JPS6265705A - Membrane distillation device - Google Patents

Membrane distillation device

Info

Publication number
JPS6265705A
JPS6265705A JP20601985A JP20601985A JPS6265705A JP S6265705 A JPS6265705 A JP S6265705A JP 20601985 A JP20601985 A JP 20601985A JP 20601985 A JP20601985 A JP 20601985A JP S6265705 A JPS6265705 A JP S6265705A
Authority
JP
Japan
Prior art keywords
pipe
passage
tube
heat
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20601985A
Other languages
Japanese (ja)
Inventor
Takeshi Sasaki
武 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP20601985A priority Critical patent/JPS6265705A/en
Publication of JPS6265705A publication Critical patent/JPS6265705A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the heat efficiency of the titled device by repeatedly providing a raw liq. passage, a membranous pipe, a heat-transfer pipe and a partition pipe to form a multistage structure and reutilizing the raw liq. which has once been used as the cooling heat source in a succeeding stage. CONSTITUTION:The first membranous pipe 2, the first heat-transfer pipe 4 and a partition pipe 6 are provided around a heater 1 furnished on the center axis to form the first raw liq. passage 3, the first evaporation space 5 and the first cooling water passage 7. Then the second membranous pipe 8, the second heat-transfer pipe 9 and the second partition pipe 10 constituting the second stage are successively furnished on the outer periphery of the partition pipe 6 to form the second raw liq. passage 11, the second evaporation space 12 and the second cooling water passage 13. The raw liq. is introduced into the second cooling water passage 13 from a raw liq. inlet pipe 14. The raw liq. heated in the passage is introduced into the first cooling water passage 7 by a connection pipe 15 and then introduced into the first and the second raw liq. passage 3 and 11 by a connection pipe 16. The steam permeated through the membranous pipes 2 and 8 is condensed and liquefied on the surfaces of the heat- transfer pipes 4 and 9 and the condensate is discharged from a condensate discharge pipe 18.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、膜蒸留装置に関し、詳述すると、熱により原
液の蒸発を促進させて蒸留を行うサーモパーベーパレー
ションに関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a membrane distillation apparatus, and more specifically, to thermopervaporation, which performs distillation by promoting evaporation of a stock solution using heat.

〈従来技術〉 溶液を分離濃縮する方法として、液体蒸気は透過させる
が、液体自身は透過させない重合体多孔質膜の一次側に
高温の被処理液、即ち、例えば熱海水のような原液を流
通させ、原液から発生し、上記多孔質膜を透過した蒸気
を二次側で冷却して凝縮させ、このようにして−次側に
おいて原液を濃縮し、二次側において凝縮液を得るサー
モパーベーパレーションは既に知られており、また、そ
のための装置も従来より種々提案されている。
<Prior art> As a method for separating and concentrating a solution, a high temperature liquid to be treated, that is, a raw liquid such as hot sea water, is passed through the primary side of a porous polymer membrane that allows liquid vapor to pass through but not the liquid itself. The vapor generated from the stock solution and passed through the porous membrane is cooled and condensed on the secondary side, thus concentrating the stock solution on the next side and obtaining a condensed liquid on the secondary side. ration is already known, and various devices for it have been proposed.

例えば特公昭49−45461号公報には、鉛直方向に
延びる多数の膜壁と多数の伝熱壁とが互いに並行的に空
間を隔てて設けられており、互いに隣接する2個の膜壁
の間には高温原液通路を、互いに隣接する2個の伝熱壁
の間には冷却水用通路を、互いに隣接する膜壁と伝熱壁
の間には発生蒸気と蒸留水の通路となる蒸気空間をそれ
ぞれ隔離し、さらに装置本体の両端部には伝熱壁と側壁
との間に冷却水通路を形成する装置が記載されている。
For example, in Japanese Patent Publication No. 49-45461, a large number of vertically extending membrane walls and a large number of heat transfer walls are provided parallel to each other with a space between them, and a gap between two adjacent membrane walls is disclosed. A high-temperature raw liquid passageway is provided, a cooling water passageway is provided between two adjacent heat transfer walls, and a steam space is provided between the adjacent membrane wall and heat transfer wall, which serves as a passageway for generated steam and distilled water. A device is described in which cooling water passages are formed between the heat transfer wall and the side wall at both ends of the device body.

