JPS6288817A - Thrust slide bearing device - Google Patents

Thrust slide bearing device

Info

Publication number
JPS6288817A
JPS6288817A JP22973785A JP22973785A JPS6288817A JP S6288817 A JPS6288817 A JP S6288817A JP 22973785 A JP22973785 A JP 22973785A JP 22973785 A JP22973785 A JP 22973785A JP S6288817 A JPS6288817 A JP S6288817A
Authority
JP
Japan
Prior art keywords
bearing
lubricant
sliding surface
groove
runner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22973785A
Other languages
Japanese (ja)
Other versions
JPH0467045B2 (en
Inventor
Yoshinori Matsuo
松尾 昌憲
Kazuhiko Kawaike
川池 和彦
Naoshi Uchikawa
内川 直志
Shigekazu Nozawa
野沢 重和
Minetoshi Izushi
出石 峰敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22973785A priority Critical patent/JPS6288817A/en
Publication of JPS6288817A publication Critical patent/JPS6288817A/en
Publication of JPH0467045B2 publication Critical patent/JPH0467045B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To improve load capacity of a bearing and durability and to reduce the cost by providing a plurality of inclined outside grooves on the outside portion of a sliding surface either in a rotary runner at the shaft end or in a static bearing portion and a plurality of rectilinear inside grooves radially on the inside portion thereof. CONSTITUTION:A thrust bearing device 6 is formed by a discoidal rotary runner 7 mounted on a rotary shaft 2 and a discoidal static bearing portion 8 opposite to the runner, and grooves for sucking and discharging a lubricant are formed on the opposite surface on the rotary runner 7 side. A lot of spiral shallow outside grooves 9 are disposed in the same direction on the outside portion, and a circular groove 11 and a rectilinear inside groove 12 shallower than the circular groove are disposed on the inside. These grooves are formed in such a manner that when the depth of the outside groove 9 is H1, and the depth of the inside groove is H2, H1<H2. Accordingly, lubricating oil is retained on the sliding surface by pumping action of these grooves and centrifugal force both during normal rotation and during reverse rotation, so that the load capacity of a bearing and durability can be improved, and the cost can be reduced.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は回転機械等の回転軸を支持するスラストすべり
軸受装置に係り、特に回転軸を静止軸受部に流体潤滑剤
を介して支受させる流体潤滑式のスラストすべり軸受装
置に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a thrust slide bearing device that supports a rotating shaft of a rotating machine, etc., and particularly relates to a thrust sliding bearing device that supports a rotating shaft in a stationary bearing portion via a fluid lubricant. This invention relates to a lubricated thrust slide bearing device.

〔発明の背景〕[Background of the invention]

