JPS6291470A - Silicon nitride sputtering target and manufacture - Google Patents

Silicon nitride sputtering target and manufacture

Info

Publication number
JPS6291470A
JPS6291470A JP60228861A JP22886185A JPS6291470A JP S6291470 A JPS6291470 A JP S6291470A JP 60228861 A JP60228861 A JP 60228861A JP 22886185 A JP22886185 A JP 22886185A JP S6291470 A JPS6291470 A JP S6291470A
Authority
JP
Japan
Prior art keywords
silicon nitride
target
powder
sputtering
sputtering target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60228861A
Other languages
Japanese (ja)
Inventor
長田 真司
哲夫 渋田見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP60228861A priority Critical patent/JPS6291470A/en
Publication of JPS6291470A publication Critical patent/JPS6291470A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 窒化珪素のスパッタリングによって得られる窒化珪素薄
膜は工業的に多くの用途なもち、特に半導体産業の分野
においては(IINa+等の拡散バリアとしてのパッシ
ベーション膜、(2)酸素拡散マスク、(3)耐HIF
ニー1チマスク、+41MN0Sゲート膜、(5)キャ
パシタの誘電材等として賞出される重要な薄膜材料であ
る。
[Detailed Description of the Invention] [Industrial Application Field] Silicon nitride thin films obtained by sputtering silicon nitride have many industrial uses, especially in the semiconductor industry (for passivation as a diffusion barrier for IINa+, etc.). membrane, (2) oxygen diffusion mask, (3) HIF resistance
It is an important thin film material that is used as a knee mask, +41MNOS gate film, (5) dielectric material for capacitors, etc.

本発明はその原料となる高純度の窒化珪素スパッタリン
グターゲットを提供するものであり、これを使用したス
パッタリングによって上記の如き用途に耐え得る窒化珪
素薄膜な、工業的に能率よく製造することを目的とする
ものである。
The present invention provides a high-purity silicon nitride sputtering target as a raw material, and aims to industrially and efficiently produce a silicon nitride thin film that can withstand the above uses by sputtering using this target. It is something to do.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

窒化珪素薄膜の製造法としては、従来大別すると以下の
ようなものがあった。
Conventional methods for producing silicon nitride thin films can be broadly classified as follows.

+11 5IH4,Nz等の反応ガスによる0vD(2
1スパッタガス中にNu 、 N)Is等を導入したs
lの反応性スパッタ (3)  窒化珪素をターゲツト材とするスパッタリン
グ しかし、(1)の方法には膜の堆積速度は速いものの基
板温度か高いという欠点があり、(2)の方法にはスパ
ッタレートを高くすると膜のストイキオメトリ−が失な
われるという欠点がある。
+11 0vD (2
1) Introducing Nu, N)Is, etc. into the sputtering gas
Reactive sputtering (3) Sputtering using silicon nitride as a target material However, method (1) has the drawback of high film deposition rate but high substrate temperature, and method (2) has the disadvantage of high substrate temperature. There is a disadvantage that increasing the stoichiometry of the membrane causes a loss of stoichiometry.

従って、工業的には(3)の方法が有利とされているが
、この方法に使用できるターゲツト材の特性が不充分で
あったため、(3)の方法の利点が充分に発揮できなか
った恨みがある。
Therefore, method (3) is considered to be advantageous from an industrial perspective, but due to the insufficient characteristics of the target material that can be used in this method, the advantages of method (3) could not be fully demonstrated. There is.

窒化珪素のスパッタリングターゲット部材と(−では従
来、il+窒化珪素粉末 (2)窒化珪素粉末を冷間ま
たは熱間で加圧成形し圧粉体としまたもの (3)焼結
物剤として金属化合物を添加し焼結したもの等が使用さ
れていた。し2かし、これらのターゲット部材は下記の
ような欠点を有(〜でいた。即ち、filのターゲット
部材ではターゲットはチャンバー内の下部’tcv置す
る以外になく、それ以外の構造を有するスパッタ装置で
は使用できない。また、スパッタリング中、一部の粉体
が帯電し、静電的ム反発力により対抗する基板上にはじ
さどばさねて薄膜の欠陥生成の原因となる場合があった
。またスパッタレートが時間と共に変化するなど問題点
が多かった。また(2)のターゲット部材を使用し。
A sputtering target member of silicon nitride and (-) conventionally used il + silicon nitride powder. However, these target members have the following drawbacks (i.e., in the fil target member, the target is located at the lower part of the chamber. It cannot be used with sputtering equipment that has any other structure.Also, during sputtering, some of the powder becomes electrically charged, and the electrostatic repulsion forces cause it to stick to the opposing substrate. In some cases, this may cause defects in the thin film.Also, there were many problems such as the sputtering rate changing over time.Furthermore, the target member of (2) was used.