〈発明が解決しようとする問題点〉 このような従来装置によれば、高温原液を外部に投雪さ
れた熱交換層により加熱し、たのち装置内へ並列に導入
されるため、導入時の放熱による熱効率の低下が避けら
れないという問題があった。
<Problems to be Solved by the Invention> According to such a conventional device, the high-temperature stock solution is heated by a heat exchange layer thrown outside and then introduced into the device in parallel. There was a problem in that a decrease in thermal efficiency due to heat radiation was unavoidable.

そこで本発明の主たる目的は、保温装置を設けることな
く無駄な放熱が防止されて熱効率のよい膜蒸留装置を提
供することである。
Therefore, the main object of the present invention is to provide a membrane distillation apparatus with good thermal efficiency, which prevents wasteful heat radiation without providing a heat insulating device.

本発明の他の目的は、上記の理由により熱効率がよくか
つ大容量の膜蒸留装置を提供することである。
Another object of the present invention is to provide a membrane distillation apparatus with good thermal efficiency and large capacity for the above reasons.

本発明の更に他の目的は、原液を冷却用熱媒に兼用し、
冷却水が不要な膜蒸留装置を提供することである。
Still another object of the present invention is to use the undiluted solution as a heating medium for cooling,
An object of the present invention is to provide a membrane distillation apparatus that does not require cooling water.

本発明の更に他の目的は、多重構造とすることにより、
一度冷却用熱媒として使用されて温度上昇した原液を次
段の冷却用熱媒として再利用し、このようにして温度上
昇した原液を原液通路に導入し、このような熱の再利用
により熱効率を更に向上させた膜蒸留装置を提供するこ
とである。
Still another object of the present invention is to provide a multiplexed structure to
The stock solution, which has been used as a cooling heat medium and whose temperature has risen, is reused as a heat medium for cooling in the next stage, and the stock solution whose temperature has risen in this way is introduced into the stock solution passage, and by reusing such heat, thermal efficiency is improved. An object of the present invention is to provide a membrane distillation apparatus with further improved properties.

く問題点を解決する為の手段〉 本発明の膜蒸留装置は、軸心部に設けられた加熱器と、
その加熱器の周りに原液通路を形成し、かつ、原液を透
過させずその原液の蒸気を透過させる重合体多孔質膜よ
りなる膜管と、その膜管の周りに蒸気空間を形成する伝
熱管と、その伝熱管の周りに冷却用熱媒通路を形成する
仕切管と、その仕切管の外周に原液通路、膜管、伝熱管
および仕切管を同軸上に繰り返し設け、原液が冷却用熱
媒として使用された後で上記加熱器の周りの原液通路を
通って排出され、上記蒸気空間で凝縮された凝縮液が外
部へ導出されるよう構成されたことを特徴としている。
Means for Solving the Problems〉 The membrane distillation apparatus of the present invention includes a heater provided at the shaft center,
A membrane tube made of a porous polymer membrane that forms a liquid passageway around the heater and allows the vapor of the liquid to permeate through it without allowing the liquid to pass through, and a heat transfer tube that forms a vapor space around the membrane tube. and a partition tube that forms a cooling heat medium passage around the heat transfer tube, and a raw liquid passage, a membrane tube, a heat transfer tube, and a partition tube are repeatedly provided on the same axis around the outer periphery of the partition tube, and the raw liquid is used as a cooling heat medium. It is characterized in that the condensate liquid that is discharged through the raw liquid passage around the heater and condensed in the vapor space is led out to the outside after being used as a heater.

