JPS629194A - Method and device for transporting gas selectively - Google Patents

Method and device for transporting gas selectively

Info

Publication number
JPS629194A
JPS629194A JP14850785A JP14850785A JPS629194A JP S629194 A JPS629194 A JP S629194A JP 14850785 A JP14850785 A JP 14850785A JP 14850785 A JP14850785 A JP 14850785A JP S629194 A JPS629194 A JP S629194A
Authority
JP
Japan
Prior art keywords
gas
selectively
vapor
series
heat pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14850785A
Other languages
Japanese (ja)
Inventor
Masayoshi Tamaoki
玉置 昌義
Akira Mikami
三上 朗
Kohei Okubo
大久保 興平
Atsuori Ishida
篤識 石田
Yasushi Suda
須田 靖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP14850785A priority Critical patent/JPS629194A/en
Publication of JPS629194A publication Critical patent/JPS629194A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To transport gas selectively by a method wherein the gas, sucked selectively into a heat pipe by a selective permeating device for separating gas (membrane) in a heating area, is transported, diffused and pressurized by the stream of vapor of heat-pipe operating liquid while the gas is separated selectively again by the membrane in a cooling area. CONSTITUTION:Primary series gas in an introducing section permeates selectively through the membrane A and is sucked into the heat pipe. The stream of vapor, generated in the heating area, arrests the gas and moves to the cooling area while forming the mixed stream of both of gas and vapor. The vapor in the cooling area is condensed and liquefied, then, is circulated into the heating area by the capillarity or gravity possessed by the wick, only the gas is blown to the cooling area by the stream of vapor and is pressurized through a vapor- gas diffusing area while the primary series gas is changed to secondary series gas and is stagnated. The secondary series gas permeates selectively through the membrane C again and is discharged as tertiary series gas.Through these processes, the selective transporting effect of gas, in which the gas in the primary series is transporting effect of gas, in which the gas in the primary series is transported selectively to the tertiary series, is operated.

Description

【発明の詳細な説明】 (1)発6月の目的 [産業上の利用分野] 本発Ql言ヒートパイプの蒸気0貴射ポンプ機能を利用
して、加熱域の気体分離用選択的透過装置(半透膜)に
よりヒートパイプ内に選択的に導入された気体を、ヒー
トパイプ作−カ順の蒸気源により輸送・拡散・加圧して
冷却域の半透膜により再び該気体を選択的に分離するこ
とにより、気体を選択的に輸送する方法及び装!に関す
る。
Detailed description of the invention (1) Purpose of the invention [Field of industrial application] A selective permeation device for gas separation in a heated region by utilizing the steam zero injection pump function of the heat pipe of the present invention. The gas that is selectively introduced into the heat pipe by the semipermeable membrane is transported, diffused, and pressurized by the steam source in the heat pipe production process, and the gas is selectively introduced again by the semipermeable membrane in the cooling region. A method and apparatus for selectively transporting gases by separating them! Regarding.

[従来技術及び発明が解決しようとする間1「従来、4
!l儂的運動部分を持たない気体輸送装置として蒸気噴
射ポンプがあるが、気体と作動i11蒸気を完全に分離
できないために吸気口及び排気口からその作■力液の蒸
気がポンプ外へ層れ出るとし)う欠点があった。一方、
従来の気体分離用選択的MA4AM (半透膜)はその
膜中を透過させる駆−力カとして気体の圧力差をつける
ための装置が必要となり、気体に不純物を持ちこむこと
があるとし)う欠点があフた。
[While the prior art and the invention are trying to solve 1 "Prior art, 4
! A steam injection pump is a gas transport device that does not have any moving parts, but because the gas and the working steam cannot be completely separated, the steam of the working liquid flows out of the pump from the intake and exhaust ports. When it came out, it had some drawbacks. on the other hand,
The conventional selective MA4AM (semi-permeable membrane) for gas separation requires a device to create a pressure difference in the gas as a driving force for permeation through the membrane, which may introduce impurities into the gas. There was a flash.

本発明は、ヒートパイプのもつ蒸貢帽射ポンプ棚能及び
半透材質のもつ気体選択分am能という両者の441能
を持ち、かつ、それぞれのもつ欠点を取り除いたことを
M徴とする従来のtillにない具体を選択的に輸送す
る方法及び装置である。
The present invention has the 441 functions of both the evaporative pump shelf function of a heat pipe and the gas selective am function of a semi-transparent material, and has an M feature of eliminating the drawbacks of each. This is a method and apparatus for selectively transporting specifics that are not available in the market.

