JPS6289386A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS6289386A
JPS6289386A JP23013085A JP23013085A JPS6289386A JP S6289386 A JPS6289386 A JP S6289386A JP 23013085 A JP23013085 A JP 23013085A JP 23013085 A JP23013085 A JP 23013085A JP S6289386 A JPS6289386 A JP S6289386A
Authority
JP
Japan
Prior art keywords
layer
semiconductor layer
semiconductor
substrate
grown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23013085A
Other languages
Japanese (ja)
Inventor
Yasuhito Takahashi
康仁 高橋
Mototsugu Ogura
基次 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP23013085A priority Critical patent/JPS6289386A/en
Publication of JPS6289386A publication Critical patent/JPS6289386A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To reduce the leakage current to such extent that it becomes negligible by forming the laminar structure on a semiconductor substrate, which is composed of a semi-insulating first semiconductor layer, a second semiconductor layer of the first conductive type whose forbidden band gap is narrower than that of the first semiconductor layer, a third semiconductor layer of the first conductive type whose forbidden band gap is wider than that of the second semiconductor layer and forming P-N junctions in the second and third semiconductor layers. CONSTITUTION:On a GaAs substrate 13, an undoped AlxGa1-xAs layer 17, undoped GaAs layer 3 which is to be an active layer, and Se doped N-type AlxGa1-xAs layer 4 are grown in order by epitaxy using an organic metal gas-phase growth technique. On the grown layers, an SiO2 or SiN film is deposited and a predetermined region is removed by etching into stripe form to expose the surface of the grown layer. Zn is diffused to form a Zn diffusion region 5. After the above SiO2 or SiN film is removed by etching into stripe form of 10mum, a P-type electrode and an N-type electrode are arranged on the Zn diffusion region 5 and the non-diffused electrode, respectively.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、元情報処理分野に用いられる低しき2ベージ い値電流を有し、かつ温度特性の優れた半導体レーザ装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION The present invention relates to a semiconductor laser device that is used in the field of information processing and has a low bibase current and excellent temperature characteristics.

従来の技術 従来のこの種の半導体レーザ装置は例えば第2図のよう
になっていた。第2図はTISレーザを示しており、こ
のTJSレーザの特性は、例えばアイイーイーイー ジ
ャーナル カブ カンタム エレクトo=クス(I E
 E E  Journal  of Quantum
Electronics)QE−11p−427(19
75)に詳しいが、重大な欠点が1つある。ここに示さ
れたレーザは低しきい値電流でかつ単一モード発振する
が、発振に寄与しない漏れ電流が大きく、温度の上昇と
ともにこの漏れ電流は急速に増加し、ついには発熱のた
め発振を停止してし1う。このTJSレーザには、第2
図に示すごとくn型G a A s基板1が用いられ、
A j2 G a A s層2.GaAs層3゜71、
It G a A s層4を形成して基板と同一導電型
のダブルへテロ構造を積層した後、表面層の所定領域か
ら第2の導電型決定不純物を拡散させ拡散領域5を形成
してpn接合を形成するのであるが、拡散3ベーン フロントが基板にまで達し、基板内にもpn接合ができ
る。電極10,110間に電圧を順方向に印加すると、
電流は活性層3のpn接合および基板内pn接合へ流れ
る。基板内pn接合へ流れる電流は発光に全く寄与しな
いだけでなく、発熱の主な原因となシ、寿命を短くする
2. Description of the Related Art A conventional semiconductor laser device of this type is as shown in FIG. 2, for example. Figure 2 shows a TIS laser, and the characteristics of this TJS laser are, for example,
E E Journal of Quantum
Electronics)QE-11p-427(19
75), but there is one serious drawback. The laser shown here has a low threshold current and oscillates in a single mode, but there is a large leakage current that does not contribute to oscillation, and as the temperature rises, this leakage current increases rapidly and eventually stops oscillating due to heat generation. Stop and do it. This TJS laser has a second
As shown in the figure, an n-type GaAs substrate 1 is used,
A j2 G a As layer 2. GaAs layer 3°71,
After forming the ItGaAs layer 4 and laminating a double heterostructure of the same conductivity type as the substrate, a second conductivity type determining impurity is diffused from a predetermined region of the surface layer to form a diffusion region 5 to form a pn A junction is formed, and the three-vane diffusion front reaches the substrate, forming a pn junction within the substrate as well. When a voltage is applied between the electrodes 10 and 110 in the forward direction,
Current flows to the pn junction in the active layer 3 and the pn junction in the substrate. The current flowing into the pn junction within the substrate not only does not contribute to light emission at all, but is also the main cause of heat generation, shortening the lifespan.

