JPS6288391A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JPS6288391A
JPS6288391A JP60230652A JP23065285A JPS6288391A JP S6288391 A JPS6288391 A JP S6288391A JP 60230652 A JP60230652 A JP 60230652A JP 23065285 A JP23065285 A JP 23065285A JP S6288391 A JPS6288391 A JP S6288391A
Authority
JP
Japan
Prior art keywords
layer
light emitting
semiconductor light
emitting part
inp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60230652A
Other languages
Japanese (ja)
Inventor
Kazuhiro Tanaka
一弘 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60230652A priority Critical patent/JPS6288391A/en
Publication of JPS6288391A publication Critical patent/JPS6288391A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To implement a structure, which can be manufactured readily, by forming one electrode of a semiconductor light emitting part, whose both sides are surrounded by a high resistance layer, on the upper surface of said semiconductor light emitting part, and forming another electrode on a conductive region at the same surface of a part other than the semiconductor light emitting part by way of a conductive semiconductor layer beneath the semiconductor light emitting part. CONSTITUTION:A semiconductor light emitting part comprises an N-InP buffer layer 32, an InGaAsP active layer 33, a P-InP clad layer 34 and a P-InGaAsP cap layer 35, both sides of which are surrounded by a high resistance InP layer 39. Laser oscillation is carried out in the active layer in these layers. The N-InP buffer layer 32 is not cut by the high resistance layer 39 but connected to a conductive N-InP region 40 on the outside of the high resistance layer 39 surrounding the light emitting part. A negative electrode 38 is provided on the conductive region 40. A positive electrode 37 is provided on the P- InGaAsP cap layer 35 of the light emitting part. The electrodes are formed on the same surface of a planar structure.

Description

【発明の詳細な説明】 [概要コ 上面に電極を有し、且つ、両側を高抵抗層で囲まれた半
導体発光部が設けられ、その半導体発光部の下の導電性
半導体層と接して、且つ、他の上面に表出した導電性領
域上に他の電極が設けられたプレーナ構造の半導体発光
装置である。
[Detailed Description of the Invention] [Summary] A semiconductor light emitting section having an electrode on the upper surface and surrounded by high resistance layers on both sides is provided, and is in contact with a conductive semiconductor layer below the semiconductor light emitting section, In addition, the semiconductor light emitting device has a planar structure in which another electrode is provided on the other conductive region exposed on the upper surface.

[産業上の利用分野] 本発明は半導体発光装置の改善された構造に関する。[Industrial application field] The present invention relates to an improved structure of a semiconductor light emitting device.

InGaAs Pなどの化合物半導体からなる半導体レ
ーザは光通信システムの光源として重要なものとなって
いる。
Semiconductor lasers made of compound semiconductors such as InGaAs P have become important as light sources for optical communication systems.

しかし、これらのレーザ素子は、初期のアロイ形トラン
ジスタと同じく、電極を表裏両面から取り出す構造で、
集積度の向上、寄生容量の減少などの点から余り好まし
い方式ではない。従って、近年のICと同様に、同一面
上に正負両電極を形成するプレーナ形構造が要望されて
いる。
However, like early alloy transistors, these laser elements have a structure in which electrodes are taken out from both the front and back sides.
This is not a very preferable method from the viewpoint of improving the degree of integration and reducing parasitic capacitance. Therefore, as with recent ICs, there is a demand for a planar structure in which both positive and negative electrodes are formed on the same surface.

[従来の技術と発明が解決しようとする問題点コ従来、
石英系光ファイバのt貴人、波長分散が最小になる波長
1μm帯の光通信システムの光源として、InPを基板
としInGaAs Pを活性層とした埋込型ヘテロ構造
(Burjed l1eterostructure 
: B H)のレーザ(、La5er)が知られており
、第4図にその概要断面図を示している。
[Problems that conventional techniques and inventions try to solve
A buried heterostructure with an InP substrate and an InGaAs P active layer has been developed as a light source for optical communication systems in the 1 μm wavelength band, where chromatic dispersion is at its minimum.
:BH) laser (La5er) is known, and a schematic sectional view thereof is shown in FIG.

