JPS628986A - Control operation method - Google Patents

Control operation method

Info

Publication number
JPS628986A
JPS628986A JP14816585A JP14816585A JPS628986A JP S628986 A JPS628986 A JP S628986A JP 14816585 A JP14816585 A JP 14816585A JP 14816585 A JP14816585 A JP 14816585A JP S628986 A JPS628986 A JP S628986A
Authority
JP
Japan
Prior art keywords
floor
sensor
earthquake
control operation
bank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14816585A
Other languages
Japanese (ja)
Inventor
小野田 芳光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Elevator Engineering and Service Co Ltd
Original Assignee
Hitachi Elevator Engineering and Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Elevator Engineering and Service Co Ltd filed Critical Hitachi Elevator Engineering and Service Co Ltd
Priority to JP14816585A priority Critical patent/JPS628986A/en
Publication of JPS628986A publication Critical patent/JPS628986A/en
Pending legal-status Critical Current

Links

Landscapes

  • Maintenance And Inspection Apparatuses For Elevators (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は昇降路の上端部の位置が異なる複数のエレベー
タの管制運転方法に係り、特に地震時および強風時に適
用される管制運転方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a control operation method for a plurality of elevators having different upper end positions of hoistways, and particularly to a control operation method applied during earthquakes and strong winds.

〔発明の背景〕[Background of the invention]

従来、地震時管制運転装置として加速度式地震感知器を
採用したものがあるが、この装置は特に超高層ビルにお
いて作動すべきときに作動せず、作動する必要のないと
きに作動するという不具合があった。
Conventionally, acceleration-type seismic sensors have been used as earthquake control operation devices, but these devices have problems, especially in skyscrapers, in that they do not operate when they should, and they operate when they do not need to operate. there were.

すなわち、従来の加速度式地震感知器にあっては、強風
により超高層ビルが大きく揺動するような場合は、その
ビルの固有振動数で揺動し、振動変位の振幅が大きく、
したがってエレベータ等が被害を受けるおそれのある状
況になっても振動加速度が小さく、当該感知器が作動し
ないことがある。例えば、振動変位の振幅をD (cm
) 、振動加速度の振幅をA (Gajり  (Gaj
lは加速度の単位でcIII/s!と同じ〕ビルの固有
振動数をfoとすれば、 A#(2πf、)”−D  ・・・・・(1)の関係が
あり、したがって仮に地上高さが200 m級の超高層
ビルで、f o −0,2Hzのときは、D=10cm
としてもA = 16Ga j!と小さな値となる。
In other words, with conventional acceleration type earthquake detectors, when a skyscraper shakes greatly due to strong winds, the vibration occurs at the building's natural frequency, and the amplitude of the vibration displacement is large.
Therefore, even if the elevator or the like is in a situation where there is a risk of damage, the vibration acceleration may be small and the sensor may not operate. For example, let us define the amplitude of vibration displacement as D (cm
), the amplitude of the vibration acceleration is A (Gajri (Gaj
l is the unit of acceleration cIII/s! ]If the natural frequency of the building is fo, then there is the relationship A#(2πf,)"-D... , f o -0.2Hz, D=10cm
Even if A = 16Ga j! is a small value.

ところが、加速度式地震感知器が信号を発生する値は、
もつとも低くても25Ga7!(建設省建築指導課監修
1日本建築センター、日本昇降機安全センター編:エレ
ベータ耐振設計施工指針)であるから、全く感知しない
。なお、この感知レベルを低くすると、一般に全く問題
とならない小規模地震に対しても感知してしまうことに
なり、実用に耐えない。
However, the value at which an accelerometer seismic sensor generates a signal is
Even the lowest is 25Ga7! (Ministry of Construction Architectural Guidance Division supervised by 1 Japan Building Center, Japan Elevator Safety Center ed.: Elevator vibration-resistant design and construction guidelines), so it is not detected at all. Note that if this detection level is lowered, even small-scale earthquakes that are generally not a problem will be detected, making it impractical.

