JPS6291006A - Digital control temperature compensation voltage oscillator - Google Patents

Digital control temperature compensation voltage oscillator

Info

Publication number
JPS6291006A
JPS6291006A JP23018285A JP23018285A JPS6291006A JP S6291006 A JPS6291006 A JP S6291006A JP 23018285 A JP23018285 A JP 23018285A JP 23018285 A JP23018285 A JP 23018285A JP S6291006 A JPS6291006 A JP S6291006A
Authority
JP
Japan
Prior art keywords
switching
control signal
harmonics
attenuated
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23018285A
Other languages
Japanese (ja)
Inventor
Mikio Shigemori
三喜男 重盛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsushima Kogyo KK
Original Assignee
Matsushima Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushima Kogyo KK filed Critical Matsushima Kogyo KK
Priority to JP23018285A priority Critical patent/JPS6291006A/en
Publication of JPS6291006A publication Critical patent/JPS6291006A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce switching noise by adding a circuit cutting off harmonics of an audible frequency band of a digital control signal fed to a transistor (TR) for switching capacitor. CONSTITUTION:A compensation data outputted from a PROM 3 is inputted to a data load capacity control signal conversion circuit 4 to decide TRs turned on/off and its control signal is outputted. A load capacity control signal outputted from the conversion circuit 4 has a waveform where harmonics causing slow leading/trailing are attenuated from a rectangular wave by integration circuits 5, 6. The waveform switches a capacity changeover TR 7. Since the change is slow in the switching operation of the TRs and the harmonics are attenuated, the change is slow similarly in the capacitance increase/decrease of a series capacitor and in the oscillating frequency change attended with the load capacity change, the harmonics are attenuated and the noise is reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、圧電振動子の周波数温度特性情報よりコンデ
ンサ切換えで負荷容量を制御し、温度に対して高い周波
数精度を得るデジタル制御形温度補償圧電発振器に関す
る。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is a digitally controlled temperature compensation system that controls load capacitance by switching capacitors based on frequency-temperature characteristic information of a piezoelectric vibrator and obtains high frequency accuracy with respect to temperature. Regarding piezoelectric oscillators.

〔発明の概要〕[Summary of the invention]

本発明は、デジタル制御形温度補償圧電発振器のコンデ
ンサ切換えによる周波数制御方式において、コンデンサ
切換え用のトランジスタへ送るデジタル制御信号の可聴
周波数帯の高調波成分を除去する回路を付加し、負荷容
量の変化をゆるやかにすることにより、コンデンサ切換
え時に発生する切換え雑音を低減したものである。
In a frequency control system using capacitor switching for a digitally controlled temperature compensated piezoelectric oscillator, the present invention adds a circuit to remove harmonic components in the audible frequency band of the digital control signal sent to the transistor for capacitor switching, thereby changing the load capacitance. By making it gentler, the switching noise that occurs when switching capacitors is reduced.

〔従来の技術〕[Conventional technology]

従来、圧電振動子の負荷容量を制御する方法は、第4図
に示すように、コンデンサと直列に接続され九スイッチ
ングトランジスタをデジタル信号(矩形波)によりオン
あるいはオフする方式が用いられている。でれは、オン
されたトランジスタと直列のコンデンサの容量が負荷容
量に加えられ温度に対して周波数が一定になる様にオン
するコンデンサとオフするコンデンサの数を制御するこ
とで高い精度の周波数が得られる。
Conventionally, as shown in FIG. 4, a method for controlling the load capacitance of a piezoelectric vibrator is to turn on or off nine switching transistors connected in series with a capacitor using a digital signal (rectangular wave). The capacitance of the capacitor in series with the transistor that is turned on is added to the load capacitance, and by controlling the number of capacitors that turn on and the number of capacitors that turn off so that the frequency remains constant with respect to temperature, a highly accurate frequency can be achieved. can get.

〔発明が解決しようとする問題点及び目的〕しかし、前
述の従来技術では第5図に示すようにデジタル信号でト
ランジスタをオン、オフするため、負荷容を変化もデジ
タル的になり、デジタ四信号が持つ無限の高調波成分が
雑音としてコンデンサ切換え時に発生する。特に、可聴
周波数帯域にもコンデンサ切換え雑音が発生するため、
このコンデンサ切換え方式による温度補償圧電発振器は
、通信W!、、器の基茎傷号源として使用すると、通話
中コンデンサ切換え時に雑音が出る、データ通話中コン
デンサ切換えが行なわれるとその時点のデータが誤まり
となる、などの問題点を有している。
[Problems and Objectives to be Solved by the Invention] However, in the prior art described above, as shown in FIG. The infinite harmonic components of the capacitor are generated as noise when switching capacitors. In particular, since capacitor switching noise also occurs in the audible frequency band,
This temperature-compensated piezoelectric oscillator using the capacitor switching method is a communication W! When used as a base signal source for a device, there are problems such as noise when switching capacitors during a call, and incorrect data when switching capacitors during a data call. .