ても窒化珪素粉体間の結合力が非常に弱いために、(1
)の場合と同様な問題が生ずることが多かった。
However, since the bonding force between silicon nitride powders is very weak, (1
) problems often occurred.

(3)のターゲット部材は、もっとも難焼結性である窒
化珪素に、これと反応し、で低融点ガラス相を生成する
ような金属化合物を添加することにより、窒化珪素粉体
間の強固な結合を実現[〜たものである。このように強
度の高いターゲット部材であるため、fil、 +21
のような問題点は解消されたが、一方焼結助剤として添
加された金属化合物がスパッタ膜中に混入することが避
は難い。そ(7てこの、1゛うな不純物は他の薄膜層へ
の拡散、耐エツチング特性、耐絶縁性の低下などをとお
して種々の符影響をもたらす。
The target member (3) is created by adding a metal compound that reacts with silicon nitride, which is the most difficult to sinter, and generates a low-melting glass phase, thereby creating a strong bond between silicon nitride powders. It is something that realizes a union. Since the target member has such high strength, fil, +21
Although these problems have been solved, it is inevitable that the metal compound added as a sintering aid will be mixed into the sputtered film. Such impurities (7) have various negative effects such as diffusion into other thin film layers and deterioration of etching resistance and insulation resistance.

本発明はこれらの点に鑑み、従来の技術−c+zmかし
かった高純度で欠陥の少ない窒化珪素薄膜を工業的に能
率よく成膜できるスパッタリングターゲット及びその製
造法を提供するものである。
In view of these points, the present invention provides a sputtering target that can industrially and efficiently form a silicon nitride thin film with high purity and few defects, which is different from the conventional technology -c+zm, and a method for manufacturing the same.

〔発明の構成〕[Structure of the invention]

本発明は金属不純物が[11重社%以下で100に9/
7以上の曲げ強度を有する窒化珪素スパッタリングター
ゲットを提供するものであり、またその製造法として、
窒化珪素粉末に1*量%以−Lのシリコン粉末を添加混
合し、得られた粉末な冷間加圧成形1〜て圧粉体とL、
更にこの圧粉体を窒素な含む雰囲気下にて1100℃以
上の温度で焼成することを特徴とする窒化珪素スパッタ
リングターゲットの製造法を提供するものである。
In the present invention, metal impurities are [11% or less and 9% to 100].
To provide a silicon nitride sputtering target having a bending strength of 7 or more, and as a manufacturing method thereof,
Add and mix 1*% by mass or more of silicon powder to silicon nitride powder, and cold-press the obtained powder to form a green compact and L,
Furthermore, the present invention provides a method for producing a silicon nitride sputtering target, characterized in that this green compact is fired at a temperature of 1100° C. or higher in an atmosphere containing nitrogen.

このように本発明のスパッタリングターゲットは金属不
純物の含有量をQ、1ii%以下とすることにより、成
膜(7,た際の種々の物理的膜特性が不純物から受ける
影蕾な最小限とすることができる。
In this way, the sputtering target of the present invention has a metal impurity content of Q, 1ii% or less, thereby minimizing the influence of impurities on various physical film properties during film formation (7). be able to.

それと同時に曲げ強度として100に9/cTIt以上
の機械的強度を有することKより、帯電によるターゲッ
ト表面粉体の飛散防止、或いはスパッタリング時の熱衝
撃によるターゲットの破損防止等の効果が得られる。
At the same time, by having a mechanical strength of 100 to 9/cTIt or more in terms of bending strength, effects such as prevention of scattering of target surface powder due to charging or prevention of damage to the target due to thermal shock during sputtering can be obtained.

そし2てこのような窒化珪素スパッタリングターゲット
は従来存在しなかったものである。
Second, such a silicon nitride sputtering target has not previously existed.

次に本発明のターゲットの製造法について説明する。Next, a method for manufacturing the target of the present invention will be explained.