この基板への漏れ電流をなくするために、例えば第3図
に示すような構造の半導体レーザ装置がある(特公昭6
0−11478号公報)。この構造は、従来のn型G 
a A s基板に代えてCrを含む半絶縁性のG a 
A s基板13が用いられ、かつZnを含むZn拡散領
域5が基板13まで達している。
In order to eliminate this leakage current to the substrate, there is a semiconductor laser device with a structure as shown in FIG.
0-11478). This structure is similar to the conventional n-type G
a Semi-insulating Ga containing Cr in place of the A s substrate
An As substrate 13 is used, and the Zn diffusion region 5 containing Zn reaches the substrate 13.

基板13にCr  ドープG a A sが用いられて
いるので、Zn拡散領域5に接して設けられた電極10
に対し、電極12はn−AnGaAs層4に接して設け
られている。Zn拡散フロントが基板13に達している
が、Cr  ドープ基板13として抵抗率1069m程
度のものは容易に得られ、成長層の抵抗率に比べて約1
0倍となり、電流は基板13を通して流れることはない
Since the substrate 13 is made of Cr-doped GaAs, the electrode 10 provided in contact with the Zn diffusion region 5
On the other hand, the electrode 12 is provided in contact with the n-AnGaAs layer 4. Although the Zn diffusion front has reached the substrate 13, a resistivity of about 1069m can be easily obtained as a Cr doped substrate 13, which is about 1% lower than the resistivity of the grown layer.
0 times, and no current flows through the substrate 13.

発明が解決しようとする問題点 しかしながら、この構造だとレーザ発振に全く寄与しな
い漏れ電流がAj!GaAs層2,4に流れる。第2図
に示すような従来の構造と比べて、漏れ電流の大きさは
、軽減されるが、発振特性に依然として影響を及ぼす問
題があった。本発明は、この漏れ電流をさらに減少せし
め、レーザの発振特性を著しく向上させる画期的な半導
体レーザ装置を提供するものである。
Problems to be Solved by the Invention However, with this structure, leakage current that does not contribute at all to laser oscillation is Aj! It flows into the GaAs layers 2 and 4. Although the magnitude of leakage current is reduced compared to the conventional structure shown in FIG. 2, there is still a problem that affects the oscillation characteristics. The present invention provides an innovative semiconductor laser device that further reduces this leakage current and significantly improves the oscillation characteristics of the laser.

問題点を解決するだめの手段 上記問題点を解決するだめの本発明の技術的手段は、半
導体基板上に、少なくとも半絶縁性の第1の半導体層、
禁制帯幅が第1の半導体層より狭い第1の導電型を有す
る第2の半導体および禁制帯幅が第2の半導体層より広
い第1の導電型を有する第3の半導体層で積層構造を形
成し、上記第3の半導体層表面の所定領域から第2の導
電型決定不純物を添加し、上記第1および第2の導電型
を有する領域に接する第1および第2の電極を備えたこ
とである。
Means for Solving the Problems The technical means of the present invention for solving the above problems is to provide at least a semi-insulating first semiconductor layer on a semiconductor substrate;
A stacked structure is formed of a second semiconductor having a first conductivity type whose forbidden band width is narrower than that of the first semiconductor layer, and a third semiconductor layer having a first conductivity type whose forbidden band width is wider than that of the second semiconductor layer. a second conductivity type determining impurity is added from a predetermined region on the surface of the third semiconductor layer, and first and second electrodes are provided in contact with the regions having the first and second conductivity types. It is.

6ベーン 作  用 この技術的手段による作用は次のようになる。6 vanes For production The effect of this technical means is as follows.