従来の流体潤滑式のスラストすべり軸受装置には、例え
ば特公昭44−22322号公報に示すように回転軸が
正逆いずれの方向に回転しても液圧潤滑によりすべり軸
受作用を行い得るようにしたものがある。第4図はこの
ようなスラストすべり軸受装置の軸受摺動面を示したも
ので、同図に示すように本軸受装置は静止軸受部(或い
は回転ランナ)20の軸受摺動面に互いに反対方向に延
在するスパイラル状の外側溝21と内側溝22を形成し
、矢印C方向に回転軸が回転すると外側溝21に潤滑剤
を外部から押込み、矢印り方向の回転時には導管24.
ダクト23を介して内側溝22に潤滑剤を押込むように
して、軸受摺動面の液圧潤滑を図り、正逆両回転方向の
すべり軸受作用を可能にしている。しかしながら、この
軸受装置によれば、正逆回転時に潤滑剤の押込まれる一
方側の溝内は正圧状態となるが、潤滑剤の押込まれない
他方側の溝内が負圧状態となるために、この負圧側の軸
受摺動面にキャビテーションが発生し易い状況にあった
。特に、この種の軸受装置の潤滑剤として用いる油剤は
、空気溶解特性が比較的大きいために微粒状の気泡が油
中に多量に溶は込みやすく、従って、回転軸の正逆運転
を繰返すうちに軸受部の負圧の発生する溝内に繰返しキ
ャビテーションが発生し、その結果、潤滑剤に性能劣化
が生じて軸受部の負荷容量が低下したり、更にキャビテ
ーションの機械的な衝撃圧力により軸受部の軸受摺動面
が浸食或いは潰食されて摩耗、損傷をきたすおそれがあ
った。更に、前記した従来のスラストすヘリ軸受装置は
、軸受摺動面を二面に分割するために軸受面積を比較的
多く要し、その結果軸受外径が大きくなり、また軸受部
に加工工数がかかる二つのスパイラル溝群を形成するの
で材料コスト、製作コストが高くなる問題を有していた
Conventional fluid-lubricated thrust sliding bearing devices have a mechanism that allows sliding bearing action to be performed by hydraulic lubrication even when the rotating shaft rotates in either the forward or reverse direction, as shown in Japanese Patent Publication No. 44-22322, for example. There is something I did. Figure 4 shows the bearing sliding surface of such a thrust sliding bearing device. A spiral outer groove 21 and an inner groove 22 are formed, and when the rotating shaft rotates in the direction of arrow C, lubricant is forced into the outer groove 21 from the outside, and when rotating in the direction of arrow C, lubricant is pushed into the outer groove 21.
By forcing lubricant into the inner groove 22 through the duct 23, hydraulic lubrication of the sliding surface of the bearing is achieved, thereby enabling sliding bearing action in both forward and reverse rotational directions. However, according to this bearing device, during forward and reverse rotation, the groove on one side into which the lubricant is pushed is in a positive pressure state, but the groove in the other side, where the lubricant is not pushed, is in a negative pressure state. Furthermore, cavitation was likely to occur on the bearing sliding surface on the negative pressure side. In particular, the oil used as a lubricant for this type of bearing device has a relatively high air solubility property, so a large amount of fine air bubbles are easily dissolved into the oil. Cavitation occurs repeatedly in the groove where negative pressure is generated in the bearing, and as a result, the performance of the lubricant deteriorates and the load capacity of the bearing decreases.Furthermore, the mechanical impact pressure of cavitation causes damage to the bearing. There was a risk that the sliding surface of the bearing would be eroded or corroded, resulting in wear and damage. Furthermore, the conventional thrust helical bearing device described above requires a relatively large bearing area because the bearing sliding surface is divided into two surfaces, resulting in a large outer diameter of the bearing and a large number of man-hours for machining the bearing. Since such two spiral groove groups are formed, there is a problem in that material costs and manufacturing costs increase.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、市況した従来の問題点を解消し、正回
転及び逆回転のすべり軸受けを可能にしつつ、軸受摺動
面や油膜中でのキャビテーションの発生を防止し、しか
も軸受負荷容址を向上させると共に製品コストの低減化
を図り得るスラストすべり軸受装置を提供することにあ
る。
The purpose of the present invention is to solve the problems of the conventional ones in the market, to enable sliding bearings for forward and reverse rotation, to prevent the occurrence of cavitation on the sliding surface of the bearing or in the oil film, and to reduce the load capacity of the bearing. It is an object of the present invention to provide a thrust sliding bearing device that can improve performance and reduce product cost.

〔発明の概要〕[Summary of the invention]

本発明は上記目的を達成するために、回転軸の軸端に設
けた回転ランナと、この回転ランナと協働して前記回転
軸の負荷を軸方向に支持する静止軸受部とよりなり、こ
の静止軸受部と前記回転ランナとのいずれか一方側にお
ける軸受摺動面の外側部に前記回転ランナの順方向回転
時に外部潤滑剤供給源の潤滑剤を前記軸受摺動面の外側
から内側に吸込むように形成した傾斜状の外側溝を複数
配設すると共に、同軸受摺動面の内側部には潤滑剤を内
部から供給する環状の潤滑剤供給溝を設け、且つこの潤
滑剤供給溝には前記回転ランナの遠心力により潤滑剤を
外側に向けて流出するように形成した直線状の内側溝を
放射状に複数配設したものである。
In order to achieve the above object, the present invention includes a rotating runner provided at the end of a rotating shaft, and a stationary bearing part that supports the load of the rotating shaft in the axial direction in cooperation with the rotating runner. Lubricant from an external lubricant supply source is sucked into the outer side of the bearing sliding surface on either one side of the stationary bearing part and the rotating runner from the outside to the inner side of the bearing sliding surface when the rotating runner rotates in the forward direction. A plurality of slanted outer grooves are provided, and an annular lubricant supply groove for supplying lubricant from the inside is provided on the inner side of the sliding surface of the bearing. A plurality of linear inner grooves are arranged radially so that the lubricant flows outward due to the centrifugal force of the rotating runner.