そこで本発明は、このような問題点を解決するもので、
その目的とするところは、コンデンサ切換え時に雑音を
発生しないデジタル制御形温度補償圧電発振器を提供す
るところにある。
Therefore, the present invention aims to solve these problems.
The object is to provide a digitally controlled temperature compensated piezoelectric oscillator that does not generate noise when switching capacitors.

〔間居点を解決するための手段〕[Means for resolving gaps]

本発明のデジタル制御形温度補償圧電発振器は、コンデ
ンサ切換え方式により負荷容量を制御し、コンデンサ切
換え用トランジスタを制御するデジタル波形の負荷容量
制御信号の可聴周波数帯の高調波成分を除去する回路を
変り付けたことを特徴とする。
The digitally controlled temperature-compensated piezoelectric oscillator of the present invention controls the load capacitance using a capacitor switching method, and has a circuit that removes harmonic components in the audible frequency band of a digital waveform load capacitance control signal that controls the capacitor switching transistor. It is characterized by the fact that it is attached.

〔作用〕 本発明の上記の構成によれば、負荷容量制御用デパンタ
ル信号の可聴周波数帯域におけるaE ’FA波成分が
除去されると、トランジスタのスイッチング及び、それ
に伴う負荷容量変化においても可聴周波数帯域の高調波
成分がなく、シたがって周波数変化も同様になり、コン
デンサ切換え時の雑音が低減される。
[Operation] According to the above configuration of the present invention, when the aE'FA wave component in the audio frequency band of the depantal signal for load capacitance control is removed, the switching of the transistor and the accompanying change in load capacitance can also be performed in the audio frequency band. There are no harmonic components, so frequency changes are also similar, reducing noise when switching capacitors.

〔実施例〕〔Example〕

以下に本発明のデジタル制御形温度補償圧電発振器の可
聴周波数帯の高調波成分を除去する回路の一実施例とし
て抵抗コンデンサによる積分回路を用いた例を第1図に
より説明する。
An example using an integrating circuit using a resistor capacitor will be described below as an embodiment of a circuit for removing harmonic components in the audio frequency band of the digitally controlled temperature-compensated piezoelectric oscillator of the present invention, with reference to FIG.

1は温度センサー、2は温度−アドレス変換回路、3は
房き込み可能読み出し専用メモIJ (F ROM)、
4はデーター負荷容量制御信号変換回路、51〜5nは
積分回路用抵抗、61〜6nは積分回路用コンデンサで
5.6より積分回路を構成する。71〜7nは、容量切
換え用トランジスタ、81〜8nは一負(荷容・量制御
用コンデンサ、9は圧電振動子、10は発振回路である
。負荷容量制御用コンデンサ8はすべて同じ容1でn個
(nは自然数)使用し、同じく容量切換え用トランジス
タ7と積分回路5.6は同数n個用いる。問、コンデン
サ8の容量と個数は、圧電振動子9の温度特性、補償の
精度と補償温度範囲より総合的に決定される。
1 is a temperature sensor, 2 is a temperature-address conversion circuit, 3 is a removable read-only memory IJ (F ROM),
4 is a data load capacitance control signal conversion circuit, 51 to 5n are integrating circuit resistors, 61 to 6n are integrating circuit capacitors, and 5.6 constitutes an integrating circuit. 71 to 7n are transistors for capacitance switching, 81 to 8n are capacitors for one load (load capacity/volume control), 9 is a piezoelectric vibrator, and 10 is an oscillation circuit. n (n is a natural number) are used, and the same number of capacitance switching transistors 7 and integration circuits 5.6 are used.Q.The capacitance and number of capacitors 8 are based on the temperature characteristics of piezoelectric vibrator 9, the accuracy of compensation, It is determined comprehensively from the compensation temperature range.