まず出発原料とE〜では、窒化珪素粉末とシリコン粉末
とを所定の割合でボールミル、ライカイ機等によって充
分混合1.たものを用いる。その際、シリコンの割合は
11M社%以上が必要である。1重置%未満の場合は以
下のプロセスによってもターゲットの所期の機械的強度
な得ることが極めて難しいからである。
First, starting materials and E~ are thoroughly mixed with silicon nitride powder and silicon powder in a predetermined ratio using a ball mill, a light machine, etc. 1. Use something similar. In this case, the proportion of silicon must be 11% or more. This is because if it is less than 1%, it is extremely difficult to obtain the desired mechanical strength of the target even by the following process.

一方、シリコンの添加量の1−限については°特にこれ
を定めないが、望ましくは60%以下、更に望ましくは
50〜40%とする。シリコンの添加量が60%を越え
る場合は以下のプロセスでシリコンを窒化する際に非常
に長時間を要し、かつまた窒化温度、昇温速度等にも細
心の注意を要するからである。
On the other hand, there is no particular limit to the amount of silicon added, but it is preferably 60% or less, more preferably 50 to 40%. This is because if the amount of silicon added exceeds 60%, it will take a very long time to nitride silicon in the following process, and careful attention will also be required to the nitriding temperature, temperature increase rate, etc.

また、原料粉末の純度はできるだけ高いことが望まt2
<、金属不純物は01也鼠%以斗であイ〕ことが必要で
ある。更にそれらの粒径はより小さく、また一定圧力で
成形したときの圧粉体密度のより高い方が、以下のプロ
セスな容易に完結さ」Jるうえで有利である。
In addition, it is desirable that the purity of the raw material powder is as high as possible t2
It is necessary that the metal impurities be less than 0.1%. Furthermore, the smaller the particle size and the higher the density of the green compact when molded at a constant pressure, the more advantageous it is to easily complete the following process.

原料粉末中の酸素含有量については特にこれを規定しな
いが、本プロセスにおいては製品ターゲツト材中の酸素
含有量は原料粉末中の酸素含有量によって規定されるの
で、前者な制御することにより、後者を制御することも
可能である。
There is no specific regulation regarding the oxygen content in the raw material powder, but in this process, the oxygen content in the product target material is determined by the oxygen content in the raw material powder, so by controlling the former, the latter can be controlled. It is also possible to control

次にこうして得られた混合粉末を金型プレス等で所定の
形状に成形し、圧粉体とする。更にこの圧粉体な窒素を
含む雰囲気下にて1100℃以上の温度で焼成し、添加
したシリコンな窒化ぜl−め、化学歓論比の窒化珪素か
らなるターゲットとする。
Next, the mixed powder thus obtained is molded into a predetermined shape using a die press or the like to form a green compact. The green compact is then fired at a temperature of 1100 DEG C. or higher in an atmosphere containing nitrogen to form a target made of silicon nitride in a chemically atomic ratio.

このとき同時に窒化珪素粒子間に結合が生じ、ターゲツ
ト材として必要な機械的強度が発現する。
At the same time, bonds are formed between the silicon nitride particles, and mechanical strength required as a target material is developed.

その際の焼成温度が1100℃未満だとシリコンの窒化
が極めて困難である。窒化速度の点では高温はど有利で
あるが窒化珪素の解離圧も増大するため、このような逆
反応を抑制するためには必要に応じて雰囲気中の窒素圧
を上げる必要が生ずる。而して工業的に有利な窒素気流
中で迅速に窒化反応を完結させるためには、1300〜
1800℃が最も適当な焼成温度である。この湿度で焼
成した場合、窒化に必要な時間は概ね30〜180分で
ある。
If the firing temperature at that time is less than 1100° C., it is extremely difficult to nitride silicon. Although high temperature is advantageous in terms of nitriding rate, it also increases the dissociation pressure of silicon nitride, so in order to suppress such a reverse reaction, it is necessary to increase the nitrogen pressure in the atmosphere as necessary. In order to quickly complete the nitriding reaction in an industrially advantageous nitrogen stream, it is necessary to
The most suitable firing temperature is 1800°C. When firing at this humidity, the time required for nitriding is approximately 30 to 180 minutes.

こうして得られた焼結体をダイヤモンドカッター、バン
ドソーなどの切断加工機にて切断、仕上げ加工を行い所
定の形状の窒化珪素スパッタリングターゲットとする。
The sintered body thus obtained is cut and finished using a cutting machine such as a diamond cutter or a band saw to obtain a silicon nitride sputtering target in a predetermined shape.

