JPS6288907A - Flatness detector - Google Patents

Flatness detector

Info

Publication number
JPS6288907A
JPS6288907A JP23190885A JP23190885A JPS6288907A JP S6288907 A JPS6288907 A JP S6288907A JP 23190885 A JP23190885 A JP 23190885A JP 23190885 A JP23190885 A JP 23190885A JP S6288907 A JPS6288907 A JP S6288907A
Authority
JP
Japan
Prior art keywords
arc length
distance
signal
strip
minimum value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23190885A
Other languages
Japanese (ja)
Inventor
Katsuya Ueki
勝也 植木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP23190885A priority Critical patent/JPS6288907A/en
Publication of JPS6288907A publication Critical patent/JPS6288907A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To detect only shape inferiority with high accuracy by providing a low-pass filter and a minimum value detector and moreover, providing an automatically averaging processing circuit to check a dispersed value (error) or a distance measurement signal under the prescribed quantity. CONSTITUTION:A flatness detector is provided with the low-pass filter 5 which cuts a high-frequency component of a distance signal of a belt-shaped body outputted from a distance measuring instrument and the automatically averaging processing circuit which operates the average number of processing times required based on a S/N ratio from the distance measuring instrument and performs the averaging processing of the distance signal. Then, the distance signal is passed through the low-pass filter in order to eliminate a vibration of the moving belt-shaped body. On the other hand, since the error is not fixed but the S/N varies according to an inclination of the belt-shaped body or the surface shape and a surface state, the S/N of the distance measurement is detected and the S/N vs. The dispersed value (error) stored in the automatically averaging processing circuit 8 is estimated. Then, the average number of processing times required at that time is automatically decided and the averaging is performed for the number of times and the distance signal is processed so as to be under the prescribed dispersed value.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、移動する帯状体上の板巾方向の複数箇所で
帯状体の変位を測定することによ’) Jfi状体の平
坦度を検出する平坦度検出装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention measures the flatness of a Jfi-shaped body by measuring the displacement of a moving strip at multiple locations in the width direction of the strip. The present invention relates to a flatness detection device for detecting flatness.

〔従来の技術〕[Conventional technology]

熱間圧延ラインにおいて、被圧延体すなわち帯状体の牛
のび、耳波等の形状不良は顕在化しておリ、直接帯状体
の板巾方向の複数箇所で帯状体の変位または傾き等を測
定することによって、帯状体の平坦度を検出することが
可能であることはよく知られている。
On a hot rolling line, defects in the shape of the rolled object, i.e., the strip, such as elongation or ear waves, become apparent, and it is necessary to directly measure the displacement or inclination of the strip at multiple locations in the width direction of the strip. It is well known that it is possible to detect the flatness of a strip by this method.

第3図は帯状体上の板巾方向の複数箇所で帯状体の変位
を測定することを手段として帯状体の平坦度を検出する
平坦度検出装置の一般的な例を示す。
FIG. 3 shows a general example of a flatness detection device that detects the flatness of a strip by measuring the displacement of the strip at a plurality of locations in the width direction of the strip.

第3図において、(1)は被測定体すなわち帯状体、(
IA)は帯状体の距離信号、(2)は距gaiWl定器
から帯状体までの距離を測定する距離測定器で帯状体か
ら所定の間隔をもって帯状体上の巾方向に複数台設置さ
れる。(3)は距離測定器より出力される帯状体の距離
信号の弧長を演出する弧長演算器、(4)は弧長演算器
によって演算された弧長と直線との比を演算する伸び率
演算器である。
In FIG. 3, (1) is the object to be measured, that is, a strip, (
IA) is a distance signal of the strip, and (2) is a distance measuring device that measures the distance from the distance gaiWl device to the strip. A plurality of distance measuring devices are installed in the width direction on the strip at predetermined intervals from the strip. (3) is an arc length calculator that produces the arc length of the distance signal of the strip output from the distance measuring device, and (4) is an elongation that calculates the ratio of the arc length calculated by the arc length calculator to the straight line. It is a rate calculator.