すなわち、有機金属気相成長法(MO,CVD)により
成長された非ドープAJ2GaAs層は抵抗率が1o6
Ω(7)以上の高抵抗を示すので、第3図のAJ2Ga
As層2を非ドープAjlLGaAs層に変えるとレー
ザ発振に全く寄与しない漏れ電流はAlGaAs層4を
流れる電流のみとなり、漏れ電流を著しく減少すること
ができる。漏れ電流はトップ層のAρG a A s層
4のみを流れるので、放熱板をつけると、漏れ電流によ
る発熱は大幅におさえることができ、レーザの特性は著
しく向上した。
That is, the undoped AJ2GaAs layer grown by metal organic chemical vapor deposition (MO, CVD) has a resistivity of 1o6.
Since it shows a high resistance of Ω(7) or more, AJ2Ga in Figure 3
If the As layer 2 is changed to an undoped AjlL GaAs layer, the leakage current that does not contribute to laser oscillation at all is the current flowing through the AlGaAs layer 4, and the leakage current can be significantly reduced. Since the leakage current flows only through the top layer AρGaAs layer 4, by attaching a heat sink, the heat generated by the leakage current can be significantly suppressed, and the characteristics of the laser are significantly improved.

実施例 以下に、本発明の実施例を添付図面にもとづいて説明す
る。本発明の実施例を示す第1図において、Gr  ド
ープGa A s基板13をH2BO3:H2O2:H
20= 5 : 1 : 1 (7) :r−ニア f
 ヤ7 ) ”’C:Iニー ノチングした後、有機金
属気相成長(MOCVDMetal Organic 
Chemical Vapot Deposition
)マ置内にセットする。G a A s基板13上に非
ドー6ベ−ノ プA f!、x Ga 1−x A s層17 (x:
o、3 、11tm ) 。
Embodiments Below, embodiments of the present invention will be described based on the accompanying drawings. In FIG. 1 showing an embodiment of the present invention, a Gr-doped GaAs substrate 13 is formed by H2BO3:H2O2:H
20=5:1:1 (7) :r-near f
After notching, MOCVDMetal Organic
Chemical Vapot Deposition
) set in the map position. A non-doped 6-vanop A f! on the GaAs substrate 13. , x Ga 1-x As layer 17 (x:
o, 3, 11tm).

活性層となる非ドープG a A s層3 (0,2μ
m)およびSe  ドープn型A 1 x G a 1
−x A s層4 (x :0.3゜1μm)を順次エ
ピタキシャル成長して形成する。
Undoped GaAs layer 3 (0,2μ
m) and Se-doped n-type A 1 x Ga 1
-x As layer 4 (x: 0.3° 1 μm) is formed by sequential epitaxial growth.

MOCVD法ニヨり形成された非ドープAn xGal
−x As層(X≧0.1)は抵抗率が10Ωm程度以
上の良好な高抵抗を示し、非ドープG a A s層は
キャリア濃度が10 口 以下の高品質でn型を示す。
Undoped An x Gal formed by MOCVD method
The -x As layer (X≧0.1) exhibits good high resistance with a resistivity of approximately 10 Ωm or more, and the undoped GaAs layer exhibits high quality n-type with a carrier concentration of 10 or less.

成長層上にCVD法あるいはスパッタ法で8102ある
いはSiN膜(図示せず)を付着し、所定領域をストラ
イプ状にエツチング除去し、成長層表面を露出させ、Z
nを680°C,40分間拡散してZn拡散領域5を形
成する。拡散深度は約3μmである。前記St○2ある
いはSiN膜を10μmのストライプ状にエツチング除
去した後、Zn拡散領域5上にはp型電極たとえばAu
/Zn10゜非拡散領域にはn型電極たとえばAu/5
n12をそれぞれ設ける。
An 8102 or SiN film (not shown) is deposited on the grown layer by CVD or sputtering, and predetermined areas are etched away in stripes to expose the surface of the grown layer.
Zn diffusion region 5 is formed by diffusing Zn at 680° C. for 40 minutes. The diffusion depth is approximately 3 μm. After removing the St○2 or SiN film in stripes of 10 μm, a p-type electrode such as Au is formed on the Zn diffusion region 5.
/Zn10° In the non-diffused region, an n-type electrode such as Au/5
n12 are provided respectively.