以上のことから、従来の加速度式地震感知器では強風に
よってビルが大きく揺動し、エレベータ等が危険な状態
にある場合でも作動することが期待されない。
From the above, conventional acceleration-type earthquake detectors are not expected to operate even when buildings are shaking significantly due to strong winds and elevators and the like are in a dangerous condition.

このため、従来は風速計を当該ビルの屋上に設置し、例
えば風速が20m/s以下の場合はエレベータを平常運
転とし、20〜41m/Sのときは減速運転、42〜5
6m/sのときはさらに運転台数を半減、56m/s以
上のときは全体休出等の強風時管制運転方法が採用され
ている。
For this reason, in the past, an anemometer was installed on the roof of the building. For example, when the wind speed was 20 m/s or less, the elevator was operated normally, and when the wind speed was 20 to 41 m/s, the elevator was operated at a reduced speed.
When the wind speed is 6 m/s, the number of vehicles in operation is further reduced by half, and when the wind speed is 56 m/s or more, all vehicles are suspended.

しかし、風の方向、瞬間風圧の変化の周波数特性により
ビルの揺動の程度は大きく変化するものであり、実際の
管制に当っては風速計の指示は単に参考として用いられ
、ビルの揺動を監視人等が観測しながらおこなわねばな
らない等の問題がある。
However, the degree of building sway varies greatly depending on the direction of the wind and the frequency characteristics of changes in instantaneous wind pressure.In actual air traffic control, the anemometer readings are used merely as a reference, and the swaying of the building is There are problems such as having to be carried out while being observed by a supervisor or the like.

このようなことから、加速度式地震感知器に代わるもの
として、波動エネルギ式地震感知器等が本願発明者によ
って提案されている(特願昭59−049259号)。
For this reason, the present inventor has proposed a wave energy type earthquake sensor as an alternative to the acceleration type earthquake sensor (Japanese Patent Application No. 59-049259).

この波動エネルギ式地震感知器は、強風時に大きな揺動
が超高層ビルに発生すると、地震時と同様に動作するも
のである。
This wave energy seismic sensor operates in the same way as during an earthquake when large tremors occur in a skyscraper during strong winds.

ところで、超高層ビルではエレベータ機械室が最上階と
中間階の2ケ所以上に分かれている場合が少なくない。
Incidentally, in skyscrapers, the elevator machine room is often divided into two or more locations: a top floor and an intermediate floor.

このようなビルの揺動は上の階はど大きいので、最上階
の機械室では大きな揺動でも中間階の機械室ではそれほ
ど大きくなく、エレベータを平常運転してもよい場合が
ある。
The shaking of such a building is much greater on the upper floors, so even if the shaking is large in the machine room on the top floor, it is not so great in the machine rooms on intermediate floors, and the elevator may be allowed to operate normally.

このように、エレベータ機械室が最上階と中間階のよう
に分かれている場合に、地震感知器のみを変更してその
まま適用させることは必ずしも好適とは言い難い。
In this way, when the elevator machine room is divided into a top floor and an intermediate floor, it is not necessarily suitable to change only the earthquake sensor and apply it as is.

〔発明の目的〕[Purpose of the invention]

本発明は、上記した従来技術における実情に鑑みてなさ
れたもので、その目的は、地震時および強風時の双方に
対して好適な管制運転をおこなうことができる管制運転
方法を提供することにある。
The present invention has been made in view of the actual situation in the prior art described above, and its purpose is to provide a controlled operation method that can perform controlled operation suitable for both earthquakes and strong winds. .

〔発明の概要〕[Summary of the invention]

この目的を達成するために本発明は、昇降路゛の上端部
の位置が異なる複数のエレベータの管制運転方法におい
て、昇降路のそれぞれの上端部に振動を感知する感知器
を設け、この感知器に複数の振動感知レベルを設定し、
該感知器によっていずれかのレベルが感知された際、該
レベルに応じた管制運転をおこなうようにしてあり、感
知器として例えば波動エネルギを感知するもの、あるい
は振動速度を感知するものを採用している。
In order to achieve this object, the present invention provides a control operation method for a plurality of elevators in which the positions of the upper ends of the hoistways are different. Set multiple vibration detection levels to
When any level is detected by the sensor, controlled operation is performed according to the level, and the sensor is one that senses wave energy or one that senses vibration speed. There is.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の管制運転方法を図に基づいて説明する。 Hereinafter, the controlled operation method of the present invention will be explained based on the drawings.