次に動作について説明する。Next, the operation will be explained.

第4図の如く、時刻tにおける距gl測定器から帯状体
までの距!y、と時刻を十Δtにおける距離測定器から
帯状体までの距glY1+Iによって帯状体の変位△Y
、は次のように求められる。
As shown in Fig. 4, the distance from the distance gl measuring device to the strip at time t! y, and the distance glY1+I from the distance measuring device to the belt at time 1Δt, the displacement of the belt is ΔY.
, is calculated as follows.

ΔY+ −Y+  Yl+r       ・(1)ま
た、時刻りから時刻を十△Lの間に帯状体は速度υで移
動するから帯状体の移動距離Δx1は、△X、=υ・△
t        −121のように表わされる。時刻
tから時刻を十△tの間に移動した帯状体の長さ△Sl
は(1)式と(2)式から、 ΔS 、 = F岡Tr2−4: −’(−A y 丁
−’*’、、、 (31で得られ、さらにポイント0か
らポイントnまて移動した帯状体の長さSは(3)式よ
り、S=!=−Σ (ΔS、)           
−44)で求められる。
ΔY+ -Y+ Yl+r ・(1) Also, since the strip moves at a speed υ between the clock and the time 10 ΔL, the moving distance Δx1 of the strip is △X, = υ・△
It is expressed as t −121. Length △Sl of the band-like body moved from time t to time 10△t
From equations (1) and (2), ΔS, = Foka Tr2-4: -'(-A y Ding-'*',,, (obtained in 31, and further moved from point 0 to point n From equation (3), the length S of the strip-like body obtained is S=!=-Σ (ΔS,)
−44).

一方、平坦な帯状体がポイント0からポイントnまで移
動したと仮定すると、移動した帯状体の長さは帯状体の
移動距離に等しく、移動した平坦な帯状体の長さlは、 j=(n−1)・ΔX l     −[51で表わさ
れる。よ−〕て、移動した平坦な帯状体の長さlを基準
とした帯状体の伸び率βは(4)式と(5)式より、 で求められる。
On the other hand, assuming that the flat strip moves from point 0 to point n, the length of the moved strip is equal to the distance traveled by the strip, and the length l of the moved flat strip is j = ( n−1)·ΔX l −[51. Therefore, the elongation rate β of the strip based on the length l of the moved flat strip can be obtained from equations (4) and (5) as follows.

以上のような手順によって帯状体上の板巾の複数箇所で
伸び率βを求めることができる。この伸び率βの大きさ
が形状不良の大きさを表わす。
By the above-described procedure, the elongation rate β can be determined at a plurality of locations on the strip width. The magnitude of this elongation rate β represents the magnitude of the shape defect.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の平坦度検出装置は以上のように構成されているの
で、帯状体の振動及びうねりによる変動(よ、見…け上
弧長に変換され、実際の帯状体の形状不良より大きな値
を検出してしまうという欠点があった。さらに、帯状体
の振動及びうねりに大きく影響されるという欠点及び距
離測定器の測定誤差が帯状体の長さに誤差を与え、伸び
率βの精度が悪くなるという欠点があった。
Conventional flatness detection devices are configured as described above, so fluctuations due to vibration and waviness of the strip (which are converted into an apparent arc length) detect a value larger than the actual shape defect of the strip. In addition, the disadvantage is that it is greatly affected by the vibration and waviness of the strip, and the measurement error of the distance measuring device causes an error in the length of the strip, reducing the accuracy of the elongation rate β. There was a drawback.

この発明は上記のような従来のものの欠点を除去するた
めになされたもので、帯状体の振動及びうねりによる変
動をローパスフィルタと最小値検出器を付加することに
よって除去し、さらに距離測定器のS/N比を検知して
、それをもとにして距gt信号の分散値(誤差)が、規
定値以下になるよう、自動的に必要な平均処理回数を求
めて、距離測定値を平均処理することで、距gl測定値
の精度を確保し、精度の高い平坦度を検出できる平坦度
検出装置を提供するものである。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and it eliminates fluctuations due to vibration and waviness of the strip by adding a low-pass filter and a minimum value detector, and further improves the distance measuring device. Detects the S/N ratio, automatically calculates the required number of averaging processes based on it, and averages the distance measurement values so that the dispersion value (error) of the distance gt signal is below the specified value. By processing, the accuracy of the distance gl measurement value is ensured, and a flatness detection device capable of detecting highly accurate flatness is provided.