このような構成よりなる本発明によれば、回転軸の順方
向回転時には、回転ランナの回転力により回転ランナ或
いは静止軸受部の軸受摺動面に配設した外側溝に外部供
給源からの潤滑剤が吸込まれポンピング作用により内側
方向に潤滑剤が流れ(インフロー)、他方、軸受摺動面
の内側端には、回転ランナの遠心力により環状の潤滑剤
供給溝から潤滑剤が流れ込む(アウトフロー)。また、
回転軸の逆回転時には、軸受摺動面の内側溝に正回転の
場合と同様に回転ランナの遠心力により潤滑剤が流れ込
む。なお、この場合には軸受摺動面の外側溝にはポンピ
ング作用が生じないので潤滑剤は外側から内側に流れず
、この部分が内側より低圧になるが、高圧状態にある内
側(内側溝)から外側に潤滑剤が多量に流れ込むので(
アウトフロー)、軸受摺動面全域に潤滑剤を充満させて
正圧状態を保持することができる。従って、正逆いずれ
の回転時においても、軸受摺動面の全域に潤滑剤を充満
させて正圧状態を保持するので、軸受摺動面にキャビテ
ーションが発生するのを防止することができる。
According to the present invention having such a configuration, when the rotary shaft rotates in the forward direction, the rotational force of the rotary runner causes lubrication from an external source to be applied to the outer groove provided on the bearing sliding surface of the rotary runner or the stationary bearing. The lubricant is sucked in and flows inward due to the pumping action (inflow). On the other hand, lubricant flows into the inner end of the bearing sliding surface from the annular lubricant supply groove due to the centrifugal force of the rotating runner (outflow). flow). Also,
When the rotary shaft rotates in reverse, the lubricant flows into the inner groove of the bearing sliding surface due to the centrifugal force of the rotary runner, as in the case of forward rotation. In this case, no pumping action occurs in the outer groove of the bearing sliding surface, so the lubricant does not flow from the outside to the inside, and the pressure in this area is lower than that on the inside, but the inside (inner groove), which is under high pressure, A large amount of lubricant flows outward from the (
(outflow), the entire sliding surface of the bearing can be filled with lubricant to maintain a positive pressure state. Therefore, during either forward or reverse rotation, the entire area of the bearing sliding surface is filled with lubricant and a positive pressure state is maintained, making it possible to prevent cavitation from occurring on the bearing sliding surface.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を第1図なしい第4図に基づき説明す
る。
An embodiment of the present invention will be explained based on FIG. 4 without FIG.

第1図は本発明の一実施例たるスラストすべり軸受装置
を適用した回転機器の部分断面図を示すものであり、同
図において、1は回転機器のロータ、2はロータ1の回
転軸、3は軸受ハウジング、4は軸穴で、軸穴4には回
転軸2の径方向の荷重を支持するジャーナル軸受5が嵌
装されている。
FIG. 1 shows a partial sectional view of a rotating device to which a thrust slide bearing device according to an embodiment of the present invention is applied. In the figure, 1 is a rotor of the rotating device, 2 is a rotating shaft of the rotor 1, and 3 4 is a bearing housing, and 4 is a shaft hole. A journal bearing 5 that supports the radial load of the rotating shaft 2 is fitted into the shaft hole 4.

6は本実施例の要部であるスラストすべり軸受装置であ
り、スラストすべり軸受装置6は回転軸2の@端に軸着
した円板形の回転ランナ7と軸受ハウジング3に回転ラ
ンナ7に対向するように設けた円板状の静止軸受部8と
により構成され、この静止軸受部8が回転ランナ7にか
かる回転軸2の負荷を潤滑膜を介して支受するものであ
る。回転ランナ7における静止軸受部8との対向面(軸
受摺動面)には、第2図に示すように、その外側部にス
パイラル状の溝の浅い外側溝9が同一方向に向けて多数
配設され1回転ランナ7の順方向(矢印A方向)の回転
時にランナ7の外周囲にある潤滑剤15を回転ランナ7
のポンピング作用によって外側溝9内に吸込むように構
成されいる。
Reference numeral 6 denotes a thrust sliding bearing device which is a main part of this embodiment. The stationary bearing section 8 is configured to include a disk-shaped stationary bearing section 8 provided so as to support the rotary shaft 2, and this stationary bearing section 8 supports the load of the rotating shaft 2 applied to the rotating runner 7 via a lubricating film. As shown in FIG. 2, the surface of the rotary runner 7 facing the stationary bearing portion 8 (bearing sliding surface) has a large number of shallow spiral outer grooves 9 facing in the same direction on its outer side. When the runner 7 rotates in the forward direction (direction of arrow A), the lubricant 15 around the outer periphery of the runner 7 is transferred to the rotating runner 7.
It is configured to suck into the outer groove 9 by the pumping action of.