温度センサ1により検出された温度情報は、温度−アド
レス変換回路2によりFROM3のアドレスに変換する
。FROM3には、圧電振動子9の周波数温度特性情報
からiM度に対して安定した周仮数を得るのに必要な負
荷容1を計算し求めた補償データを記憶させて==−<
。PR○M6から出力される補償データは、データー負
荷容量制御信号変換回路41こ入力され、オンするトラ
ンジスタ及びオフするトランジスタを決定し、そのル1
]衡信号を出力する。4から出力される負荷容量制御信
号は5.6刀・ら構成される積分回路により矩形波から
立上り立下りがゆるやかな高調波成分が減衰された波形
となる。このd形で容量切換え用トランジス不7をスイ
ッチングすることにより、そのスイッチング動作におい
ても、立上り立下りがゆるやかな高調波成分が減衰した
波形となる。一方、容量切換え用トランジスタ71〜7
nとそれと直列に接続されている負荷容量制御用コンデ
ンサ81〜8nは、圧電振動子の負荷容1を調節する。
Temperature information detected by the temperature sensor 1 is converted into an address of the FROM 3 by a temperature-address conversion circuit 2. The FROM 3 stores compensation data obtained by calculating the load capacity 1 necessary to obtain a stable circumferential mantissa for iM degrees from the frequency temperature characteristic information of the piezoelectric vibrator 9. ==-<
. The compensation data output from PR○M6 is input to the data load capacitance control signal conversion circuit 41, which determines which transistors to turn on and which transistors to turn off, and
] Outputs the balance signal. The load capacitance control signal outputted from 4 has a waveform in which harmonic components with gradual rises and falls are attenuated from a rectangular wave by an integrator circuit composed of 5.6 and 5.6 waveforms. By switching the capacitance switching transistor 7 in this d-type, the switching operation also produces a waveform in which harmonic components with slow rises and falls are attenuated. On the other hand, the capacitance switching transistors 71 to 7
n and the load capacitance control capacitors 81 to 8n connected in series thereto adjust the load capacitance 1 of the piezoelectric vibrator.

動作としては、オンした容量切換え用トランジスタと直
列に接読されているコンデンサの存置が負荷容量として
加えられる。たとえば、コンデンサの容量がすべて同じ
でCとし、温度補償において負荷容量制御にmxc(m
は自然数且つm≦n)の容量が必要である楊合容1切換
え用トランジスタ71〜7mまでをオンとする。そこで
、容量切換え用トランジスタのスイッチング動作におい
て変化がゆるやかで高調波成分が減衰しているため、直
列のコンデンサの容1輿減と、負荷容量変化に伴う発振
周波数変化においても同様に変化がゆるやかになり高調
波成分が減衰される。同号外回路の時定数は、通信機器
の基準源振に使用してコンデンサ切換え時に雑音が低減
するように透択する。
In operation, the presence of a capacitor connected in series with the turned-on capacitance switching transistor is added as a load capacitance. For example, if all capacitors have the same capacity and are set to C, then mxc (m
is a natural number and m≦n, and the switching transistors 71 to 7m are turned on. Therefore, since the switching operation of the capacitance switching transistor changes slowly and the harmonic components are attenuated, the change in oscillation frequency due to the capacitance reduction of the series capacitor and the change in load capacitance also changes slowly. harmonic components are attenuated. The time constant of the extra circuit is selected so that it is used as a reference source vibration for communication equipment and noise is reduced when switching capacitors.

次に本発明のデジタル制■形温度補償圧電発損器の第2
の実施例を、高調波成分を除去する回路として1□Cフ
イルタを用いた例を第2図により説明する。11はコイ
ル、12はコンデンサで、以上から構成される定に形フ
ィルタで、低域通過型である。このフィルタを第1の実
施例の積分回路の部分と置き換える。つまり11のコイ
ルを5の抵抗に、12のコンデンアを6のコンデンサに
置き換えることである。これによりデーター負荷容量制
御信号変換回路4から出力される矩形波の信号は、高調
波成分が減衰され、第1の実施例と同様な効果が得られ
る。
Next, the second part of the digitally controlled temperature compensated piezoelectric loss generator of the present invention will be described.
An example in which a 1□C filter is used as a circuit for removing harmonic components will be described with reference to FIG. 2. 11 is a coil, 12 is a capacitor, and is a constant-shaped filter composed of the above components, which is a low-pass type. This filter replaces the integration circuit portion of the first embodiment. In other words, the 11 coils are replaced with 5 resistors, and the 12 capacitors are replaced with 6 capacitors. As a result, the harmonic components of the rectangular wave signal output from the data load capacity control signal conversion circuit 4 are attenuated, and the same effect as in the first embodiment can be obtained.