〔問題点を解決するための手段〕[Means for solving problems]

帯状体の振動及びうねりによる弧長誤差に対しては、ロ
ーパスフィルタで平滑化し、距離測定誤差に対しては、
平均処理回数を自rftJ認識して平均処理を実行する
ものである。
Arc length errors due to vibration and waviness of the strip are smoothed by a low-pass filter, and distance measurement errors are
The average processing is executed by recognizing the number of times of averaging processing.

〔作 用〕[For production]

乙の発明におけるローパスフィルタは帯状体の振動及び
うねりによる距離信号の高周波成分を平滑化して弧長誤
差を小さくし、又距離測定値を任意に平均処理すること
により距S測定の精度を−Lげ、弧長誤差を小さくする
。このことにより、より精度の高い平坦度測定が可能と
なる。
The low-pass filter in the invention of B smoothes the high-frequency components of the distance signal caused by the vibration and waviness of the band-shaped body to reduce the arc length error, and also arbitrarily averages the distance measurement values to improve the accuracy of the distance S measurement by -L. to reduce the arc length error. This enables more accurate flatness measurement.

以下、この発明の一実施例を図について説明する。第1
図において、(11は被測定体すなわち帯状体、(1幻
は帯状体の距離信号、(2)は距離測定器から帯状体ま
での距離を測定する距gl測定器で帯状体から所定の間
隔をもって帯状体上の巾方向に複数台設置される。(5
)は距S測定盟より出力される帯状体の距離信号中の高
周波成分をカットするローパスフィルタ、(3)は帯状
体の距離信号の高周波成分をカットしたローパスフィル
タの出力信号の弧長を演算する弧長演算器、(6)は複
数台の弧長演算器の弧長信号の最小値を検出する最小値
検出器、(7)は弧長演算器よりの弧長信号と、最小値
検出器の出力信号とから相対伸び率を演算する相対伸び
率演算器である。(8)は距gI測定器からのS/N比
をもとにして、必要とする平均処理回数を演算し、距離
信号の平均化処理を実行する自動平均化処理回路である
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, (11 is the object to be measured, that is, a strip, (1) is the distance signal of the strip, and (2) is a distance gl measuring device that measures the distance from the distance measuring device to the strip. Multiple units are installed in the width direction on the strip.(5
) is a low-pass filter that cuts the high-frequency component in the distance signal of the band-shaped object output from the distance S measurement unit, and (3) calculates the arc length of the output signal of the low-pass filter that cuts the high-frequency component of the distance signal of the band-shaped object. (6) is a minimum value detector that detects the minimum value of the arc length signals of multiple arc length calculators; (7) is a minimum value detector that detects the arc length signals from the arc length calculators and the minimum value. This is a relative elongation rate calculator that calculates the relative elongation rate from the output signal of the device. (8) is an automatic averaging processing circuit that calculates the required number of averaging processing based on the S/N ratio from the distance gI measuring device and executes averaging processing of the distance signal.

次に本発明の動作について説明する。前述のように帯状
体の変位△Y、ば(1)式のようにして時刻t2時刻t
+八へにおける距a測定器から帯状体までの距giY 
I、 Y +++の差で求められるが、実際には、移動
する帯状体が倣動し、第2図の如く帯状体(1)と帯状
体の距離(5吋(1人)との間に大きな測定1「走差が
生じる。。
Next, the operation of the present invention will be explained. As mentioned above, the displacement △Y of the belt-shaped body is calculated at time t2 according to equation (1).
Distance giY from the measuring device to the strip at +8
I, Y Big measurement 1: ``A running difference occurs.''