一方1回転ランナ7の内側には回転軸2の挿通穴10の
外側に挿通穴10と同心円となる環状溝11が形成され
、且つ環状溝11には環状溝11より浅く形成した直線
状の内側溝12が外側に放射状にひろがるようにして多
数配設されており、この環状溝11には、後述するよう
に軸受ハウジング3に設けた潤滑剤流路14及び軸穴4
を介して潤滑剤15が供給されるようにしである。
On the other hand, inside the one-rotation runner 7, an annular groove 11 is formed outside the insertion hole 10 of the rotary shaft 2 and is concentric with the insertion hole 10. A large number of side grooves 12 are arranged so as to extend radially outward, and in this annular groove 11, a lubricant passage 14 provided in the bearing housing 3 and a shaft hole 4 are provided.
The lubricant 15 is supplied via the lubricant 15.

13は潤滑剤15をスラスト軸受装fi6の外周囲に充
満させた潤滑槽で、潤滑槽13には潤滑剤流路14に連
通ずる循環パイプ(図示せず)が取付けられており、こ
の循環パイプ及び潤滑剤流路14を介して潤滑槽13の
潤滑剤15が軸穴4を通して回転ランナ7に設けた環状
溝11に供給される。
Reference numeral 13 denotes a lubricating tank in which the outer periphery of the thrust bearing assembly fi6 is filled with lubricant 15. A circulation pipe (not shown) communicating with the lubricant flow path 14 is attached to the lubricating tank 13. The lubricant 15 in the lubricant tank 13 is supplied to the annular groove 11 provided in the rotary runner 7 through the shaft hole 4 and the lubricant flow path 14 .

次に1本実施例の作用を説明する。Next, the operation of this embodiment will be explained.

回転軸2が順方向(矢印A方向)に回転する場合には、
回転ランナ7も同方向に回転するので、回転ランナ7の
回転力により軸受摺動面の外側溝9に潤滑槽13の潤滑
剤15が吸込まれて内側に流れ込みインフロー状態とな
り、他方、内側溝12には回転ランナ7の遠心力により
環状の潤滑剤供給溝11内に充満した潤滑剤が内側溝1
2に流れ込んで外側に向けて放射状に流出しアウトフロ
ー状態となる。第4図における実線○は、本実施例の外
側溝9と内側溝12の深さを同レベルとした場合の正回
転時における軸受摺動面の流体圧力分布特性を示すもの
で、実線○に示すように。
When the rotating shaft 2 rotates in the forward direction (arrow A direction),
Since the rotary runner 7 also rotates in the same direction, the lubricant 15 in the lubricant tank 13 is sucked into the outer groove 9 of the bearing sliding surface by the rotational force of the rotary runner 7 and flows inward, creating an inflow state. 12, the lubricant filled in the annular lubricant supply groove 11 due to the centrifugal force of the rotary runner 7 flows into the inner groove 1.
2 and flows out radially outward, resulting in an outflow state. The solid line ○ in FIG. 4 indicates the fluid pressure distribution characteristics of the bearing sliding surface during forward rotation when the depths of the outer groove 9 and the inner groove 12 of this embodiment are at the same level. As shown.

回転軸2の正回転時には外側溝9に潤滑剤が吸込まれ潤
滑剤の粘性効果すなわちポンピング作用により外側溝9
の内側に向かうにつれて潤滑剤の流体圧が昇圧し1.外
側溝9の内側端で最高圧となり、更に軸受摺動面の内側
へ移向するにつれて低圧になるが、内側溝12において
もアウトフロー状態で潤滑剤が流れ込んでいるので正圧
状態を維持し、軸受摺動面の全域にわたって潤滑剤が充
満し負圧が発生するところがない。また、回転軸2及び
回転ランナ7が矢印B方向に逆回転する場合には、回転
ランナ7の内側に設けた内側溝12に前記した正回転の
場合と同様に回転ランナ7の遠心力により軸受摺動面の
内側から外側に向けて潤滑剤が流れ込む。一方、回転ラ
ンナ7の逆回転により外側溝9もアウトフロー状態とな
り、これによって外側溝9は外部の潤滑剤を吸込むこと
ができなくなり低圧状態となる。しかしながら、この場
合には高圧状態にある軸受摺動面の内側溝12から外側
に向けて潤滑剤が多量に供給されるので、この供給量と
外側溝9から外部に放出される潤滑剤の流出量のバラン
スを図ることにより、軸受摺動面に潤滑剤を充満させる
ことができる。なすわち。
When the rotating shaft 2 rotates forward, the lubricant is sucked into the outer groove 9, and the outer groove 9
The fluid pressure of the lubricant increases as it moves toward the inside of the 1. The pressure is highest at the inner end of the outer groove 9 and becomes lower as it moves further inside the bearing sliding surface, but the lubricant is flowing into the inner groove 12 in an outflow state, so a positive pressure state is maintained. , the entire sliding surface of the bearing is filled with lubricant and there is no place where negative pressure is generated. In addition, when the rotating shaft 2 and the rotating runner 7 rotate in the reverse direction in the direction of arrow B, the centrifugal force of the rotating runner 7 causes the inner groove 12 provided inside the rotating runner 7 to be Lubricant flows from the inside to the outside of the sliding surface. On the other hand, due to the reverse rotation of the rotary runner 7, the outer groove 9 also enters an outflow state, whereby the outer groove 9 is unable to suck in external lubricant and becomes in a low pressure state. However, in this case, since a large amount of lubricant is supplied outward from the inner groove 12 of the bearing sliding surface under high pressure, this supply amount and the outflow of lubricant released to the outside from the outer groove 9 By balancing the amounts, the sliding surface of the bearing can be filled with lubricant. That's it.