次に本発明のデジタル制御形温度補償圧電発振器の第3
の実施例を、高調波成分を除去する回路としてアクティ
ブROフィルタを用いた例を第3図により説明する。1
3は演算増幅器であや、抵抗とコンデンサを第3図のこ
とく組み合わせると正帰還形の低域通過型フィルタとな
る。このフィルタを第1の実施例の積分回路の部分と置
き換えることにより第1の実施例と同様な効果が得られ
る。
Next, the third part of the digitally controlled temperature compensated piezoelectric oscillator of the present invention
An example in which an active RO filter is used as a circuit for removing harmonic components will be described with reference to FIG. 1
3 is an operational amplifier, and by combining resistors and capacitors as shown in FIG. 3, it becomes a positive feedback low-pass filter. By replacing this filter with the integrating circuit portion of the first embodiment, the same effects as in the first embodiment can be obtained.

以上のような実施例において、第6図に示すように負荷
容量制御信号は積分回路により立上り立下りがゆるやか
になり可聴帯域の周波数成分が減衰されるため、温度補
償のための負荷容量切換え時の周波数変化がゆるやかに
な9発生する可聴帯域の雑音が低減される。
In the embodiment described above, as shown in FIG. 6, the rise and fall of the load capacitance control signal is made gentle by the integrating circuit, and frequency components in the audible band are attenuated. The noise in the audible band that occurs when the frequency changes slowly is reduced.

尚、本発明の圧電振動子は、水晶、セラミックLiTa
0a、 Lint+Ox等の材質からなる厚みすべり振
動、ねじれ振動屈曲振動等の振動形状を有する振動子で
ある。
Note that the piezoelectric vibrator of the present invention is made of crystal, ceramic LiTa, etc.
The vibrator is made of materials such as 0a, Lint+Ox, and has vibration shapes such as thickness shear vibration, torsional vibration, and bending vibration.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上説明したように矩形波の負荷容量制御信
号を高精波成分除去回路に通し負荷容量切換え用トラン
ジスタへ送るという簡単な構成によって、負荷容量切操
え時に生ずる雑音が低減され、周波数の短期安定度が向
上し、コンデンサ切換え方式の温度補償圧電発振器であ
っても通信機器の基準源振として使用可能となる。さら
に圧電振動子とコイルを除くすべての回路は1チツプの
Cj−MOB IC!に塔載可能であるため小型の低消
費電力にして高精度な発振器を提供できるため、各種通
信機器の小型、軽量化が可能となる効果がある。
As explained above, the present invention has a simple configuration in which a rectangular wave load capacitance control signal is passed through a high-resolution component removal circuit and sent to a load capacitance switching transistor, thereby reducing the noise generated when switching the load capacitance, and reducing the frequency. Short-term stability is improved, and even capacitor-switching temperature-compensated piezoelectric oscillators can be used as reference sources for communication equipment. Furthermore, all circuits except the piezoelectric vibrator and coil are one-chip Cj-MOB IC! Because it can be mounted on a computer, it is possible to provide a compact, low power consumption, high precision oscillator, which has the effect of making it possible to make various communication devices smaller and lighter.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明にかかるデジタル制御形温度補償圧電
発振器の構成図。第2図はLOOフイルタよる高調波成
分除去回路図、第3図はアクティブROフィルタによる
高調波成分除去回路図、第4図は従来のデジタル制御形
温度補償圧電発振器の構成図。第5図は従来のデジタル
制御方式による各部の動作図、第6図は本発明にががる
デジタル制御形温度補償圧電発撮器の各部の動作図、で
ある。 1・・・・・・・・・温度センサー 2・・・・・・・・・温度−アドレス変換回路3・・・
、−・PROM 4・・・・・・・・データー負荷容量制御信号変換回路
51〜5n・・・・・・・・・積分回路用抵抗61〜6
n・・・・曲・積分回路用コンデンサ71〜7n・・・
・・・・・・容量切換え用トランジスタ81〜8n・・
・・・・・・・負荷容量制御用コンデンサ9・・・・・
・・・・圧電振動子 10・・・・・・・・・発振回路 11・・・・・・・・・LOフィルタ用ココイル12・
・・・・・−LCフィルタ用コンデンサ13・・・・・
・・・・演算増幅器 以上
FIG. 1 is a configuration diagram of a digitally controlled temperature compensated piezoelectric oscillator according to the present invention. FIG. 2 is a harmonic component removal circuit diagram using an LOO filter, FIG. 3 is a harmonic component removal circuit diagram using an active RO filter, and FIG. 4 is a configuration diagram of a conventional digitally controlled temperature-compensated piezoelectric oscillator. FIG. 5 is a diagram of the operation of each part according to the conventional digital control system, and FIG. 6 is a diagram of the operation of each part of the digitally controlled temperature-compensated piezoelectric oscillator according to the present invention. 1...Temperature sensor 2...Temperature-address conversion circuit 3...
, -PROM 4... Data load capacitance control signal conversion circuit 51-5n... Resistor for integration circuit 61-6
n...Capacitors 71 to 7n for music/integration circuits...
...Capacity switching transistors 81 to 8n...
......Load capacity control capacitor 9...
...Piezoelectric vibrator 10...Oscillation circuit 11...Lo filter cocoil 12.
......-LC filter capacitor 13...
...more than an operational amplifier