第1図は本発明による管制運転が適用される建築物を例
示する説明図、第2図は本発明の管制運転方法を実施す
る装置の原理構成を示す説明図である。
FIG. 1 is an explanatory diagram illustrating a building to which controlled operation according to the present invention is applied, and FIG. 2 is an explanatory diagram showing the principle configuration of a device that implements the controlled operation method of the present invention.

第1図において、10はビルディング、11は中間階に
設けられたエレベータ機械室、12は最上階に設けられ
たエレベータ機械室、21.22はエレベータ昇降路、
31.32はそれぞれエレベータ機械室11゜12に配
置された波動エネルギ式地震感知器である。
In FIG. 1, 10 is a building, 11 is an elevator machine room provided on an intermediate floor, 12 is an elevator machine room provided on the top floor, 21.22 is an elevator hoistway,
31 and 32 are wave energy seismic sensors placed in the elevator machine rooms 11 and 12, respectively.

また第2図において、1はセンサ、2は地震感知器本体
で、これらによって前述した波動エネルギ式地震感知器
3F、 32が構成されている。なお、地震感知器本体
2はセンサ1の出力から例えば波動エネルギ係数(波動
エネルギに比例した量で、単位はkine−cm*ここ
で、kineは速度の単位でcm/Sと同じ。センサ技
術、 1985年3月号、P・76等参照)を算出し、
その値が定められた設定レベルになった場合に管制信号
を発生する。また上記の設定レベルは、例えば気象庁震
度階で■の上位レベル(震度4.5〜5.0)の範囲に
相応する第1段の設定レベル、すなわち10〜30ki
ne−cmと、気象庁震度階で■の下位レベル(震度5
.0〜5.5)の範囲に相応する第2段の設定レベル、
すなわち30〜100 kins−cmと、気象庁震度
階で■の上位レベル(震度5.5〜6.0)の範囲に相
応する第3段の設定レベル、すなわち100〜300k
ine −cmの3段階に設定しである。また、50は
これらの地震感知器31゜32に接続された地震および
強風時管制運転装置、70はこの管制運転装置50が接
続されるエレベータ制御装置である。
Further, in FIG. 2, 1 is a sensor, 2 is an earthquake sensor main body, and these constitute the wave energy type earthquake sensors 3F and 32 described above. The seismic sensor body 2 uses the output of the sensor 1 to obtain, for example, a wave energy coefficient (a quantity proportional to wave energy, the unit is kine-cm*, where kine is a unit of speed and is the same as cm/S.Sensor technology, (See March 1985 issue, P. 76, etc.)
A control signal is generated when the value reaches a predetermined set level. In addition, the above setting level is, for example, the first setting level corresponding to the upper level (seismic intensity 4.5 to 5.0) of ■ on the Japan Meteorological Agency seismic intensity scale, that is, 10 to 30 ki.
ne-cm, and the lower level of ■ on the Japan Meteorological Agency seismic intensity scale (seismic intensity 5
.. a second stage setting level corresponding to a range of 0 to 5.5);
That is, 30 to 100 kins-cm, and the third setting level corresponding to the upper level of ■ (seismic intensity 5.5 to 6.0) on the Japan Meteorological Agency seismic intensity scale, that is, 100 to 300 k.
It is set in three stages: ine-cm. Further, 50 is an earthquake and strong wind control operation device connected to these earthquake sensors 31 and 32, and 70 is an elevator control device to which this control operation device 50 is connected.

なお、ビルディング10は例えばB、(地下3階)〜4
0階床を有し、次のようなA1〜^5バンクのエレベー
タ群を備えている。
The building 10 is, for example, B, (3rd basement floor) to 4th floor.
It has the 0th floor and is equipped with the following elevator groups of banks A1 to ^5.