本発明は、この移動する帯状体の振動を除去するため距
離信号をローパスフィルタに通す。ローパスフィルタ処
理の一実施例を以下に上げる。
In the present invention, the distance signal is passed through a low-pass filter in order to remove vibrations of the moving band. An example of low-pass filter processing is given below.

時刻り2時刻を十Δtにおける距離43号YI。Distance No. 43 YI when time 2 is 10Δt.

Y 、、、のローパスフィルク通過後の値をY、 、 
Y+++ とすると、 のように求める。よって帯状体のΔY1は、ΔY + 
= Y +  Y +++      −191で求め
られる。さらに従来技術と同様にして、時刻tから時刻
t」Δtの間に移動した帯状体の長さ△S■とポイント
0からポインI−nまて移動した帯状体の長さSは以下
のようにして求められる。
The value of Y, , after passing through the low-pass filter is Y, ,
Assuming Y+++, find as follows. Therefore, ΔY1 of the strip is ΔY +
= Y + Y +++ -191. Further, in the same manner as in the prior art, the length ΔS■ of the strip moved from time t to time t''Δt and the length S of the strip moved from point 0 to point I-n are as follows. required.

△S、=   △ 、 + △Yl′(10)以上のよ
うな手順によって帯状体上の板巾の複数筒所で、移動し
た帯状体の長さSが求められろ。
△S, = △, + △Yl' (10) According to the above procedure, the length S of the band-shaped body that has been moved at a plurality of positions of the width of the plate on the band-shaped body is determined.

帯状体上の板巾の複数箇所で求められた帯状体の長さS
の最小側L≧は、測定箇所で最も平坦に近い箇所である
。そこでこの最小値S1.、を基準として相対伸び率β
′を求めると、 となる。帯状体のうねりは帯状体上の複数箇所で共通変
動であるため、最小値S +mlnを基準とすることに
よって、乙の共通の変動を除することができる。
Length S of the strip obtained at multiple points of the board width on the strip
The minimum side L≧ is the measurement point that is closest to flatness. Therefore, this minimum value S1. , relative elongation rate β
′, we get . Since the waviness of the strip is a common variation at multiple locations on the strip, the common variation B can be removed by using the minimum value S + mln as a reference.

また、帯状体上の板巾の複数箇所で求められた帯状体の
長さSの最大値S、□は測定箇所で最も形状不良の大き
い箇所である。そこでこの最大値S mayを基準とし
て相対伸び率β″を求めると、β″=i= iテL) となる。相対伸び率β゛′はβ′と同様にして帯状体上
の複数箇所で共通の変動である帯状体のうねりを除去す
ることができろ。
Further, the maximum value S, □ of the length S of the strip-shaped body determined at a plurality of locations on the width of the strip is the location where the shape defect is the largest among the measurement locations. Therefore, when the relative elongation rate β'' is calculated using this maximum value S may as a reference, it becomes β″=i=iTEL). Similarly to β', the relative elongation rate β' can be used to eliminate waviness of the band, which is a common variation at multiple locations on the band.

また、帯状体上の板巾の複数箇所で求められたj=−〜
を−      (141 となる。相対伸び率βはβ′と同様にして帯状体上の複
数箇所で共通の変動である帯状体のうねりを除去するこ
とができる。
In addition, j = − ~ found at multiple locations of the board width on the strip
-(141) The relative elongation rate β can be used in the same way as β' to remove the waviness of the strip, which is a common fluctuation at multiple locations on the strip.