G a A sはAρG a A sより禁制帯幅が狭
く、このためGaAsp%n接合の拡散電位はAlGa
As p7ペーン n接合のそれより低くなり、電極10.12間に電圧を
印加すると電流は大部分GaAspn接合15を流れ、
この部分でレーザ発振が起こる。ところが、AρGaA
spn接合の拡散電位が高いとは言っても、この障壁を
越えて流れる電流もわずかであるが存在する。これがレ
ーザ発振には全く寄与しない漏れ電流である。従来のT
JSレーザで基板を半絶縁性に変えただけでは基板に接
するAlG a A s層のpn接合およびG a A
 s活性層をはさむためのもう一方のAlG a A 
s層のpn接合をレーザ発振には全く寄4Lない漏れ電
流が流れるが、基板に接するAfl G a A s層
17を非ドープ半絶縁層にすることにより、漏れ電流は
半減する。
GaAs has a narrower forbidden band width than AρGaAs, so the diffusion potential of the GaAsp%n junction is lower than that of AlGaAs.
As is lower than that of the p7 pane n junction, when a voltage is applied between the electrodes 10.12, the current mostly flows through the GaAs pn junction 15;
Laser oscillation occurs in this part. However, AρGaA
Although the diffusion potential of the spn junction is high, there is also a small amount of current flowing across this barrier. This is a leakage current that does not contribute to laser oscillation at all. Conventional T
Simply changing the substrate to semi-insulating with the JS laser will cause the pn junction of the AlGaAs layer in contact with the substrate and the GaAs layer to be in contact with the substrate.
sThe other AlGa A for sandwiching the active layer
A leakage current that is not sufficient for laser oscillation flows through the pn junction of the s layer, but by making the AflGaAs layer 17 in contact with the substrate an undoped semi-insulating layer, the leakage current is halved.

従来発熱のため特性劣下を招いていたが、本発明により
漏れ電流による特性劣下は全く問題がなくなった。
Conventionally, heat generation caused deterioration of characteristics, but with the present invention, deterioration of characteristics due to leakage current is no longer a problem.

本発明の実施例ではGr  ドープG a A s基板
を用いたが、非ドープG a A s基板あるいはSi
  ドープn型G a A s基板を用いてもよい。
In the examples of the present invention, a Gr-doped GaAs substrate was used, but an undoped GaAs substrate or a Si
A doped n-type GaAs substrate may also be used.

発明の効果 以上のように、本発明の半導体レーザ装置は、半導体基
板上に、半絶縁性の第1の半導体層、禁制帯幅が第1の
半導体層より狭い第1の導電型を有する第2の半導体層
および禁制帯幅が第2の半導体層より広い第1の導電型
を有する第3の半導体層で積層構造を形成し、上記第3
の半導体層上の所定領域から第2の導電型決定不純物を
添加し、上記第2.第3の各層においてpn接合を形成
し、上記第1および第2の導電型を有する領域に接する
第1および第2の電極を備えだものであり、これにより
電流を上記第2の半導体層のpn接合に集中せしめ、漏
れ電流を無視できるほどに減少させてしきい値電流を低
減でき、かつしきい値電流の温度変化を少なくできる効
果がある。
Effects of the Invention As described above, the semiconductor laser device of the present invention includes a semi-insulating first semiconductor layer on a semiconductor substrate, a first conductivity type whose forbidden band width is narrower than that of the first semiconductor layer. A laminated structure is formed by a second semiconductor layer and a third semiconductor layer having a first conductivity type whose forbidden band width is wider than that of the second semiconductor layer.
A second conductivity type determining impurity is added from a predetermined region on the semiconductor layer of the second. A pn junction is formed in each third layer, and first and second electrodes are provided in contact with regions having the first and second conductivity types, thereby directing current to the second semiconductor layer. By concentrating it on the pn junction, the leakage current can be reduced to a negligible level, the threshold current can be reduced, and the temperature change in the threshold current can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における半導体レーザ装置の
断面図、第2図は従来の半導体レーザ装置の斜視図、第
3図は従来の半導体レーザ装置の断面図である。 3−・・非ドープG a A s層、4−− n AI
V、GaAg層、9 ベーン 5−−= Zn拡散領域、17・・−非ドープA fl
 G a A s層、13−− Cr ドープG a 
A s基板、10.12・・・・・電極。
FIG. 1 is a sectional view of a semiconductor laser device according to an embodiment of the present invention, FIG. 2 is a perspective view of a conventional semiconductor laser device, and FIG. 3 is a sectional view of a conventional semiconductor laser device. 3--undoped GaAs layer, 4--n AI
V, GaAg layer, 9 Vane 5--=Zn diffusion region, 17...-undoped A fl
GaAs layer, 13--Cr-doped Ga
As substrate, 10.12...electrode.