逆回転時に内側溝12から軸受摺動面に供給される潤滑
剤の流量と外側溝9から外部に流出する潤滑剤の流量と
は回転機械の回転数と内側溝12及び外側溝9の深さ1
本数等の条件に基づき定めることができるので、これら
の諸条件を適宜に設定すれば内側溝12からの潤滑剤流
量と外側溝9から流出する潤滑剤流出量の調和を図り軸
受摺動面に潤滑剤を充満させることができる6第4図に
おける実線Pは、このような逆回転時における軸受摺動
面の流体圧力分布特性を示すもので、実線Pに示すよう
に、逆回転時には内側溝12から潤滑剤が吸込まれポン
ピング効果により内側溝12の外側に向かうにつれて昇
圧し内側溝12の外側端で最高圧力となり、これより外
側になると低圧に移向する。この場合、外側溝9には外
側から潤滑剤を吸込まないので低圧状態となっているが
、曲毛 述したように本例では動回転時においても、内側溝12
から潤滑剤が外側に供給されて軸受摺動面全域に潤滑剤
が不足することなく充満しているか1咳1 ら軸受摺動面の外部も低圧ながら正圧状態となり。
The flow rate of lubricant supplied from the inner groove 12 to the bearing sliding surface during reverse rotation and the flow rate of lubricant flowing out from the outer groove 9 are determined by the rotation speed of the rotating machine and the depths of the inner groove 12 and outer groove 9. 1
It can be determined based on conditions such as the number of grooves, so if these conditions are set appropriately, the flow rate of lubricant from the inner groove 12 and the amount of lubricant flowing out from the outer groove 9 can be harmonized, and the amount of lubricant flowing out from the bearing sliding surface can be adjusted. The solid line P in Figure 4 shows the fluid pressure distribution characteristics of the sliding surface of the bearing during reverse rotation.As shown by the solid line P, the inner groove The lubricant is sucked in from the lubricant 12, and its pressure increases as it moves toward the outside of the inner groove 12 due to the pumping effect, reaching a maximum pressure at the outer end of the inner groove 12, and moving to a lower pressure outside of this. In this case, the lubricant is not sucked into the outer groove 9 from the outside, so the pressure is low, but as described above, in this example, even during dynamic rotation, the inner groove 9
Is the lubricant being supplied to the outside and filling the entire bearing sliding surface without running out of lubricant?1 The external pressure of the bearing sliding surface is also low but positive.

軸受摺動面の全域に負圧の生じるところがない。There is no negative pressure anywhere on the bearing sliding surface.

従って、本実施例によれば1回転軸2の正逆回転いずれ
の場合においても、軸受摺動面に負圧が発生せず、その
結果、キャビテーションの発生を防+hすることができ
るので軸受摺動面の浸食、破損を防止し、回転軸を最適
な液圧潤滑により軸受面に支受することができる。
Therefore, according to this embodiment, no negative pressure is generated on the bearing sliding surface in either case of forward or reverse rotation of the shaft 2 of one rotation, and as a result, cavitation can be prevented from occurring, so that the bearing sliding surface can be prevented from occurring. This prevents erosion and damage to the dynamic surface, and allows the rotating shaft to be supported on the bearing surface with optimal hydraulic lubrication.