(2)発明の1成 E問題点を解決するための手段] 本発明において1述の技術土の間allを解決するため
の手段として採用する気体を選択的に輸送する方法及び
装置あ作動に関与する基本的な原理及び法則は以下に示
すふたつの部分で構成される<a> ヒートバイブ部は
非凝!■性気体を含むヒートパイプの作動原理に従う。
(2) Means for Solving Problems in Problem 1 of the Invention] The method and device for selectively transporting gas employed in the present invention as a means for solving all the technical problems mentioned in 1 above. The basic principles and laws involved are comprised of the following two parts <a> The heat vibrator part is non-condensing! ■Follows the operating principle of heat pipes containing gases.

作動ノ夜蒸叉の加熱域と冷却環とでの圧力差により、ヒ
ートパイプ部内に含まれる非凝til性員体は冷MJ#
を端に輸送・加圧されて、滞留する。これはポンプIJ
I能である。
During operation, due to the pressure difference between the heating area of the steamer and the cooling ring, the non-condensed til member contained in the heat pipe part cools down to the cold MJ#.
is transported to the edge, pressurized, and retained. This is pump IJ
I am capable.

ここにおいて原理的にはヒートパイプの形状に制約はな
い。
In principle, there are no restrictions on the shape of the heat pipe.

(b)気体分離用選択的透過装置(半透L[)部は膜間
側の非凝縮性気体の圧力差によ7て気体を選択的に透過
させる。これは、ヒートパイプ系の果たすポンプ橋能に
おける吸気口及び徘ヌロとして気体を選択的に透通ずる
役目をもつ。半透膜の形状はヒートパイプのそれによフ
て11約される。
(b) The selective permeation device for gas separation (semi-permeable L[) section selectively permeates gas based on the pressure difference of the non-condensable gas between the membranes. This has the role of selectively transmitting gas as an inlet and a wandering hole in the pump bridge function performed by the heat pipe system. The shape of the semipermeable membrane depends on the shape of the heat pipe.

これら二者の結合により実現される気体を選択的に@I
A送する方、去は図1に簡単な例として示すような気体
を選択的に輸送する構成的ft 4111造となる[作
用] 本発明の気体を選択的に輸送する方法及び装置は原理的
には以下のように作動する。
Selectively @I the gas realized by the combination of these two
A is a structural ft 4111 structure for selectively transporting gas as shown as a simple example in FIG. It works as follows.

(i)導入部の一次系気体が選択的に半透膜(A)内を
透過してヒートバイブ部内に吸入される。
(i) The primary system gas of the introduction section selectively permeates through the semipermeable membrane (A) and is sucked into the heat vibrator section.

(■)加熱域で生ずる蒸員流がこの気体を捕え込み、両
者の混合流を形成して冷却域へ移−力する。
(■) The steam flow generated in the heating zone captures this gas, forms a mixed flow of both, and transfers it to the cooling zone.

(1目)冷却環のに気が層目・液化して、ウィックのも
つ毛細管作用談たけ重力によフて加熱域へ還流し、気体
のみが蒸荒流によ、て冷却域に吹き寄せられ、1X員−
気体拡散領域を通してカロ圧され、二次系気体となフて
滞留する。
(1) The gas in the cooling ring is layered and liquefied, and is returned to the heating area due to the capillary action of the wick and gravity, and only the gas is blown into the cooling area by the steam flow. , 1X member-
The gas is pressurized through the gas diffusion region, becomes a secondary gas, and stagnates.

(ニジ)この二次系気体が半透a (C)内を再び選択
的に透過して排出され、三次系気体となる。
(Niji) This secondary gas selectively permeates through the semi-permeable a (C) again and is discharged, becoming a tertiary gas.

これらの過程を通じて、−次系の気体が三次系へ選択的
に輸送されるという気体の選択的な輸送作用が働く。
Through these processes, a gas selective transport action occurs in which gases in the -order system are selectively transported to the tertiary system.

