection distortion corrected is calculated. In order to obtain input data, the digital circuit described above can be achieved by omitting the digital circuit that corrects the second-order or higher deflection distortion of the pattern position data (x, y) that does not require correction for the height Z, and by reducing the scale of the digital circuit. cost can be reduced. Note that when the present invention is applied to a charged beam irradiation device that generates a plurality of beams, the effect of reducing the scale of the digital circuit and cost is even more remarkable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による電子ビーム照射装置における偏向
歪補正回路の一実施例を示す構成図、第2図は高低2面
の標準マークのモデル図、第3図は従来の荷電ビーム照
射位置偏向歪補正回路を示す構成図、第4図は標準マー
クでfil11定した偏向歪を示す図、第5V4は偏向
歪を補正するための補正係数を示す覧、第6図は偏向歪
の補正量に寄与す3・・・レーザ測長用ミラー 10・・・照射領域の高さく下面) 20・・・照射領域の高さ1面) 特許出願人 日本電信電話株式会社 代理人弁理士  中 村 純之助 才 1 に 22図 矛3図
Fig. 1 is a configuration diagram showing an embodiment of a deflection distortion correction circuit in an electron beam irradiation device according to the present invention, Fig. 2 is a model diagram of a standard mark with two high and low surfaces, and Fig. 3 is a conventional charged beam irradiation position deflection diagram. A configuration diagram showing the distortion correction circuit, Fig. 4 shows the deflection distortion determined by standard mark fil11, No. 5V4 shows the correction coefficient for correcting the deflection distortion, and Fig. 6 shows the correction amount of the deflection distortion. Contribution 3...Mirror for laser length measurement 10...Height of the irradiation area (lower surface) 20...Height of the irradiation area (1 side) Patent applicant Junnosuke Nakamura, Patent attorney representing Nippon Telegraph and Telephone Corporation 1, 22 figures, 3 figures

Claims (2)

【特許請求の範囲】[Claims] (1)偏向歪補正を行うための演算回路を有する荷電ビ
ーム照射位置補正方法において、照射領域の高さを上面
と下面につき測定して偏向歪を求め、上記高さによるパ
タン位置データの2次以上の偏向歪補正を除く偏向歪補
正係数を算出することによって、偏向歪を補正した位置
パタンの入力データを得ることを特徴とする荷電ビーム
照射位置補正方法。
(1) In a charged beam irradiation position correction method that has an arithmetic circuit for correcting deflection distortion, the height of the irradiation area is measured on the upper and lower surfaces to obtain deflection distortion, and the pattern position data based on the height is calculated by A charged beam irradiation position correction method characterized in that input data of a position pattern with deflection distortion corrected is obtained by calculating a deflection distortion correction coefficient excluding the above deflection distortion correction.
(2)偏向歪補正を行うための演算回路を有する荷電ビ
ーム照射位置補正回路において、照射領域の高さによる
偏向歪補正を行うディジタル回路は、パタン位置データ
の2次以上の偏向歪補正を除く補正係数レジスタおよび
偏向歪補正係数演算回路よりなることを特徴とする荷電
ビーム照射位置補正回路。
(2) In a charged beam irradiation position correction circuit that has an arithmetic circuit for correcting deflection distortion, the digital circuit that corrects deflection distortion based on the height of the irradiation area does not correct secondary or higher order deflection distortion of pattern position data. A charged beam irradiation position correction circuit comprising a correction coefficient register and a deflection distortion correction coefficient calculation circuit.
JP23098685A 1985-10-18 1985-10-18 Correction method and correction circuit for position of projection of charged beam Pending JPS6292315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23098685A JPS6292315A (en) 1985-10-18 1985-10-18 Correction method and correction circuit for position of projection of charged beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23098685A JPS6292315A (en) 1985-10-18 1985-10-18 Correction method and correction circuit for position of projection of charged beam

Publications (1)

Publication Number Publication Date
JPS6292315A true JPS6292315A (en) 1987-04-27

Family

ID=16916436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23098685A Pending JPS6292315A (en) 1985-10-18 1985-10-18 Correction method and correction circuit for position of projection of charged beam

Country Status (1)

Country Link
JP (1) JPS6292315A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997001184A1 (en) * 1995-06-20 1997-01-09 Nikon Corporation Positioning method
JP2006086182A (en) * 2004-09-14 2006-03-30 Hitachi High-Technologies Corp Method and system for electron-beam exposure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997001184A1 (en) * 1995-06-20 1997-01-09 Nikon Corporation Positioning method
US6002487A (en) * 1995-06-20 1999-12-14 Nikon Corporation Alignment method for performing alignment between shot areas on a wafer
JP2006086182A (en) * 2004-09-14 2006-03-30 Hitachi High-Technologies Corp Method and system for electron-beam exposure
JP4563756B2 (en) * 2004-09-14 2010-10-13 株式会社日立ハイテクノロジーズ Electron beam drawing method and electron beam drawing apparatus

Similar Documents

Publication Publication Date Title
JP2867982B2 (en) Semiconductor device manufacturing equipment
JPS599922A (en) Exposure device
JP2005101105A (en) Positioning device, exposure apparatus, and device manufacturing method
US5329130A (en) Charged particle beam exposure method and apparatus
US5285074A (en) Dynamic compensation of non-linear electron beam landing angle in variable axis lenses
JPS6292315A (en) Correction method and correction circuit for position of projection of charged beam
US6177680B1 (en) Correction of pattern-dependent errors in a particle beam lithography system
KR100257640B1 (en) A method of and an apparatus for electron beam exposure
JP3526385B2 (en) Pattern forming equipment
JPS58114425A (en) Electron beam exposure device
JPH08203817A (en) Fabrication of x-ray mask
JP3152776B2 (en) Exposure calculation method for photolithography
JPS59178726A (en) Manufacture of pattern transfer mask
JPS6293932A (en) Correction of irradiating positions ans size of beam in charged beam exposure device
JPS6081750A (en) Aperture diaphragm and its manufacturing method
JP3394233B2 (en) Charged particle beam drawing method and apparatus
JP2506122B2 (en) Electronic beam exposure method
JPS58223325A (en) Method and device for exposure of electron beam
US5177692A (en) Method and apparatus for processing errors occurring upon division of pattern to be transferred
JPH0782988B2 (en) Electron beam exposure system
JP3468604B2 (en) Electron beam exposure system
JPH05175111A (en) Exposure method for charged particle beam
JPS6293931A (en) Charged beam exposure device
JP3818726B2 (en) Charged particle beam exposure method and apparatus
JP3072564B2 (en) Arbitrary angle figure generation method in charged particle beam exposure method