第6図は、既述した従来のスラストすべり軸受装置の軸
受摺動面の内径と外径を本実施例の軸受摺動面と同じ寸
法にして、その軸受摺動面の流体圧力分布特性をもとめ
たものであり、同図の実線Qは回転軸の矢印C方向にお
ける流体圧力分布特性を示し、点線Rは矢印り方向回転
時の流体圧力分布特性を示すものである。しかして、第
6図の従来例と第4図の本実施例との流体圧力分布特性
を比較しても明らかなように、本実施例のほうが従来例
よりも軸受摺動面における正圧領域が広くなる。すなわ
ち、以上の流体圧分布特性により。
Figure 6 shows the fluid pressure distribution characteristics of the bearing sliding surface of the conventional thrust sliding bearing device described above, with the inner diameter and outer diameter of the bearing sliding surface being the same as the bearing sliding surface of this embodiment. The solid line Q in the figure shows the fluid pressure distribution characteristic in the direction of the arrow C of the rotation axis, and the dotted line R shows the fluid pressure distribution characteristic when rotating in the direction of the arrow. As is clear from comparing the fluid pressure distribution characteristics between the conventional example shown in FIG. 6 and the present example shown in FIG. becomes wider. In other words, due to the above fluid pressure distribution characteristics.

本例は従来例よりも軸動摺動面に介在する潤滑剤の流体
圧力の総和が大きくなり、軸受負荷容量を大きくすると
かできる。
In this example, the total fluid pressure of the lubricant present on the shaft sliding surface is greater than in the conventional example, and the bearing load capacity can be increased.

また2本実施例によれば、軸受摺動面の同一平面内に外
側溝と内側溝を効率よく配設するので。
Further, according to the two embodiments, the outer groove and the inner groove are efficiently arranged within the same plane of the bearing sliding surface.

軸受外径を小さくするこができ、しかも内側溝は直線放
射状に形成しであるので、スパイラル溝に!】 較べて加工が容量にして短時間に形成することができる
ので、材料コスト、製作コストの低減化を図り得る。
The outer diameter of the bearing can be made smaller, and since the inner groove is formed in a straight radial shape, it can be used as a spiral groove! ] Compared to this, it can be processed in a large capacity and formed in a short time, so material costs and manufacturing costs can be reduced.

なお、上記実施例においては回転ランナ7に設けた外側
溝9の深さHlと内側溝12の深さHlとを同レベルに
形成したが、これに限らず外側溝9の深さHlと内側溝
12の深さHlとの深さを。
In the above embodiment, the depth Hl of the outer groove 9 and the depth Hl of the inner groove 12 provided in the rotary runner 7 are formed at the same level, but the present invention is not limited to this. Depth between the depth Hl of the side gutter 12.

第3図に示すようにHlよりもHlを深<(Ht<Hl
)してもよく、このようにすれば、潤滑剤供給溝11側
から内側溝12に潤滑剤が一層入り易くなるので軸受摺
動面の潤滑効果を更に向上させることができる。第4図
における一点鎖線○′は、Hz とHlの関係をHt 
< H2とした場合の正回転時の流体圧力分布特性を示
し、一点鎖線P′は逆回転時の流体圧力分布特性を示す
もので、この場合には第4図の実線○、P(第1実施例
)と比較しても明らかなように、第1実施例よりも更に
軸受摺動面の流体圧力を高くし流体圧力の総和を向上さ
せることができるので、軸受負荷容量を更に向」二させ
ることができる。
As shown in Figure 3, Hl is deeper than Hl<(Ht<Hl
), and by doing so, the lubricant can more easily enter the inner groove 12 from the lubricant supply groove 11 side, so that the lubrication effect on the bearing sliding surface can be further improved. The dashed line ○' in Figure 4 represents the relationship between Hz and Hl.
< H2 shows the fluid pressure distribution characteristics during forward rotation, and the dashed line P' shows the fluid pressure distribution characteristics during reverse rotation. As is clear from a comparison with the first embodiment, the fluid pressure on the bearing sliding surface can be further increased and the total fluid pressure can be improved compared to the first embodiment, so the bearing load capacity can be further improved. can be done.

また、上記各実施例においては、潤滑剤を流出させる外
側溝と内側溝を回転ランナ側に設けたが、これにかえて
静IE軸受部側の軸受摺動面側に同様の構造をなす外側
溝と内側溝を設けても、上記各実施例と同様の効果を奏
することができる。
In each of the above embodiments, the outer groove and the inner groove for letting out the lubricant were provided on the rotary runner side, but instead of this, an outer groove with a similar structure was provided on the bearing sliding surface side of the static IE bearing section. Even if side grooves and inner grooves are provided, the same effects as in each of the above embodiments can be achieved.