く作用〉 外部から導入される原液は、最初最も外周の冷却用熱媒
として使用され、順次、より中心に近い段の冷却用熱媒
として使用されて次第に温度が上昇する。一方、中心部
の加熱器の周りの原液は加熱器により熱せられて最も温
度が高く、蒸発により次第に温度が低下した原液を順次
より中心から遠い段の原液として使用する。このような
多段構成により各段ごとに原液と冷却用熱媒の熱交換が
行われる。多段構成における各段で生成された凝縮液は
並列に集められ外部へ導出される。
Effect> The stock solution introduced from the outside is first used as a heating medium for cooling the outermost stage, and then is used as a heating medium for cooling stages closer to the center, and its temperature gradually increases. On the other hand, the stock solution around the heater in the center is heated by the heater and has the highest temperature, and the stock solution whose temperature gradually decreases due to evaporation is used as the stock solution in stages farther from the center. With such a multi-stage configuration, heat exchange between the raw liquid and the cooling heat medium is performed in each stage. The condensate generated at each stage in the multi-stage configuration is collected in parallel and led to the outside.

〈実施例〉 第1図に本発明の2段構成の実施例の縦断面図を示し、
第2図にそのA−A’断面図を示す。
<Example> FIG. 1 shows a longitudinal cross-sectional view of an example of a two-stage configuration of the present invention,
FIG. 2 shows a sectional view taken along the line AA'.

全体として円柱形をなし、中心軸上に加熱器1が設けら
れ、その加熱器lの周りに第1の膜管2が設けられて加
熱器1と膜管2の間に第1の原液通路3が形成され、膜
管2の周りに第1の伝熱管4が設けられ、膜管2と伝熱
管4の間に第1の蒸発空間5が形成され、伝熱管4の周
りに第1の仕切管6が設けられ、伝熱管4と仕切管6の
間に第1の冷却水通路7が形成される。仕切管6の外周
には、第2段目を構成する第2の膜管8.第2の伝熱管
9.第2の仕切管lOが順次設けられて、第2の原液通
路11.第2の蒸発空間12.第2の冷却水通路13が
形成される。第2の仕切管10は最も外側にあるため装
置の外管となる。なお図において、蒸発空間5および1
2に描かれている波形はスペーサを表わしている。
It has a cylindrical shape as a whole, and a heater 1 is provided on the central axis, and a first membrane tube 2 is provided around the heater 1, and a first stock solution passage is provided between the heater 1 and the membrane tube 2. 3 is formed, a first heat exchanger tube 4 is provided around the membrane tube 2, a first evaporation space 5 is formed between the membrane tube 2 and the heat exchanger tube 4, and a first heat exchanger tube 4 is provided around the heat exchanger tube 4. A partition pipe 6 is provided, and a first cooling water passage 7 is formed between the heat transfer tube 4 and the partition pipe 6. On the outer periphery of the partition pipe 6, a second membrane pipe 8 constituting the second stage is provided. Second heat exchanger tube9. A second partition pipe lO is sequentially provided to connect the second stock solution passage 11. Second evaporation space 12. A second cooling water passage 13 is formed. The second partition pipe 10 is the outermost pipe and thus becomes the outer pipe of the device. In the figure, evaporation spaces 5 and 1
The waveform depicted in 2 represents a spacer.

第2の冷却水通路13の下端は原液導入管14に接続さ
れ、第2の冷却水通路13の上端と第1の冷却水通路7
の上端の間が接続管15により接続され、第1の原液通
路3の下端、第2の原液通路11の下端、および第1の
冷却水通路7の下端が接続管16により接続され、第2
の原液通路11の上端が原液排出管17に接続されてい
る。また、各段の蒸気空間5,120下端には凝縮液取
出支管が接続され、共通接続されて一本の凝縮液取出管
1日になっている。
The lower end of the second cooling water passage 13 is connected to the stock solution introduction pipe 14, and the upper end of the second cooling water passage 13 and the first cooling water passage 7
The upper ends thereof are connected by a connecting pipe 15, the lower end of the first concentrate passage 3, the lower end of the second concentrate passage 11, and the lower end of the first cooling water passage 7 are connected by a connecting pipe 16,
The upper end of the stock solution passage 11 is connected to a stock solution discharge pipe 17. Further, a condensate outlet branch pipe is connected to the lower end of the steam space 5, 120 of each stage, and is commonly connected to form one condensate outlet pipe.