ところが、距離測定器による距離信号の分散値(誤差)
は、一定でなく帯状体の傾き、あるいは表面形状2表面
状態によってS/Nが変動することにより分散値(誤差
)が変動することが一般的である。この様な現象に対し
て、自動平均化処理回路(8)が有効に働く。すなわち
、距S測定のS/Nを検知し、あらかじめ、自動平均化
処理回路(8)に記憶されている。S/N対分散値(誤
差)のデータからその時点における距離信号の分散値(
誤差)を推定する。そして、同じく自動平均化処理回路
(8)に格納されている。分散値(誤差)対平均処理回
数の関係式あるいはテーブルを参照して、その時に必要
とする平均処理回数を自動的に判断し、距離信号の平均
化をその回数分実行し、規定の分散値(誤差)以下とな
るように距離信号を処理し次段のローパスフィルタへ送
る。
However, the dispersion value (error) of the distance signal from the distance measuring device
Generally, the dispersion value (error) is not constant and varies due to the S/N ratio varying depending on the inclination of the strip or the surface shape 2 surface condition. The automatic averaging processing circuit (8) works effectively against such phenomena. That is, the S/N of the distance S measurement is detected and stored in advance in the automatic averaging processing circuit (8). From the S/N vs. variance value (error) data, the variance value (
error). Similarly, it is stored in the automatic averaging processing circuit (8). By referring to the relational expression or table of the variance value (error) versus the number of averaging processes, the number of averaging processes required at that time is automatically determined, the distance signal is averaged that number of times, and the specified variance value is determined. Process the distance signal so that it is below (error) and send it to the next stage low-pass filter.

〔発明の効果〕〔Effect of the invention〕

以上のように、乙の発明によれば、帯状体の振動及びう
ねりを除去するためにローパスフィルタと最小値検出器
を付加し、かつ、距am定信号の分散値(誤差)を規定
量以下におさえるための自動平均化処理回路を付加した
ので、帯状体の振動及びうねりの影響や距gI測定値の
誤差変動並びに許容誤差を越える誤差量の影響等に左右
されず、形状不良のみを高精度で検出する平坦度検出装
置が得られろという効果がある。
As described above, according to the invention of Party B, a low-pass filter and a minimum value detector are added in order to remove vibrations and waviness of the band-shaped body, and the dispersion value (error) of the distance am constant signal is kept below a specified amount. Since an automatic averaging processing circuit has been added to suppress the vibration and waviness of the strip, it is not affected by the influence of the error fluctuation of the distance gI measurement value, or the influence of the error amount exceeding the tolerance, and only the shape defects are enhanced. This has the effect of providing a flatness detection device that detects with high accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による平坦度検出装置のブロ
ック図、第4図は帯状体とその距離信号を示す図、第3
図は従来の平坦度検出装置のブロック図、第2図は距g
l?Jt!l定器と帯状体の距離信号を示す図である。 図において(1)は被測定体、(IAIは被測定体の距
離信号、(2)は距at測定器、(3)は弧長演算器、
(4)は伸び率演算器、(5)はローパスフィルタ、(
6LIよ最小値検出器、(7)は相対伸び率演算器、(
8)は自動平均化処理回路。 なお、図中、同一符号は同一、又は相当部分を示す。
FIG. 1 is a block diagram of a flatness detection device according to an embodiment of the present invention, FIG. 4 is a diagram showing a strip and its distance signal, and FIG.
The figure is a block diagram of a conventional flatness detection device, and the second figure is the distance g.
l? Jt! FIG. 3 is a diagram showing a distance signal between an l-determiner and a band-shaped body. In the figure, (1) is the object to be measured, (IAI is the distance signal of the object to be measured, (2) is the distance at measuring device, (3) is the arc length calculator,
(4) is an elongation rate calculator, (5) is a low-pass filter, (
6LI is the minimum value detector, (7) is the relative elongation rate calculator, (
8) is an automatic averaging processing circuit. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (3)