本発明の気体を′iM折的にM4送する方法及び装置の
実施にあたフて、その原理的構成から明らかなように、
−次系気体、半透膜、ヒートパイプ同作−力液及びヒー
トパイプ横澁物相互間の化学的及び物理的健全性を技術
的にit認することのできる無数の組合せをもつ気体を
選択的に輸送する装置を実現することが可能である。現
存の技術水準はこれを受けいれうる段階にある。ここで
1ま特番こ有用であると認められる装置の実施例を示す
In carrying out the method and device for transporting gas according to the present invention in an M4 manner, as is clear from its basic structure,
- Semi-permeable membrane, heat pipe combination - Select gases with countless combinations that can technically confirm the chemical and physical integrity of the liquid and heat pipe cross-sections. It is possible to realize a device that transports The current technological level is at a stage where this can be accepted. Here, we will show an example of a device that has been found to be useful.

[実施例] 1、本f@明の気体を選択的に輸送する方、去及び装置
の実施例として、特に、パラジウム合金を半透材質にも
ち、メタ−ジフェニル ベンゼン(meti−Diph
er+vl Benzene : m−DPBと絽す)
をf情動I夜、水素を選択的に輸送される非凝kl性見
体とするχ体を選択的に輸送する裟N(水′J#輸送管
と称する)を製作した。水素輸送管の性能試!!装置全
体の機略を図2に示す。m−DPBヒートノイイブ部及
び/(ラジウム合金半透膜部の主な設計仕様は以下のと
おりである。ヒートバイブ部はステンレス鋼管製で長さ
300 mm、外直径27 mm、内直径24開であり
、ウィックは400メツシユのステンレス構製金網であ
る。作1hi夜のm−DPBは25 g封入されて−す
る。パラジウム合金膜は長さ LGOmm 、外直径1
.6 mm、厚さ O,Q8 n+mの一端封じの細管
形1犬で、有効表面積は50(1mmである。水素輸送
管本体は、気体ヲ選択的に輸送する装置の原理構造に併
[Example] 1. As an example of the method and device for selectively transporting a gas according to this f@mei, in particular, a palladium alloy is used as a semi-transparent material, and meta-diphenylbenzene (meti-Diph) is used as an example.
er+vl Benzene: m-DPB)
A pipe N (referred to as a water transport pipe) was constructed that selectively transports the χ form, which uses hydrogen as a non-condensable substance to be selectively transported. Performance test of hydrogen transport pipe! ! The overall structure of the device is shown in Figure 2. The main design specifications of the m-DPB heat vibration part and/(radium alloy semipermeable membrane part) are as follows.The heat vibration part is made of stainless steel tube and has a length of 300 mm, an outer diameter of 27 mm, and an inner diameter of 24 mm. The wick is a 400-mesh stainless steel wire mesh. 25 g of m-DPB is sealed in the 1st night of production. The palladium alloy film has a length of LGO mm and an outer diameter of 1.
.. 6 mm, thickness O, Q8 n+m, one end sealed, effective surface area is 50 (1 mm).The main body of the hydrogen transport pipe is based on the basic structure of the device that selectively transports gas.

ア、水素導入gB(−次系)両端に&[Bv形状のパラ
ジウム合金半透膜(A、C)をもつヒートパイプ1潰(
B:二次系)及び水素排出部(三次系)よりIII威さ
れる。加熱域及び冷却域の温度は、それぞれ)M度制御
系により調整される。加熱域蒸気1f (Le )はヒ
ートバイブ中央部の蒸気流部分のJffをいう、また、
−次系及び三次系の水素圧力は達成ま士で測る。使用条
件は、m −D P Bの化学的安定性、パラジウム騙
の化学的及び機械的強度等を考慮してJ度ia囲300
−420°C,Eカ節11!IQ−3気圧とした。
A. Hydrogen introduction gB (-order system) 1 heat pipe with &[Bv-shaped palladium alloy semipermeable membranes (A, C) at both ends (
B: Secondary system) and hydrogen discharge section (tertiary system). The temperatures of the heating zone and the cooling zone are respectively adjusted by the M degree control system. The heating area steam 1f (Le) refers to the Jff of the steam flow part at the center of the heat vibrator, and
-Hydrogen pressure in the secondary and tertiary systems is measured at the same level. The usage conditions are J degree ia around 300, taking into account the chemical stability of m-DPB and the chemical and mechanical strength of palladium.
-420°C, E clause 11! The pressure was set to IQ-3 atm.

図3はこの水素IgI送管の作動による一次系及び三次
系の水素圧力の時間変化の一例である。系全体を脱気し
、加熱域蒸気温度(re)が380 ’C。
FIG. 3 shows an example of temporal changes in hydrogen pressure in the primary system and tertiary system due to the operation of this hydrogen IgI pipe. The entire system was degassed and the heating zone steam temperature (re) was 380'C.