膜管2,8を構成する多孔質膜は、高温の原液に対して
親和性を有しないこと、例えば原液が水溶液の場合であ
れば疎水性であることが必要であリ、更に、原液は透過
させないが、その蒸気は透過させる性質を有することが
必要である。更に、原液が加熱されるために、耐熱性も
必要となる。
The porous membranes constituting the membrane tubes 2 and 8 must have no affinity for high-temperature stock solutions; for example, if the stock solution is an aqueous solution, it must be hydrophobic; It is necessary to have the property of not allowing the vapor to pass through, but allowing the vapor to pass through. Furthermore, since the stock solution is heated, heat resistance is also required.

従って、原液が水溶液の場合、ポリテトラフルオロエチ
レン樹脂のようなフッ素系樹脂からなる多孔質膜が耐熱
性と疎水性を共に有する点から特に好ましい。しかし、
例えばポリスルホン樹脂やセルロース樹脂のような親水
性樹脂からなる多孔質膜であっても、表面にフッ素系樹
脂やシリコーン樹脂等の溶水性樹脂を被覆して疎水性の
多孔質膜表面を付与するときは、これら樹脂膜も使用す
ることができる。
Therefore, when the stock solution is an aqueous solution, a porous membrane made of a fluororesin such as polytetrafluoroethylene resin is particularly preferred since it has both heat resistance and hydrophobicity. but,
For example, even if a porous membrane is made of a hydrophilic resin such as polysulfone resin or cellulose resin, when the surface is coated with a water-soluble resin such as a fluororesin or silicone resin to provide a hydrophobic porous membrane surface. These resin films can also be used.

伝熱管4,9は、伝熱性の高い材料、例えば金属からな
る薄肉管が望ましいが、蒸気拡散による熱移動速度より
速い伝熱速度を有する伝熱体であるならプラスチックで
もよい。
The heat transfer tubes 4 and 9 are preferably thin-walled tubes made of a material with high heat conductivity, such as metal, but may be made of plastic as long as the heat transfer body has a heat transfer rate faster than the heat transfer rate due to vapor diffusion.

膜管2.8は支持管上に多孔質膜が支持されて形成され
ている。この場合、支持管は液体蒸気を透過させること
ができれば足り、例えばポリアミド、フッ素樹脂等から
なる織布又は不織布管や、セラミック性の多孔質膜管が
好適に用いられる。
The membrane tube 2.8 is formed by supporting a porous membrane on a support tube. In this case, the support tube only needs to be able to permeate liquid vapor, and for example, a woven or nonwoven fabric tube made of polyamide, fluororesin, etc., or a porous ceramic membrane tube is preferably used.

第3図に上記実施例における原液の流れを模型的に示す
。原液は膜管を通して凝縮排出された分が充分補充され
る程度に導入されるが、オーバフローしたものは排出管
17から排出される。各部の温度は、第二の冷却水通路
13が最も低く例えば15〜20℃であり、第一の冷却
水通路7が二番目に低く例えば25〜30℃であり、中
央の第一の原液通路3が最も高く例えば80〜90℃で
あり、第二の原液1Jtl路11が二番目に高く例えば
50〜60℃である。
FIG. 3 schematically shows the flow of the stock solution in the above example. The stock solution is introduced through the membrane tube to the extent that the amount condensed and discharged is sufficiently replenished, but any overflow is discharged from the discharge tube 17. The temperature of each part is the lowest in the second cooling water passage 13, for example 15 to 20°C, the second lowest in the first cooling water passage 7, for example 25 to 30°C, and the temperature in the first stock liquid passage in the center. 3 is the highest, for example, 80 to 90°C, and the second stock solution 1Jtl path 11 is the second highest, for example, 50 to 60°C.