【特許請求の範囲】[Claims] (1)距離測定器から帯状体までの距離を測定する複数
台の距離測定器と、この複数台の距離測定器によって測
定された距離信号のS/N比を検知して距離信号の分散
量(誤差量)を判断し、規定分散量(誤差量)以下にな
るよう、必要な平均化処理を実行する自動平均化処理回
路と、距離信号の高周波をカットする複数台のローパス
フィルタと、ローパスフィルタによって高周波成分をカ
ットされた距離信号の弧長を演算する複数台の弧長演算
器と、複数台の弧長演算器によって演算された弧長信号
の最小値を検出する最小値検出器と、複数台の弧長演算
器から得られた弧長信号と、弧長信号の最小値信号から
、相対伸び率を演算する相対伸び率演算器とから構成さ
れることを特徴とする平坦度検出装置。
(1) Multiple distance measuring devices that measure the distance from the distance measuring device to the strip, and the amount of dispersion of the distance signal by detecting the S/N ratio of the distance signals measured by the multiple distance measuring devices. An automatic averaging processing circuit that judges the amount of variance (error amount) and performs the necessary averaging processing so that it is less than the specified amount of variance (error amount), multiple low-pass filters that cut high frequencies of the distance signal, and low-pass A plurality of arc length calculators that calculate the arc length of the distance signal whose high frequency components have been cut by the filter, and a minimum value detector that detects the minimum value of the arc length signal calculated by the plurality of arc length calculators. flatness detection characterized by comprising an arc length signal obtained from a plurality of arc length calculators and a relative elongation rate calculator that calculates a relative elongation rate from the minimum value signal of the arc length signals. Device.
(2)複数台の弧長演算器によって演算された弧長信号
の最小値を検出する最小値検出器の代わりに複数台の弧
長演算器によって演算された弧長信号の最大値を検出す
る最大値検出器を有することを特徴とする特許請求の範
囲第1項記載の平坦度検出装置。
(2) Detect the minimum value of the arc length signal calculated by multiple arc length calculators Instead of the minimum value detector, detect the maximum value of the arc length signals calculated by multiple arc length calculators. 2. The flatness detection device according to claim 1, further comprising a maximum value detector.
(3)複数台の弧長演算器によって演算された弧長信号
の最小値を検出する最小値検出器の代わりに、複数台の
弧長演算器によって演算された弧長信号の平均値を検出
する平均値検出器を有することを特徴とする特許請求の
範囲第1項記載の平坦度検出装置。
(3) Instead of a minimum value detector that detects the minimum value of the arc length signals calculated by multiple arc length calculators, the average value of the arc length signals calculated by multiple arc length calculators is detected. 2. The flatness detecting device according to claim 1, further comprising an average value detector.
JP23190885A 1985-10-15 1985-10-15 Flatness detector Pending JPS6288907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23190885A JPS6288907A (en) 1985-10-15 1985-10-15 Flatness detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23190885A JPS6288907A (en) 1985-10-15 1985-10-15 Flatness detector

Publications (1)

Publication Number Publication Date
JPS6288907A true JPS6288907A (en) 1987-04-23

Family

ID=16930936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23190885A Pending JPS6288907A (en) 1985-10-15 1985-10-15 Flatness detector

Country Status (1)

Country Link
JP (1) JPS6288907A (en)

Similar Documents

Publication Publication Date Title
JPS61178608A (en) Flatness detector
JPS6288907A (en) Flatness detector
JPS63126242A (en) Appearance inspection and device therefor
JPS6288908A (en) Flatness detector
JP3528636B2 (en) Measuring device
JPH0282108A (en) Flatness detector
JPH04102010A (en) Measuring device of degree of flatness
JPH04102009A (en) Measuring device of degree of flatness
JPS63298112A (en) Thickness measuring device
JPH051912A (en) Flatness measuring-device
JPH0158444B2 (en)
JP2587474B2 (en) Plant abnormality sign detection device
JP2001201333A (en) Detecting method and detecting device for width direction camber of strip
JPH0634360A (en) Steel plate shape measuring method
JPH08159728A (en) Shape measuring instrument
JPH03255305A (en) Method and apparatus for measuring surface profile
JP2000155023A (en) Plate thickness measuring device for steel plate
JPS57179678A (en) Ultrasonic method and device for detecting distance
CN113155171A (en) Sensor installation state self-checking method and sensor for realizing installation state self-checking
CN109708729B (en) Automatic gain adjustment method for metering signal of ultrasonic meter and ultrasonic gas meter
JP3527476B2 (en) Inline powder moisture measurement system
JPH0353111A (en) Measuring instrument
JPH0384454A (en) Sensitivity correcting method for submersible ultrasonic flaw detector
SU281044A1 (en) METHOD OF MEASURING THE UNEQUALITY OF FREQUENCY
SU1045011A1 (en) Non-stationary thermal flux measuring method