〔実施例〕〔Example〕

以下に実施例なあげ、本発明を更に説明するが本発明の
適用範囲はこれらの実施例によって何ら限定されるもの
ではない。
The present invention will be further explained below with reference to Examples, but the scope of application of the present invention is not limited in any way by these Examples.

実施例1 市販の窒化珪素粉末(純度999%、平均粒径1μ、酸
素含有量1%)と市販のシリコン粉末(純度999%、
平均粒径3μ)とを表1.A1〜50割合にてライカイ
機で30分間混合し、各々2009の混合粉末を得た。
Example 1 Commercially available silicon nitride powder (purity 999%, average particle size 1μ, oxygen content 1%) and commercially available silicon powder (purity 999%,
Table 1 shows the average particle size (3μ). Mixing was performed for 30 minutes using a Raikai machine at a ratio of A1 to 50 to obtain 2009 mixed powders.

これらを100φの金型を使い1t/crlの圧力でプ
レス成形して圧粉体とした。これらを窒素気流中150
0℃で18(1分間焼成した。焼成による圧粉体の寸法
収縮はほとんどなく、100φのターゲツト材が得られ
た。これらの物性を同じく表1に示す。
These were press-molded using a 100φ mold at a pressure of 1 t/crl to obtain a green compact. These were heated to 150 ml in a nitrogen stream.
The powder compact was fired for 1 minute at 0°C. There was almost no dimensional shrinkage of the green compact due to the firing, and a target material of 100φ was obtained. The physical properties of these materials are also shown in Table 1.

屋6によって得られたターゲットを以下の条件でスパッ
タしたところ表2に示すような膜質、膜堆積速度等が得
られた。またRIF電力400Wで20時間連続スパッ
タした後もターゲットの割れなどの損傷は起らず、膜質
、膜堆積速度は安定していた。従って、従来のターゲッ
ト使用の場合と比較し、同等以上の性能である。
When the target obtained by Ya. 6 was sputtered under the following conditions, the film quality, film deposition rate, etc. shown in Table 2 were obtained. Further, even after continuous sputtering for 20 hours at RIF power of 400 W, no damage such as cracking of the target occurred, and the film quality and film deposition rate were stable. Therefore, compared to the case of using a conventional target, the performance is the same or better.

スパッタ方式   RFマグネトロン RF電力     200及び400Wガス雰囲気  
  5×10−’ Torrプレスパツタ時間   1
hr 基 板      ガラス 表1 表2 〔発明の効果〕 本発明より得られるスパッタリングターゲットは金属不
純物の含有量な01重量%以下であり、こ才1を成膜し
た際の種々の物理的膜特性は不純物から受ける影響を最
小限となる。それと同時に曲げ強度とし、て100に9
7d以上の機械的強度を有することにより、帯電による
ターゲット表面粉体の飛敗111ノ止或いはスパッタリ
ング時の熱衝撃によるターゲットの破損防止等の効果が
得られる。
Sputtering method RF magnetron RF power 200 and 400W Gas atmosphere
5×10-' Torr press sputtering time 1
hr Substrate Glass Table 1 Table 2 [Effects of the Invention] The sputtering target obtained by the present invention has a metal impurity content of 0.1% by weight or less, and various physical film properties when forming Kosai 1 are as follows: Minimizes the influence from impurities. At the same time, the bending strength is 9 to 100.
By having a mechanical strength of 7 d or more, effects such as preventing powder on the target surface from flying off due to charging or damage to the target due to thermal shock during sputtering can be obtained.

Claims (2)

【特許請求の範囲】[Claims] (1)金属不純物が0.1重量%以下で、100kg/
cm^3以上の曲げ強度を有する窒化珪素からなるスパ
ッタリングターゲット。
(1) Metal impurities are 0.1% by weight or less, 100kg/
A sputtering target made of silicon nitride with a bending strength of cm^3 or more.
(2)窒化珪素粉末に1重量%以上のシリコン粉末を添
加、混合し、得られた粉末を冷間加圧成形して圧粉体と
し、更にこの圧粉体を窒素を含む雰囲気下にて1100
℃以上の温度で焼成することを特徴とする窒化珪素から
なるスパッタリングターゲットの製造法。
(2) Add and mix 1% by weight or more of silicon powder to silicon nitride powder, cold-press the obtained powder to form a compact, and further press the compact in an atmosphere containing nitrogen. 1100
A method for manufacturing a sputtering target made of silicon nitride, characterized by firing at a temperature of ℃ or higher.
JP60228861A 1985-10-16 1985-10-16 Silicon nitride sputtering target and manufacture Pending JPS6291470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60228861A JPS6291470A (en) 1985-10-16 1985-10-16 Silicon nitride sputtering target and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60228861A JPS6291470A (en) 1985-10-16 1985-10-16 Silicon nitride sputtering target and manufacture