このような状態において、高温の原液はその蒸気のみが
膜管を通過して蒸気空間に拡散し、伝熱管表面で冷却さ
れて凝縮液化され、凝縮液取出管から取り出される。ま
た、原液中の溶質は溶媒と共に膜管により阻止され濃縮
されて原液排出管から排出される。
In this state, only the vapor of the high-temperature raw solution passes through the membrane tube and diffuses into the vapor space, is cooled on the surface of the heat transfer tube, is condensed and liquefied, and is taken out from the condensate extraction tube. Further, the solute in the stock solution is blocked together with the solvent by the membrane tube, concentrated, and discharged from the stock solution discharge pipe.

この実施例において、膜面積0.25mの装置を用い、
供給原液として導電度180μS/C11の水道水を用
いたとき、導電度1.2μS/cffiの透過液が、投
下熱量1.5kwh当り2.3 A / hで得られた
。第4図に本発明の3段構成の実施例の模型図を示す。
In this example, an apparatus with a membrane area of 0.25 m was used,
When tap water with a conductivity of 180 μS/C11 was used as the stock solution, a permeate with a conductivity of 1.2 μS/cffi was obtained at 2.3 A/h per 1.5 kWh of heat input. FIG. 4 shows a model diagram of an embodiment of the three-stage configuration of the present invention.

図において右端が中心部に、左端が外周部に対応してい
る。原液流路は実施例のものに限定されることなく、種
々変形して実施することができる。
In the figure, the right end corresponds to the center and the left end corresponds to the outer periphery. The stock solution flow path is not limited to that of the embodiment, and can be modified in various ways.

〈発明の効果〉 本発明によれば、原液を加熱し、その蒸気を膜を透過さ
せることによって、溶液の分離濃縮を行うので、従来の
逆浸透法と異なり、原液を高圧に加圧する必要がないう
えに、溶質の阻止性能に著しくすぐれている。しかも、
原液流路の中央部に伝熱管が浸漬されているので、熱の
保温装置が不要となり、熱損失が殆どない。
<Effects of the Invention> According to the present invention, the solution is separated and concentrated by heating the stock solution and passing the vapor through a membrane, so unlike the conventional reverse osmosis method, there is no need to pressurize the stock solution to a high pressure. Moreover, it has extremely good solute blocking performance. Moreover,
Since the heat transfer tube is immersed in the center of the stock solution flow path, there is no need for a heat insulation device and there is almost no heat loss.

また、多段構造であるため多量の透過液を回収すること
ができるとともに熱交換が各段で行われるので、投下熱
量当りの凝縮液量が増大する。
Further, since the structure is multi-stage, a large amount of permeate can be recovered, and heat exchange is performed at each stage, so the amount of condensed liquid per amount of heat input increases.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例を示す縦断面図、第2図はその横
断面図である。第3図は上記実施例の原液流路を示す模
型図、第4図は本発明の他の実施例原液流路を示す模型
図である。 1・・・加熱器 2.8・・・膜管 3.11・・・原液通路 4.9・・・伝熱管 5.12・・・蒸発空間 6.10・・・仕切管 7.13・・・冷却水通路 14・・・原液導入管 17・・・原液排出管 18・・・凝縮液取出管
FIG. 1 is a longitudinal cross-sectional view showing an embodiment of the present invention, and FIG. 2 is a cross-sectional view thereof. FIG. 3 is a model diagram showing the stock solution flow path in the above embodiment, and FIG. 4 is a model diagram showing the stock solution flow path in another embodiment of the present invention. 1... Heater 2.8... Membrane tube 3.11... Stock solution passage 4.9... Heat transfer tube 5.12... Evaporation space 6.10... Partition tube 7.13. ... Cooling water passage 14 ... Stock solution introduction pipe 17 ... Stock solution discharge pipe 18 ... Condensate extraction pipe

Claims (2)