〔発明の効果〕〔Effect of the invention〕

以−4二のように本発明によれば、正回転及び逆回転の
両方向のすべり軸受を可能にしつつ、軸受摺動面や油1
摸中でのキャビテーションの発生を防止することができ
るので、軸受負荷容量及び耐久性を大幅に向上させるこ
とができ、しかも軸受装置全体の小形化を図り得るので
製品コスト、製作コストの低減化を図ることができる。
As described above-42, according to the present invention, it is possible to perform sliding bearings in both forward and reverse directions, while also preventing the bearing sliding surface and oil 1.
Since it is possible to prevent cavitation from occurring during operation, the bearing load capacity and durability can be greatly improved, and the entire bearing device can be made smaller, reducing product and manufacturing costs. can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を適用した回転機器の一部省
略断面図、第2図は上記実施例に用いる軸受構成部材の
平面図、第3図は本発明の他の実施例に用いる軸受構成
部材の縦断面図、第4図は上記各実施例の軸受摺動面に
おける流体圧力分布状態を示す流体圧力分布特性図、第
5図は従来のスラスト軸受装置の構成部材を示す平面図
、第6図は上記した従来のスラスト軸受装置の軸受摺動
面における流体圧力分布状態を示す流体圧力分布特性図
である。 2・・・回転軸、7・・・回転ランナ、8・・・静止軸
受部、9・・・外側溝、11・・・潤滑剤供給溝、12
・・・内側溝。 13・・・外部潤滑剤供給源(潤滑槽)、15・・・潤
滑(ほか1名) 茅 I 図 γ /2    13   /6 芋 2 囚 l 芋3 区 茅4 目  − 四F1便1      外用僅°1 細受怪方蘭4ft、僅 茅5 目
FIG. 1 is a partially omitted sectional view of a rotating device to which one embodiment of the present invention is applied, FIG. 2 is a plan view of a bearing component used in the above embodiment, and FIG. 3 is a diagram showing another embodiment of the present invention. A vertical cross-sectional view of the bearing component used, FIG. 4 is a fluid pressure distribution characteristic diagram showing the fluid pressure distribution state on the bearing sliding surface of each of the above embodiments, and FIG. 5 is a plane showing the component of a conventional thrust bearing device. 6 are fluid pressure distribution characteristic diagrams showing the fluid pressure distribution state on the bearing sliding surface of the above-described conventional thrust bearing device. 2... Rotating shaft, 7... Rotating runner, 8... Stationary bearing portion, 9... Outer groove, 11... Lubricant supply groove, 12
...inner groove. 13... External lubricant supply source (lubricating tank), 15... Lubrication (1 other person) Moga I Figure γ /2 13 /6 Potato 2 Prisoner I Potato 3 Ward Kaya 4 Eye - 4 F1 flight 1 External use only °1 Hosouke Kaihoran 4ft, only 5 eyes

Claims (1)

【特許請求の範囲】 1、回転軸の軸端に設けた回転ランナと、該回転ランナ
と協働して前記回転軸の負荷を軸方向に支持する静止軸
受部とよりなり、該静止軸受部と前記回転ランナとのい
ずれか一方側における軸受摺動面の外側部に前記回転ラ
ンナの順方向回転時に外部潤滑剤供給源の潤滑剤を前記
軸受摺動面の外側から内側に吸込むように形成した傾斜
状の外側溝を複数配設すると共に、該軸受摺動面の内側
部には潤滑剤を該軸受摺動面の内部から供給する環状の
潤滑剤供給溝を設け、且つ該潤滑剤供給溝には前記回転
ランナの遠心力により潤滑剤を外側に向けて流出するよ
うに形成した直線状の内側溝を放射状に複数配設してな
ることを特徴とするスラストすべり軸受装置。 2、特許請求の範囲第1項において、前記外側溝の深さ
H_1と前記内側溝の深さH_2との深さの比は、H_
1<H_2としてなるスラ ストすべり軸受装置。
[Scope of Claims] 1. A rotary runner provided at the end of a rotary shaft, and a stationary bearing section that cooperates with the rotary runner to support the load of the rotary shaft in the axial direction, and the stationary bearing section and the rotary runner, the lubricant from an external lubricant supply source is formed on the outer side of the bearing sliding surface on one side of the bearing sliding surface so as to suck lubricant from an external lubricant supply source from the outside to the inside of the bearing sliding surface when the rotary runner rotates in the forward direction. A plurality of inclined outer grooves are provided, and an annular lubricant supply groove is provided on the inner side of the bearing sliding surface to supply lubricant from inside the bearing sliding surface, and the lubricant supply groove is provided with a ring-shaped lubricant supply groove. A thrust sliding bearing device, characterized in that a plurality of linear inner grooves are arranged radially so that lubricant flows outward due to the centrifugal force of the rotating runner. 2. In claim 1, the depth ratio between the depth H_1 of the outer groove and the depth H_2 of the inner groove is H_
A thrust sliding bearing device where 1<H_2.
JP22973785A 1985-10-15 1985-10-15 Thrust slide bearing device Granted JPS6288817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22973785A JPS6288817A (en) 1985-10-15 1985-10-15 Thrust slide bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22973785A JPS6288817A (en) 1985-10-15 1985-10-15 Thrust slide bearing device