冷却域二次系気体部分の蒸気1ff(Te)が3551
0の定常状態にする。続いて初期の一次系水素Eカ(P
l)として水素をiiOam)1g導入した場合である
。Plは作動時間とともに低くなるのにたいして、三次
系の水素圧力(P3)は逆に高くなフてぃ(・作1i 
試u 1171始復、44分てPlとP3の大小関係が
逆転して、本発明が水素を′f11釈的に輸送して、か
つ桿圧する機能を有していることを実証した。2時M経
過′#LPI及びP3は一定(Pi @、P3■〉にな
る。このPi ooは真空ポンプでいう到達真空度であ
り、15 cmHgである。一方、P3■は気体圧幅機
でいう吐出圧力であり、45 emHHである。正昧の
気体桿圧能力はP3ao −Pioo テ30cmHg
 テある。
Steam 1ff (Te) in the cooling area secondary system gas part is 3551
0 steady state. Next, the initial primary hydrogen system Eka (P
This is a case where 1 g of hydrogen (iiOam) is introduced as l). While Pl decreases with operating time, the hydrogen pressure in the tertiary system (P3) increases on the contrary.
After 1171 trials, the magnitude relationship between Pl and P3 was reversed after 44 minutes, demonstrating that the present invention has the function of transporting hydrogen in an ``f11'' manner and compressing it into rods. 2 o'clock M elapsed'#LPI and P3 become constant (Pi @, P3 ■). This Pi oo is the ultimate vacuum in a vacuum pump and is 15 cmHg. On the other hand, P3 ■ is a gas pressure width machine. The discharge pressure is 45 emHH.The true gas pressure capacity is P3ao - Pioo te 30cmHg.
There is.

本発明における気体の昇正能力は、駆−力カであるし一
ドパイブ作1力液の加熱域と$1+]城での蒸気圧差に
等しいので、その[煽値は30cmHgとなり、実施例
のfjI止よく一致する。水#輸送管の輸送速度をPl
と P3が逆転する時点の水素の三次系への排出速度と
すると、図3に示した実施例において0.3 cm /
Inである。この輸iAL[は主にパラジウム合金半i
!![膜中を水素がt広敷する速度で決まる。本発明に
おいて、ヒートパイプ加熱域の作動1厘を上げて作#h
液の蒸気圧差及び半透膜中の水素拡散速度を大きくする
ことにより、輸送i!賀を始め、稈圧能力、吸見遼屓及
び徘″jK遠賀をともに増加させることができる。
The ascending ability of the gas in the present invention is the driving force, and is equal to the vapor pressure difference between the heating range of the liquid produced by the pipe and the $1+ point, so the boost value is 30 cmHg, which is the same as that of the example. fjI matches very well. Water # transport speed of transport pipe Pl
Assuming that the rate of hydrogen discharge into the tertiary system at the time when P3 is reversed is 0.3 cm /
In. This import is mainly made of palladium alloys.
! ! [Determined by the speed at which hydrogen spreads through the film. In the present invention, the operation of the heat pipe heating area is increased by 1 degree.
By increasing the vapor pressure difference of the liquid and the hydrogen diffusion rate in the semipermeable membrane, transport i! It is possible to increase both ga, culm pressure ability, sucking power, and wandering ability.

[発明の効果j 1、橋械的運−力部分がないので故障が少ない。[Effects of invention 1. There are fewer mechanical failures as there are no mechanical parts involved.

2 ポンプ作動、夜が装置から1れない。2. The pump is not working, and the device does not turn on at night.

3、被輸送気体が系外へ湿れない。3. The transported gas does not leak out of the system.

4、iAHの設置において重力方向に対してjIII 
eHがない。無重力下においても正常に運転できる。
4. jIII in the direction of gravity when installing iAH
There is no eH. It can operate normally even in zero gravity.

5、物質輸送機能とともに熱輸送機能をも備えている。5. It has a heat transport function as well as a mass transport function.

6 ヒートパイプ作■力が可能な通常の範囲において装
置の形状は制眼されることがない。
6. The shape of the device is not limited within the normal range where heat pipe operation is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は気体を選択的に輸送する方法の原理を徹略的に示
したものである。図2は実施例の水素輸送管の性能を試
駐するためのtiistの411略を示したものである
。図3は水素輸送管の作−ガによる水素圧力の時間開化
の様子を示したものである。
FIG. 1 thoroughly illustrates the principle of the method for selectively transporting gases. FIG. 2 shows an outline of 411 of the TIIST for testing the performance of the hydrogen transport pipe of the example. FIG. 3 shows how the hydrogen pressure changes over time due to the construction of the hydrogen transport pipe.