【特許請求の範囲】[Claims] (1)軸心部に設けられた加熱器と、その加熱器の周り
に原液通路を形成し、かつ、原液を透過させずその原液
の蒸気を透過させる重合体多孔質膜よりなる膜管と、そ
の膜管の周りに蒸気空間を形成する伝熱管と、その伝熱
管の周りに冷却用熱媒通路を形成する仕切管と、その仕
切管の外周に原液通路、膜管、伝熱管および仕切管を同
軸上に繰り返し設け、原液が冷却用熱媒として使用され
た後で上記加熱器の周りの原液通路を通って排出され、
上記蒸気空間で凝縮された凝縮液が外部へ導出されるよ
う構成された膜蒸留装置。
(1) A heater provided at the axial center, and a membrane tube formed with a polymeric porous membrane that forms a concentrate passage around the heater and does not allow the concentrate to pass through, but allows the vapor of the concentrate to pass through. , a heat exchanger tube that forms a vapor space around the membrane tube, a partition tube that forms a cooling heat medium passage around the heat exchanger tube, a raw solution passage, a membrane tube, a heat exchanger tube, and a partition around the outer periphery of the partition tube. tubes are provided repeatedly on the same axis, and the concentrate is discharged through the concentrate passage around the heater after being used as a heating medium for cooling;
A membrane distillation apparatus configured so that the condensate condensed in the vapor space is led to the outside.
(2)最外周の冷却用熱媒通路へ原液が最初に導入され
、その熱交換により温度上昇した原液がより中心部に近
い冷却用熱媒として使用され、その後、原液通路へ導入
されるよう構成された、特許請求の範囲第1項記載の膜
蒸留装置。
(2) The undiluted liquid is first introduced into the outermost cooling heat medium passage, and the undiluted liquid whose temperature has risen due to the heat exchange is used as a cooling heat medium closer to the center, and then introduced into the undiluted liquid passage. A membrane distillation apparatus constructed as claimed in claim 1.
JP20601985A 1985-09-17 1985-09-17 Membrane distillation device Pending JPS6265705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20601985A JPS6265705A (en) 1985-09-17 1985-09-17 Membrane distillation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20601985A JPS6265705A (en) 1985-09-17 1985-09-17 Membrane distillation device

Publications (1)

Publication Number Publication Date
JPS6265705A true JPS6265705A (en) 1987-03-25

Family

ID=16516552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20601985A Pending JPS6265705A (en) 1985-09-17 1985-09-17 Membrane distillation device

Country Status (1)

Country Link
JP (1) JPS6265705A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102491577A (en) * 2011-06-21 2012-06-13 天津科技大学 Multi-stage series membrane distillation strong brine desalting method and device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102491577A (en) * 2011-06-21 2012-06-13 天津科技大学 Multi-stage series membrane distillation strong brine desalting method and device

Similar Documents

Publication Publication Date Title
JPS60125203A (en) Thermo-pervaporation apparatus
JPH0317526B2 (en)
CN106925124B (en) Membrane module with heat recovery function
JPS6265705A (en) Membrane distillation device
US11578628B2 (en) Method and system to selectively recover water vapor and latent heat from exhaust gas streams
JPS60501746A (en) Thermal thin film distillation system
JPS60147201A (en) Treatment of aqueous solution containing volatile substance
TWM631510U (en) Water treatment device based on heat pump system
JPS6359310A (en) Thermo-pervaporation device
JPS60118204A (en) Thermo-pervaporization apparatus
JPS60203173A (en) Concentration of fruit juice
JPS6233505A (en) Membrane distillation apparatus
JPS60206409A (en) Separation of liquid
JPS6227008A (en) Membrane distillation device
JPH0398620A (en) Desalinization device
JP2940489B2 (en) Double tube coil type steam generator
JPS6265707A (en) Thermopervaporation device
JPS6233504A (en) Membrane distillation apparatus
JPS60206408A (en) Concentration of stick-water
JPS6231968B2 (en)
JPS60206407A (en) Concentration of stick-water
JPS6185169A (en) Concentration of albumen
JPS60226503A (en) Method for concentrating pectin extract solution
JPS60226897A (en) Method for concentration of gelatin extraction liquid
JPS60206410A (en) Method and apparatus for separating liquid