Publications (2)

Publication Number Publication Date
JPS6288817A true JPS6288817A (en) 1987-04-23
JPH0467045B2 JPH0467045B2 (en) 1992-10-27

Family

ID=16896896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22973785A Granted JPS6288817A (en) 1985-10-15 1985-10-15 Thrust slide bearing device

Country Status (1)

Country Link
JP (1) JPS6288817A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011196372A (en) * 2010-02-26 2011-10-06 Mitsubishi Heavy Ind Ltd Compressor
US8281912B2 (en) * 2008-03-18 2012-10-09 Schaeffler Technologies AG & Co. KG Stampable thrust washer with flow cutouts
WO2013128949A1 (en) * 2012-02-28 2013-09-06 オイレス工業株式会社 Thrust slide bearing, and mechanism for combining thrust slide bearing with piston rod
US20140301681A1 (en) * 2013-04-09 2014-10-09 Hamilton Sundstrand Corporation Thrust plate including cooling slots

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6045922U (en) * 1983-09-06 1985-04-01 エヌ・テ−・エヌ東洋ベアリング株式会社 Dynamic thrust bearing

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6045922B2 (en) * 1983-04-13 1985-10-12 ジャパン・フイ−ルド株式会社 Cleaning steam condensation method and device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6045922U (en) * 1983-09-06 1985-04-01 エヌ・テ−・エヌ東洋ベアリング株式会社 Dynamic thrust bearing

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8281912B2 (en) * 2008-03-18 2012-10-09 Schaeffler Technologies AG & Co. KG Stampable thrust washer with flow cutouts
JP2011196372A (en) * 2010-02-26 2011-10-06 Mitsubishi Heavy Ind Ltd Compressor
WO2013128949A1 (en) * 2012-02-28 2013-09-06 オイレス工業株式会社 Thrust slide bearing, and mechanism for combining thrust slide bearing with piston rod
JP2013177933A (en) * 2012-02-28 2013-09-09 Oiles Corp Thrust slide bearing, and mechanism for combining thrust slide bearing with piston rod
CN104105892A (en) * 2012-02-28 2014-10-15 奥依列斯工业株式会社 Thrust slide bearing, and mechanism for combining thrust slide bearing with piston rod
US9334897B2 (en) 2012-02-28 2016-05-10 Oiles Corporation Thrust slide bearing, and combination mechanism of a thrust slide bearing and a piston rod
US20140301681A1 (en) * 2013-04-09 2014-10-09 Hamilton Sundstrand Corporation Thrust plate including cooling slots
US9109625B2 (en) * 2013-04-09 2015-08-18 Hamilton Sundstrand Corporation Thrust plate including cooling slots

Also Published As

Publication number Publication date
JPH0467045B2 (en) 1992-10-27

Similar Documents

Publication Publication Date Title
US5980114A (en) Thrust bearing
US5951169A (en) Thrust bearing
US5033937A (en) Centrifugal pump with modular bearing support for pumping fluids containing abrasive particles
JPS5834227A (en) Dynamic pressure type fluid bearing
JP2015140682A (en) Turbocompressor
KR950005839B1 (en) Submersible thrust bearing apparatus
EP2662572A1 (en) Sealing arrangement for the lubricant of a ball bearing in a flow machine
JP2021519887A (en) Screw compressor elements and machinery
US3841720A (en) Thrust bearing assembly
US7625122B2 (en) Fluid dynamic bearing
JPS6288817A (en) Thrust slide bearing device
JP2002515105A (en) Self pump operated roller bearing
WO2018034245A1 (en) Bearing device, and spindle device for machine tool
KR101984316B1 (en) Piston slipper for hydraulic pump
JP2020165533A (en) Fluid dynamic pressure bearing device
CN114320995B (en) Bearing lubricating structure and barrel bag pump with same
CN217713341U (en) Four-row tapered roller bearing
JP3798585B2 (en) Hydrodynamic fluid bearing device and electric motor
US3510179A (en) Journal bearing system
JPH07293556A (en) Submerged bearing device
JP7453899B2 (en) Rolling bearing holding structure and rotating machinery using it
CA2534956C (en) Bearing arrangement
JPS63158317A (en) Dynamic pressure bearing device
CN109340138B (en) Hydraulic suspension oil pump
JPH02304214A (en) Fluid dynamic pressure bearing