Claims (1)

【特許請求の範囲】 1、ヒートパイプ機能を有する容器の加熱域に設られた
気体分離用選択的透過装置により、気体を選択的に該容
器内に導入し、該気体をヒートパイプ作動液の蒸気に捕
え込ませ、前記気体と該蒸気との混合流を形成せしめ、
その混合流が冷却域に向かつて吹き寄せられて形成され
る蒸気−気体拡散層において気体が選択的に分離され、
更にその気体が冷却域に滞留した際に、冷却域に設られ
た気体分離用選択的透過装置により、前記気体を再び選
択的に、前記容器外へ排出して、気体を選択的に輸送す
る方法。 2、ヒートパイプ構造からなる容器において加熱域と冷
却域に気体分離用選択的透過装置を設けた気体を選択的
に輸送する装置。
[Claims] 1. A selective permeation device for gas separation installed in the heating area of a container having a heat pipe function selectively introduces gas into the container, and transfers the gas to the heat pipe working fluid. entraining the vapor to form a mixed flow of the gas and the vapor;
The mixed flow is blown toward the cooling area, and the gas is selectively separated in the vapor-gas diffusion layer formed.
Further, when the gas remains in the cooling zone, the gas is selectively discharged out of the container again by a selective permeation device for gas separation provided in the cooling zone, and the gas is selectively transported. Method. 2. A device for selectively transporting gas, in which a selective permeation device for gas separation is provided in a heating zone and a cooling zone in a container having a heat pipe structure.
JP14850785A 1985-07-05 1985-07-05 Method and device for transporting gas selectively Pending JPS629194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14850785A JPS629194A (en) 1985-07-05 1985-07-05 Method and device for transporting gas selectively

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14850785A JPS629194A (en) 1985-07-05 1985-07-05 Method and device for transporting gas selectively

Publications (1)

Publication Number Publication Date
JPS629194A true JPS629194A (en) 1987-01-17

Family

ID=15454305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14850785A Pending JPS629194A (en) 1985-07-05 1985-07-05 Method and device for transporting gas selectively

Country Status (1)

Country Link
JP (1) JPS629194A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114471070A (en) * 2022-02-18 2022-05-13 广东韶钢松山股份有限公司 Condensate collecting unit and acid making system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114471070A (en) * 2022-02-18 2022-05-13 广东韶钢松山股份有限公司 Condensate collecting unit and acid making system
CN114471070B (en) * 2022-02-18 2023-05-16 广东韶钢松山股份有限公司 Condensate collecting unit and acid making system

Similar Documents

Publication Publication Date Title
Lawson et al. Membrane distillation. I. Module design and performance evaluation using vacuum membrane distillation
JPS5623700A (en) Heat exchanger
JP2004306031A (en) Planar membrane deoxygenator
JPH0436596A (en) Heat exchanger and air collecting and concentrating system
JPH02504184A (en) osmotic heat engine
US11541344B2 (en) Lightweight inorganic membrane module
JPS629194A (en) Method and device for transporting gas selectively
HU222779B1 (en) Absorption refrigeration machine
JP2008275356A (en) Gas-liquid two-phase flow supply device and flow evaluation system
NO140285B (en) DEVICE FOR DIFFUSION OF SUBSTANCES BETWEEN TWO FLUIDS THROUGH SEMIPERMEABLE BEETS
TWM631510U (en) Water treatment device based on heat pump system
JPH0424490A (en) Capillary pump
EP0699335B1 (en) Evaporative transpiration pump
JPS60501746A (en) Thermal thin film distillation system
JPS5595091A (en) Heat-transfer element for plate type heat-exchanger
JPS5677690A (en) Heat exchanger
RU2180871C1 (en) Device for multistage membrane separation of neon-helium mixture
JP2837644B2 (en) Low-temperature steam generator
JPS55121806A (en) Deaerator
SU1114450A1 (en) Membrane apparatus
JPS5640417A (en) Gas separator
JPS6265705A (en) Membrane distillation device
JPS6040598B2 (en) Direct heating device using low pressure steam
CN1065521A (en) Open-type heat pipe
TR202011124A2 (en) CONDENSING GAS SEPARATION UNIT