へ1バンク:平常は83〜10階の各階をサービスする
Bank 1: Normally, each floor from 83rd to 10th is serviced.

A2バンク:平常は2〜9階を急行通過し、1゜10〜
20階の各階をサービスする。
A2 bank: Normally the express passes through the 2nd to 9th floors, 1°10~
Each floor of the 20th floor is serviced.

紹バンク:平常は2〜19階を急行通過し、1゜20〜
30階の各階をサービスする。
Sho Bank: Normally the express passes through the 2nd to 19th floors, 1°20~
Each floor of the 30th floor is serviced.

A4バンク:平常は2〜29階を急行通過し、1゜30
〜40階の各階をサービスする。
A4 bank: Normally, express passes from 2nd to 29th floor, 1°30
We service each floor up to the 40th floor.

A5バンク:B、〜40階の全階をサービスする。A5 Bank: Serves all floors from B to 40th floor.

そして、上記のAI、 A2. A3バンクの機械室は
第1図の機械室11で例示する中間階にあり、A4. 
A5バンクの機械室は機械室12で例示する最上階にあ
るものとする。
And the above AI, A2. The A3 bank's machine room is located on the intermediate floor, as illustrated by the machine room 11 in FIG. 1, and the A4.
It is assumed that the machine room of the A5 bank is located on the top floor as illustrated in the machine room 12.

上記した状況において、仮に最上階の機械室12にある
地震感知器32が第1段の設定レベルの範囲、10ki
ne−cm〜30kine−cmの振動を感知し、中間
階の機械室11では振動が10kine−cm未満で、
地震感知器31から全(管制信号が出力されないとする
In the above situation, if the earthquake sensor 32 in the machine room 12 on the top floor is within the range of the first stage setting level, 10km
ne-cm to 30 kine-cm, and in the machine room 11 on the intermediate floor, the vibration is less than 10 kine-cm,
It is assumed that no control signal is output from the earthquake sensor 31.

このような場合は、上述のA4. A5バンクについて
は第1段の設定レベルを感知したときに対応する管制運
転、すなわちA4バンクにあっては30〜40階を各階
停止で運転し、A5バンクにあっては83〜40階を各
階停止で運転し、AI、 A2. A3バンクのエレベ
ータは平常運転を続ける。
In such a case, please refer to A4 above. For A5 bank, the corresponding control operation is performed when the first stage setting level is detected, that is, for A4 bank, the operation is stopped on each floor from 30th to 40th floor, and for A5 bank, operation is performed on each floor from 83rd to 40th floor. Drive with stop, AI, A2. Bank A3 elevators will continue to operate normally.

そして振動がさらに強くなり、地震感知器32が第2段
の設定レベルを感知し、地震感知器31が第1段の設定
レベルを感知すると、A4. A5の各バンクのエレベ
ータは監視室からの指令により必要に応じて特定台数に
限って各階停止運転をおこない。
Then, when the vibration becomes even stronger and the earthquake sensor 32 detects the second stage setting level and the earthquake sensor 31 senses the first stage setting level, A4. The elevators in each bank of A5 will be stopped at each floor only for a specific number of elevators as necessary based on instructions from the monitoring room.

AI、 A2. A3の各バンクのエレベータは全台各
階停止運転、すなわち肘バンクにあってはB、1〜10
階を各階停止で運転し、A2バンクにあって10〜20
階を各階停止で運転し、A3バンクにあっては20〜3
0階を各階停止で運転する。
AI, A2. All elevators in each bank of A3 are stopped for each floor, that is, in the elbow bank, B, 1 to 10 are operated.
Drive the train with stops on each floor, 10 to 20 in A2 bank.
The train stops at each floor, and for A3 banks, 20 to 3
Operates on the 0th floor with stops at each floor.