Publications (1)

Publication Number Publication Date
JPS6291470A true JPS6291470A (en) 1987-04-25

Family

ID=16883031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60228861A Pending JPS6291470A (en) 1985-10-16 1985-10-16 Silicon nitride sputtering target and manufacture

Country Status (1)

Country Link
JP (1) JPS6291470A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6344929A (en) * 1986-08-11 1988-02-25 N R D:Kk Preparation of high density ceramic powder molded body by impact compression
JPH06212417A (en) * 1992-04-22 1994-08-02 Japan Energy Corp Titanium nitride sputtering target
JPH06212418A (en) * 1992-04-22 1994-08-02 Japan Energy Corp Titanium nitride sputtering target
EP2604587A1 (en) * 2011-12-12 2013-06-19 Umicore Electrically conductive SiNx ceramic composite, its sputtering targets and manufacturing methods thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5595680A (en) * 1979-01-12 1980-07-21 Ngk Spark Plug Co Production of high density silicon nitride sintered body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5595680A (en) * 1979-01-12 1980-07-21 Ngk Spark Plug Co Production of high density silicon nitride sintered body

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6344929A (en) * 1986-08-11 1988-02-25 N R D:Kk Preparation of high density ceramic powder molded body by impact compression
JPH0521020B2 (en) * 1986-08-11 1993-03-23 Enu Aaru Deii Kk
JPH06212417A (en) * 1992-04-22 1994-08-02 Japan Energy Corp Titanium nitride sputtering target
JPH06212418A (en) * 1992-04-22 1994-08-02 Japan Energy Corp Titanium nitride sputtering target
JP2707185B2 (en) * 1992-04-22 1998-01-28 株式会社ジャパンエナジー Titanium nitride sputtering target
EP2604587A1 (en) * 2011-12-12 2013-06-19 Umicore Electrically conductive SiNx ceramic composite, its sputtering targets and manufacturing methods thereof
WO2013087561A3 (en) * 2011-12-12 2013-09-12 Umicore Electrically conductive sinx ceramic composite, its sputtering targets and manufacturing methods thereof

Similar Documents

Publication Publication Date Title
WO2003006702A1 (en) Hafnium silicide target for gate oxide film formation and its production method
WO1983003094A1 (en) Oxide-containing magnetic material capable of being sintered at low temperatures
JPS6291470A (en) Silicon nitride sputtering target and manufacture
JPS6337072B2 (en)
CN113981386A (en) High scandium content aluminum scandium alloy target material and manufacturing method thereof
JPH01246107A (en) Superconducting thin film
JPH0247261A (en) Silicide target and production thereof
JP2003089801A (en) Method for manufacturing niobium and/or tantalum powder
JP3129233B2 (en) Sputtering target for forming a high dielectric film comprising a composite oxide sintered body of Ba, Sr and Ti
JPS62282417A (en) Manufacture of rare earth magnet
JP2762531B2 (en) Ferrite magnetic body and method of manufacturing the same
JPH07278805A (en) Production of low oxygen silicon nitride sputtering target
EP0355165B1 (en) Process of manufacturing target used for formation of superconductive film
JPH11323538A (en) Sputtering sintered target material for forming ge-si thin film of semiconductor device
JPH03193605A (en) Production of target material for forming oxide superconducting thin film
JPS61198505A (en) Dielectric magnetism
JP3073996B2 (en) Method for producing sintered body of Y1Ba2Cu3O7-x-based oxide superconductor and Y1Ba2Cu3O7-x-based oxide superconductor
JPS61183174A (en) Aluminum nitride aintered body
JPH0827571A (en) Production of storontium titanate target
JP2866484B2 (en) Manufacturing method of oxide superconductor
JPH11147765A (en) Sputtering target material for forming bismuth-strontium-tantalum-oxygen system ferroelectric substance thin film
JPH04175225A (en) Production of oxide superconducting material
JPH07172916A (en) Microwave dielectric porcelain composition and its production
JPH0648816A (en) Production of high density indium-tin oxide sintered compact
JPH03126623A (en) Metal oxide material