Claims (1)

【特許請求の範囲】[Claims] 負荷容量制御をコンデンサ切換えで行なうデジタル制御
形温度補償圧電発振器において、コンデンサ切換え用デ
ジタル制御信号の可聴周波数帯の高調波成分を除去する
回路を取り付けたことを特徴とするデジタル制御形温度
補償圧電発振器。
A digitally controlled temperature compensated piezoelectric oscillator that performs load capacitance control by switching capacitors, the digitally controlled temperature compensated piezoelectric oscillator being equipped with a circuit that removes harmonic components in the audible frequency band of a digital control signal for capacitor switching. .
JP23018285A 1985-10-16 1985-10-16 Digital control temperature compensation voltage oscillator Pending JPS6291006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23018285A JPS6291006A (en) 1985-10-16 1985-10-16 Digital control temperature compensation voltage oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23018285A JPS6291006A (en) 1985-10-16 1985-10-16 Digital control temperature compensation voltage oscillator

Publications (1)

Publication Number Publication Date
JPS6291006A true JPS6291006A (en) 1987-04-25

Family

ID=16903883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23018285A Pending JPS6291006A (en) 1985-10-16 1985-10-16 Digital control temperature compensation voltage oscillator

Country Status (1)

Country Link
JP (1) JPS6291006A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0431887A2 (en) * 1989-12-05 1991-06-12 Seiko Epson Corporation Variable capacitance capacitor array
EP0975093A1 (en) * 1998-07-23 2000-01-26 Lucent Technologies Inc. Integrated circuit with variable capacitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0431887A2 (en) * 1989-12-05 1991-06-12 Seiko Epson Corporation Variable capacitance capacitor array
US5117206A (en) * 1989-12-05 1992-05-26 Seiko Epson Corporation Variable capacitance integrated circuit usable in temperature compensated oscillators
EP0975093A1 (en) * 1998-07-23 2000-01-26 Lucent Technologies Inc. Integrated circuit with variable capacitor

Similar Documents

Publication Publication Date Title
JP3327911B2 (en) Interference cancellation circuit
US9310203B2 (en) Physical quantity sensor
JP2003347936A5 (en)
US20040041599A1 (en) Non-linear reference waveform generators for data conversion and other applications
JPH0761011B2 (en) Frequency divider device
US5231360A (en) Multi-range voltage amplifier having multiplying digital/analog converters and programmable filter using multiplying DAC in feedback loop
US3116466A (en) Transistorized tuning fork oscillator
JPS6291006A (en) Digital control temperature compensation voltage oscillator
Leyva-Ramos et al. Analog circuits to implement repetitive controllers for tracking and disturbance rejection of periodic signals
JPH06276020A (en) Temperature compensated crystal oscillator
US4542353A (en) Sine wave generator
JPH0846478A (en) Active bandpass filter
RU2212091C2 (en) Amplitude-stabilized crystal oscillator
SE9102605D0 (en) OSCILLATOR CONSTRUCTED AROUND ECL LINER RECEIVER
JPH0846432A (en) Sine wave generator
JP3232743B2 (en) Automatic filter adjustment circuit and reference current generation circuit
SU675575A1 (en) Quartz generator
JPH07297641A (en) Clock oscillator
JP2000165199A (en) Filter circuit and waveform generator
JP2758441B2 (en) Frequency synthesizer
SU1056152A1 (en) A.c. voltage regulator
JPH0233197A (en) Piezoelectric buzzer oscillation circuit
JPH06237146A (en) Filter system
SU1660125A1 (en) Tunable rc generator
JPS59105720A (en) Generating circuit of crystal reference signal