図において、1はn−InP基板、2はn −1nPバ
ッファ層、3はn −1nGaAs P活性層、4はp
−TnPクラッド層、5はp −1nGaAs Pキヤ
ツプ層。
In the figure, 1 is an n-InP substrate, 2 is an n-1nP buffer layer, 3 is an n-1nGaAsP active layer, and 4 is a p-type
-TnP cladding layer; 5 is p-1nGaAsP cap layer;

6は絶縁膜、7は十電極(正電極)、8は一電極(負電
極)で、9が埋込層である。埋込層9はp−InP埋込
層とn −1nP埋込層から構成された多層構造で、こ
のような埋込層を両側に設けて、中央の活性層から局所
的なレーザ発振がおこなわれる。
6 is an insulating film, 7 is ten electrodes (positive electrode), 8 is one electrode (negative electrode), and 9 is a buried layer. The buried layer 9 has a multilayer structure consisting of a p-InP buried layer and an n-1nP buried layer, and with such buried layers provided on both sides, local laser oscillation is performed from the central active layer. It will be done.

しかし、このレーザの問題点は高速動作を害する寄生容
量が存在することで、その寄生容量は埋込pn接合によ
る容量(×印で示す)と電極構造に起因する容量との二
種類がある。従って、最近、この寄生容量を減少させる
ため、埋込層9をpn両層からなる多層構造とせず、高
抵抗層(又は半絶縁層)を埋込層としたレーザ構造が提
案されている。
However, the problem with this laser is that there is a parasitic capacitance that impairs high-speed operation, and the parasitic capacitance is of two types: the capacitance due to the buried pn junction (indicated by an x mark) and the capacitance due to the electrode structure. Therefore, recently, in order to reduce this parasitic capacitance, a laser structure has been proposed in which the buried layer 9 does not have a multilayer structure consisting of both pn and pn layers, but instead uses a high-resistance layer (or semi-insulating layer) as the buried layer.

第5図はその高抵抗埋込層10を設けたレーザの構造例
を図示しており、この構造では埋没層による寄生容量は
非常に小さくなる。なお、第5図において、第4図と同
一部材には同一符号が付しである。
FIG. 5 shows an example of the structure of a laser provided with the high-resistance buried layer 10, and in this structure, the parasitic capacitance due to the buried layer is extremely small. In FIG. 5, the same members as in FIG. 4 are given the same reference numerals.

また、第6図は高抵抗埋込層10′を設けた他の例のレ
ーザの構造例を図示しており、本例は製造方法の違いか
ら、高抵抗埋込層10’の他面にも活性層が残っている
。測定結果によれば、前記第4図のレーザの寄生容量が
50〜100 pFであったのに対し、この構造では寄
生容量はtopp程度に減少する。更に、本例は表面が
平坦化され易い構造でもある(特願昭60−57870
号参照)。
Furthermore, FIG. 6 shows another example of the structure of a laser in which a high-resistance buried layer 10' is provided. The active layer remains. According to the measurement results, while the parasitic capacitance of the laser shown in FIG. 4 was 50 to 100 pF, the parasitic capacitance of this structure is reduced to about topp. Furthermore, this example has a structure in which the surface can be easily flattened (Japanese Patent Application No. 60-57870).
(see issue).

このように、第5図および第6図に示すレーザ構造はp
n接合部の容量を減少することができる。
Thus, the laser structure shown in FIGS.
The capacitance of the n-junction can be reduced.

しかし、電極に起因する容量には変化はなく、例えば、
第6図に示す構造では、図中に点線で示しているような
、絶縁膜6部分の静電容量とダイオード容量が直列に電
極間に存在する。
However, there is no change in the capacitance due to the electrodes, e.g.
In the structure shown in FIG. 6, the capacitance of the insulating film 6 and the diode capacitance exist in series between the electrodes, as indicated by dotted lines in the figure.

従って、この電極構造による容量を減少するだめのプレ
ーナ構造が、最近、提案されてきており、第7図は半絶
縁基板lI上に同様のレーザを形成し、同一表面に十−
電極7,8を設けた構造で、このようにすれば電極構造
による寄生容量が低減できる(IEEE J、Quan
tum El、ectron、Vol−QB21.No
、2 Feb  pp121〜138.1985)。
Therefore, a planar structure has recently been proposed to reduce the capacitance due to this electrode structure.
This is a structure in which electrodes 7 and 8 are provided. In this way, parasitic capacitance due to the electrode structure can be reduced (IEEE J, Quan
tum El, ectron, Vol-QB21. No
, 2 Feb pp 121-138.1985).

しかし、第7図に示す構造は段差がある面に電極を形成
する必要があるため、製造が困難で、信頼性上から余り
望ましくない構造である。
However, the structure shown in FIG. 7 is difficult to manufacture because it is necessary to form electrodes on a surface with a step, and is not a very desirable structure from the viewpoint of reliability.