また、地震感知器32が第3段の設定レベルを感知し、
地震感知器31が第2段の設定レベルを感知スルと、A
4. A5の各バンクのエレベータは運転を休止し、A
t、^2.A3バンクの各エレベータは、必要に応じて
特定台数に限って各階停止の運転をおこなう。
In addition, the earthquake sensor 32 detects the set level of the third stage,
When the earthquake sensor 31 detects the setting level of the second stage, A
4. The elevators of each bank of A5 will be suspended, and
t, ^2. Each elevator in Bank A3 will operate with a limited number of elevators stopping at each floor as necessary.

そして、地震感知器32.31の双方が第3段の設定レ
ベルを感知すると、危険な状態にあることからA1〜A
5の各バンクのエレベータは全面的に運転を休止する。
When both earthquake sensors 32 and 31 detect the set level of the third stage, A1 to A1 are in a dangerous state.
Elevators in each bank of 5 will be completely suspended.

このようにしておこなう実施例にあっては、強風時ある
いは地震時だけでなく、強風時に地震が発生した場合で
も有効である。したがって、地震時、強風時を問わず採
用でき、この実施例を実施する装置は第2図に例示した
ように簡単になる。
This embodiment is effective not only during strong winds or earthquakes, but also when an earthquake occurs during strong winds. Therefore, it can be employed regardless of whether it is an earthquake or a strong wind, and the apparatus implementing this embodiment is simple as illustrated in FIG.

なお、上記実施例では波動エネルギ式地震感知器31.
32を用いているが、この代りに該波動エネルギ式地震
感知器に近い特性をもつ地震感知器、例えば振動速度を
感知する速度式地震感知器を用いるようにしてもよい。
In the above embodiment, the wave energy type earthquake sensor 31.
However, instead of this, an earthquake sensor having characteristics similar to the wave energy type earthquake sensor, such as a velocity type earthquake sensor that senses vibration speed, may be used.

〔発明の効果〕〔Effect of the invention〕

本発明の管制運転方法は以上のように構成しであるので
、地震時および強風時のいずれによる建築物の揺動に対
しても好適な機器の管制運転を実施することができ、地
震および強風による当該機器の被害を最小に抑えること
ができ、また不必要な機器の運転休止を防止できる効果
がある。
Since the controlled operation method of the present invention is configured as described above, it is possible to carry out controlled operation of equipment suitable for shaking of buildings due to both earthquakes and strong winds. This has the effect of minimizing the damage to the equipment caused by this, and preventing unnecessary suspension of equipment operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による管制運転が適用される建築物を例
示する説明図、第2図は本発明の管制運転方法を実施す
る装置の原理構成を示す説明図である。 1・・・センサ、2・・・地震感知器本体、10・・・
ビルディング、11.12・・・エレベータ機械室、2
1.22・・・工レベータ昇降路、31.32・・・波
動エネルギ式地震感知器、50・・・地震および強風時
管制運転装置、70・・・エレベータ制御装置。 第20 31.32
FIG. 1 is an explanatory diagram illustrating a building to which controlled operation according to the present invention is applied, and FIG. 2 is an explanatory diagram showing the principle configuration of a device that implements the controlled operation method of the present invention. 1...Sensor, 2...Earthquake sensor body, 10...
Building, 11.12...Elevator machine room, 2
1.22...Elevator hoistway, 31.32...Wave energy type earthquake detector, 50...Earthquake and strong wind control operation device, 70...Elevator control device. 20th 31.32

Claims (1)

【特許請求の範囲】 1、昇降路の上端部の位置が異なる複数のエレベータの
管制運転方法において、上記昇降路のそれぞれの上端部
に振動を感知する感知器を設け、この感知器に複数の振
動感知レベルを設定し、該感知器によつていずれかのレ
ベルが感知された際、該レベルに応じた管制運転をおこ
なうことを特徴とする管制運転方法。 2、感知器が波動エネルギを感知するもの、および振動
速度を感知するもののいずれかであることを特徴とする
特許請求の範囲第1項記載の管制運転方法。
[Claims] 1. In a control operation method for a plurality of elevators having different upper end positions of the hoistway, a sensor for sensing vibration is provided at each upper end of the hoistway, and a plurality of A control operation method characterized in that a vibration detection level is set, and when any level is detected by the sensor, a control operation is performed according to the level. 2. The control operation method according to claim 1, wherein the sensor is one that senses wave energy or one that senses vibration speed.
JP14816585A 1985-07-08 1985-07-08 Control operation method Pending JPS628986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14816585A JPS628986A (en) 1985-07-08 1985-07-08 Control operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14816585A JPS628986A (en) 1985-07-08 1985-07-08 Control operation method