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板上に、少なくとも半絶縁性の第1の半
導体層、禁制帯幅が上記第1の半導体層より狭い第1の
導電型を有する第2の半導体層および禁制帯幅が上記第
2の半導体層より広い第1の導電型を有する第3の半導
体層で積層構造を形成し、上記第3の半導体層上の所定
領域から第2の導電型決定不純物を添加し、上記第2、
第3の各層においてpn接合を形成し、上記第1および
第2の導電型を有する領域に接する第1および第2の電
極を備えてなる半導体レーザ装置。
(1) On a semiconductor substrate, at least a semi-insulating first semiconductor layer, a second semiconductor layer having a first conductivity type whose forbidden band width is narrower than that of the first semiconductor layer, and a second semiconductor layer whose forbidden band width is narrower than the first semiconductor layer; A laminated structure is formed with a third semiconductor layer having a first conductivity type wider than that of the second semiconductor layer, a second conductivity type determining impurity is doped from a predetermined region on the third semiconductor layer, and a second conductivity type determining impurity is added to the second semiconductor layer. ,
A semiconductor laser device comprising first and second electrodes that form a pn junction in each third layer and are in contact with regions having the first and second conductivity types.
(2)第1の半導体層は非ドープ高抵抗AlGaAsで
形成されている特許請求の範囲第1項記載の半導体レー
ザ装置。
(2) The semiconductor laser device according to claim 1, wherein the first semiconductor layer is formed of undoped high-resistance AlGaAs.
JP23013085A 1985-10-16 1985-10-16 Semiconductor laser device Pending JPS6289386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23013085A JPS6289386A (en) 1985-10-16 1985-10-16 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23013085A JPS6289386A (en) 1985-10-16 1985-10-16 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS6289386A true JPS6289386A (en) 1987-04-23

Family

ID=16903042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23013085A Pending JPS6289386A (en) 1985-10-16 1985-10-16 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS6289386A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068263A (en) * 2007-09-13 2009-04-02 Umezawa Michinori Water channel joint structure and construction method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068263A (en) * 2007-09-13 2009-04-02 Umezawa Michinori Water channel joint structure and construction method

Similar Documents

Publication Publication Date Title
JPS5826834B2 (en) semiconductor laser equipment
US4982409A (en) Semiconductor laser device
US3990096A (en) Semiconductor luminescent device
US5751754A (en) Semiconductor laser including tunnel diode for reducing contact resistance
JPH0156548B2 (en)
US4183038A (en) Semiconductor laser device
US4255755A (en) Heterostructure semiconductor device having a top layer etched to form a groove to enable electrical contact with the lower layer
US4503539A (en) Semiconductor laser
US4719633A (en) Buried stripe-structure semiconductor laser
US4048627A (en) Electroluminescent semiconductor device having a restricted current flow
JP3053357B2 (en) Manufacturing method of planar buried laser diode
US5291033A (en) Semiconductor light-emitting device having substantially planar surfaces
US4166278A (en) Semiconductor injection laser device
US5898190A (en) P-type electrode structure and a semiconductor light emitting element using the same structure
US4334311A (en) Transverse junction stripe semiconductor laser device
JPS6289386A (en) Semiconductor laser device
JPS59124183A (en) Light emitting semiconductor device
US5278857A (en) Indium gallium aluminum phosphide silicon doped to prevent zinc disordering
JPS6289387A (en) Semiconductor laser device
JPS6289385A (en) Semiconductor laser device
KR100311459B1 (en) Method for manufacturing laser diode
JPH01302791A (en) Buried structure semiconductor laser
JPS6237557B2 (en)
JPS6045082A (en) Semiconductor laser integrated circuit device
KR970009672B1 (en) Method of manufacture for semiconductor laserdiode