また、プレーナ構造の他の例として、TJS (Tra
nsvers Junction  5tripe)が
発表されている(八pplied  Physics 
 Letter  33  (1)、1.July  
pp38  。
In addition, as another example of planar structure, TJS (Tra
nsvers Junction 5 tripe) has been announced (8 pplied Physics
Letter 33 (1), 1. July
pp38.

1978 :電子通信学会記述研究報告OQ 878−
23pp91)。
1978: Institute of Electronics and Communication Engineers Descriptive Research Report OQ 878-
23pp91).

第8図はそのTJS形半導体レーザの概要断面を図示し
ており、この構造は亜鉛(Zn)などを拡散したp型拡
散層12を設けて、その表面より一方の電極を取り出す
GaAsレーザの例である。同図において、21は半絶
縁性GaAS基板、22はn −GaAI八Sバへファ
層、23はn−GaAs活性層、24はn −GaAI
八Sク八ツクラッド層はn−GaAsキャップ層である
Figure 8 shows a schematic cross section of the TJS type semiconductor laser, and this structure is an example of a GaAs laser in which a p-type diffusion layer 12 in which zinc (Zn) or the like is diffused is provided, and one electrode is taken out from the surface of the p-type diffusion layer 12. It is. In the figure, 21 is a semi-insulating GaAS substrate, 22 is an n-GaAI 8S buffer layer, 23 is an n-GaAs active layer, and 24 is an n-GaAI
The 8S cladding layer is an n-GaAs cap layer.

Zn拡散形は拡散の制御が大変値しい難点がある。The Zn diffusion type has the disadvantage that diffusion control is very important.

本発明はこのようなレーザ構造の問題点を解消させて、
一層高速動作させることが可能な半導体レーザの構造を
提案するものである。
The present invention solves the problems of such a laser structure, and
This paper proposes a semiconductor laser structure that can operate at higher speeds.

[問題点を解決するための手段] その目的は、絶縁性基板上に、両側を高抵抗層で囲まれ
た半導体発光部を有し、該半導体発光部の下層の導電性
半導体層と接した導電性領域が前記半導体発光部具外の
他の表面に表出されて、該導電性w4域上と前記半導体
発光部上との同一表面に正負電極が設けられている半導
体発光装置によって達成される。
[Means for solving the problem] The purpose is to have a semiconductor light-emitting part surrounded by high-resistance layers on both sides on an insulating substrate, which is in contact with a conductive semiconductor layer below the semiconductor light-emitting part. A conductive region is exposed on another surface outside the semiconductor light emitting device, and positive and negative electrodes are provided on the same surface on the conductive W4 region and on the semiconductor light emitting device. Ru.

[作用] 即ち、両側を高抵抗層で囲まれた半導体発光部の一方の
電極は、その半導体発光部の上面に形成し、他の電極は
半導体発光部具外の部分の同一表面に形成し、それは半
導体発光部の下の導電性半導体層を介した導電性領域の
上に形成する。
[Operation] That is, one electrode of the semiconductor light emitting part surrounded by high resistance layers on both sides is formed on the upper surface of the semiconductor light emitting part, and the other electrode is formed on the same surface of the part outside the semiconductor light emitting part. , it is formed on a conductive region through a conductive semiconductor layer below the semiconductor light emitting part.

そうすれば、プレーナ形となり、且つ、寄生容量が少な
くなって、製造も容易な構造である。
In this case, the structure becomes planar, has less parasitic capacitance, and is easy to manufacture.

[実施例] 以下、図面を参照して実施例によって詳細に説明する。[Example] Hereinafter, embodiments will be described in detail with reference to the drawings.

第1図は本発明にかかる半導体レーザの断面図を示して
おり、31は半絶縁性1nP基板、32はn−InPハ
ソファ層、33はInGaAs P活性層、34はp−
InPクラッド層、35はp −1nGaAs Pキャ
ップ層。
FIG. 1 shows a cross-sectional view of a semiconductor laser according to the present invention, in which 31 is a semi-insulating 1nP substrate, 32 is an n-InP haphazard layer, 33 is an InGaAs P active layer, and 34 is a p-
InP clad layer, 35 is p-1nGaAs P cap layer.

36は絶縁膜、37は生電極、38は一電極で、39が
高抵抗InP層である。
36 is an insulating film, 37 is a raw electrode, 38 is one electrode, and 39 is a high resistance InP layer.