Publications (1)

Publication Number Publication Date
JPS628986A true JPS628986A (en) 1987-01-16

Family

ID=15446701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14816585A Pending JPS628986A (en) 1985-07-08 1985-07-08 Control operation method

Country Status (1)

Country Link
JP (1) JPS628986A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008074536A (en) * 2006-09-20 2008-04-03 Mitsubishi Electric Corp Transverse vibration detection device for elevator rope, and control operation device for elevator
JP2015168534A (en) * 2014-03-07 2015-09-28 東芝エレベータ株式会社 Controlled operation system for elevator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114645A (en) * 1974-07-24 1976-02-05 Hitachi Ltd Jishinjiniokeru erebeetano kanseiuntenshisutemu
JPS5566477A (en) * 1978-11-13 1980-05-19 Hitachi Ltd Controlling system for elevator against earth uake
JPS5648380A (en) * 1979-09-21 1981-05-01 Mitsubishi Electric Corp Driving gear for elevator in case of earthquake
JPS56127570A (en) * 1980-03-07 1981-10-06 Hitachi Ltd Controlling operating system of elevator in case of earthquake
JPS6015382A (en) * 1983-07-08 1985-01-26 株式会社日立製作所 Controlling operating device for elevator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114645A (en) * 1974-07-24 1976-02-05 Hitachi Ltd Jishinjiniokeru erebeetano kanseiuntenshisutemu
JPS5566477A (en) * 1978-11-13 1980-05-19 Hitachi Ltd Controlling system for elevator against earth uake
JPS5648380A (en) * 1979-09-21 1981-05-01 Mitsubishi Electric Corp Driving gear for elevator in case of earthquake
JPS56127570A (en) * 1980-03-07 1981-10-06 Hitachi Ltd Controlling operating system of elevator in case of earthquake
JPS6015382A (en) * 1983-07-08 1985-01-26 株式会社日立製作所 Controlling operating device for elevator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008074536A (en) * 2006-09-20 2008-04-03 Mitsubishi Electric Corp Transverse vibration detection device for elevator rope, and control operation device for elevator
JP2015168534A (en) * 2014-03-07 2015-09-28 東芝エレベータ株式会社 Controlled operation system for elevator

Similar Documents

Publication Publication Date Title
JP4597174B2 (en) Elevator equipment
EP3693315B1 (en) Elevator system control based on building sway
CN101081672B (en) Elevator equipment
JP5287316B2 (en) Elevator equipment
JPS61114982A (en) Control operating device for elevator
JP2006264882A (en) Elevator control operation device and elevator
JPS628986A (en) Control operation method
JP2008044701A (en) Earthquake emergency operation device for elevator
US4649751A (en) Supervisory operation control system for protecting elevators or the like from a dangerous situation
JPS628985A (en) Control operation method
JPH01303280A (en) Control operation device for elevator
JPH1179595A (en) Earthquake control operation device of elevator
JP2008081290A (en) Rope rolling detector for elevator
JPS59161566A (en) Vibration control apparatus
JPS6015382A (en) Controlling operating device for elevator
JP4992509B2 (en) Elevator rope roll detection device and elevator control operation device
JPH03186584A (en) Main rope elongation detecting device for elevator
JPS617183A (en) Group control operation method of elevator
JPS6327384A (en) Strong-wind control driving device for elevator
JP2015042583A (en) Emergency operation control device and emergency operation control method for elevator
JPH0131714Y2 (en)
JPH0325755B2 (en)
JPS5974876A (en) Elevator
JPS6061483A (en) Controlling and operating device for elevator
JPH04209180A (en) Sensing device for water leak on elevator cage