半導体発光部は両側を高抵抗InP層39に囲まれたn
−TnPバッファ層32+ InGaAs P活性層3
3.p−InPnチク5フ34.  p −1nGaA
s Pキャン1層35からなり、そのうちの活性層から
レーザ発振がおこなわれる。且つ、n−1nPハソファ
層32は高抵抗層39で切断されずに、発光部を囲んだ
高抵抗層39の外側で導電性n−1nP領域40と接続
して、その導電性領域40の上に一電極38が設けられ
ている。
The semiconductor light emitting section is surrounded by high resistance InP layers 39 on both sides.
-TnP buffer layer 32 + InGaAs P active layer 3
3. p-InPn tick 5 34. p-1nGaA
It consists of one layer 35 of the sP can, of which laser oscillation is performed from the active layer. In addition, the n-1nP haphazard layer 32 is not cut by the high-resistance layer 39, but is connected to the conductive n-1nP region 40 on the outside of the high-resistance layer 39 surrounding the light emitting part, and is formed on the conductive region 40. One electrode 38 is provided at one end.

また、図示のように、発光部のp −1nGaAs P
キャン1層35の上に」−電極37が設けられており、
かくして、電極が同一表面に形成されたプレーナ構造と
なっている。
In addition, as shown in the figure, p -1nGaAs P of the light emitting part
An electrode 37 is provided on the can 1 layer 35,
This results in a planar structure in which the electrodes are formed on the same surface.

このような構造に構成すれば、プレーナ形のため複数個
を並べて集積回路に形成することもでき、且つ、発光部
は高抵抗層39に囲まれ、pn接合がなく、電極容量も
減少するために、寄生容量は極めて削減されて、高速動
作が容易になる。
With such a structure, since it is planar, a plurality of them can be lined up to form an integrated circuit, and the light emitting part is surrounded by the high resistance layer 39, there is no pn junction, and the electrode capacitance is reduced. Additionally, parasitic capacitance is significantly reduced, facilitating high-speed operation.

次に、その形成方法の概要を第2図(al〜telに示
す工程順断面図で説明する。まず、同図(alに示すよ
うに、半絶縁性1nP基板31上に、n −1nPバッ
ファ層32. TnGaAs P活性層33.  p−
1nPクラッド層34.  p −1nGaAs Pキ
ャン1層35を順次に成長する。成長法は公知の気相成
長(V P E)法、液相成長(L P E)法、有機
金属に用いた気相成長(MOCVD)法の何れでもよい
Next, the outline of the formation method will be explained with reference to step-by-step cross-sectional views shown in FIG. 2 (al to tel). First, as shown in FIG. Layer 32. TnGaAs P active layer 33. p-
1nP cladding layer 34. A p-1nGaAs P-can 1 layer 35 is sequentially grown. The growth method may be any of the well-known vapor phase epitaxy (VPE), liquid phase epitaxy (LPE), and organic metal vapor phase epitaxy (MOCVD).

次いで、第2図fblに示すように、5i02膜41を
被着し、これをパターンニングしてマスクとした後、露
出した上記の成長層をエツチングして、溝42.42’
を形成する。この時、エツチングはBr系エツチング液
を用いる。
Next, as shown in FIG. 2fbl, a 5i02 film 41 is deposited and patterned to serve as a mask, and the exposed growth layer is etched to form grooves 42, 42'.
form. At this time, a Br-based etching solution is used for etching.

次いで、同図fclに示すように、クロライドVPE法
によって、高抵抗InP層39を形成して、溝42を埋
没させる。クロライドVPE法とはInソースを約80
0℃に加熱し、基板31を670℃の加熱帯域に配置す
る。そして、PCl、+H2ガスを送入すると、次の反
応式によってInClとP(燐)とが生成される。
Next, as shown in fcl of the figure, a high resistance InP layer 39 is formed by the chloride VPE method to bury the trench 42. The chloride VPE method uses an In source of approximately 80%
The substrate 31 is heated to 0°C and placed in a heating zone of 670°C. Then, when PCl and +H2 gas are introduced, InCl and P (phosphorus) are generated according to the following reaction formula.

4 PCIa + 6 H2→P4 +12HCI4I
n+P4 →41nP 41nP+4HC1→41nC1十P4 +2H2そし
て、基板31上の成長帯域で温度が下がり、次式で高純
度のTnPが成長する。
4 PCIa + 6 H2→P4 +12HCI4I
n+P4 → 41nP 41nP+4HC1 → 41nC10P4 +2H2 Then, the temperature decreases in the growth zone on the substrate 31, and high purity TnP grows according to the following equation.

41nCI jP4−4. InP + 4 HCIこ
の高純度InPは高抵抗層である。尚、このクロライド
VPE法は前記の特願昭60−57870号にも説明し
である。
41nCI jP4-4. InP + 4 HCI This high purity InP is a high resistance layer. Incidentally, this chloride VPE method is also explained in the above-mentioned Japanese Patent Application No. 60-57870.

次いで、第2図(dlに示すように、St○2膜41を
除去した後、新たな5i02膜43を被着してバターソ
ニングし、これをマスクとしエツチングして、a44を
形成する。次いで、同図(Ill)に示すように、前記
のVPE法でH2Sガスなどによりドーピングをおこな
い、溝44の中に選択的に導電性n−InP領域40を
成長して、溝44を埋没させる。
Next, as shown in FIG. 2 (dl), after removing the St○2 film 41, a new 5i02 film 43 is deposited and buttersonized, and etching is performed using this as a mask to form a44.Next, As shown in the figure (Ill), doping is performed using H2S gas or the like using the VPE method described above, and a conductive n-InP region 40 is selectively grown in the trench 44, thereby burying the trench 44.

しかる後、5i02膜43を除去し、絶縁膜36.生電
極37.−電極38を形成して、第1図のような断面構
造に完成させる。
After that, the 5i02 film 43 is removed and the insulating film 36. Live electrode 37. - Form the electrode 38 to complete the cross-sectional structure as shown in FIG.

更に、第3図は本発明にかかる他の半導体レーザの断面
図を示しており、本例は高抵抗1nP埋込層39の一方
の一部に、導電性n −InP領域40を重複して形成
したもので、レーザ素子が小型化される構造である。同
図において、第1図と同一部材に同一記号が付してあり
、且つ、その形成方法は第1図の構造と変わりはない。
Furthermore, FIG. 3 shows a cross-sectional view of another semiconductor laser according to the present invention, in which a conductive n-InP region 40 is overlapped in one part of a high-resistance 1nP buried layer 39. This structure allows the laser element to be miniaturized. In this figure, the same members as in FIG. 1 are given the same symbols, and the method of forming them is the same as the structure in FIG. 1.

[発明の効果コ 以上の実施例の説明から明らかなように、本発明によれ
ば寄生容量が少なく、プレーナ形の発光装置が得られ、
複数の高速発光素子を高集積化するなど、光通信の発展
に貢献するものである。
[Effects of the Invention] As is clear from the description of the embodiments above, according to the present invention, a planar light emitting device with small parasitic capacitance can be obtained.
This will contribute to the development of optical communications by increasing the integration of multiple high-speed light emitting devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にがかるレーザの断面図、第2図(al
〜f8+はその形成工程順断面図、第3図は本発明にか
かる他の例のレーザの断面図、第4図ないし第8図は従
来のレーザの断面図である。 図において、 31は半絶縁性InP基板、 32はn−1nPバッファ層、 33ははn −1nGaAs P活性層、34はp−1
nPクラッド層、 35はp −1nGaAs Pキヤツプ層、36は絶縁
膜、     37.38は電極、39は高抵抗InP
層、 40は導電性n −InP領域 を示している。 矛護pHl;かかシし一ワ゛齢市図 第1図 本発明I;η・℃・さ形へ′T祥1慢折面図第2図 8目看1資、ルーサ゛跡6[凶 第4図 高飲抗埋残層1屹・旭BI−I講蓮C−プ゛断面図第 
5 図 7=L−↑鵜拶論し−サ゛討面回 第7図 ア T、T5溝遣のしす゛′跡跡面 筒8図 第 6 図
FIG. 1 is a sectional view of a laser according to the present invention, and FIG. 2 (al.
~f8+ is a sectional view in the order of its formation process, FIG. 3 is a sectional view of another example of the laser according to the present invention, and FIGS. 4 to 8 are sectional views of a conventional laser. In the figure, 31 is a semi-insulating InP substrate, 32 is an n-1nP buffer layer, 33 is an n-1nGaAsP active layer, and 34 is a p-1
nP cladding layer, 35 p-1nGaAs P cap layer, 36 insulating film, 37.38 electrode, 39 high resistance InP
Layer 40 represents a conductive n-InP region. Contradiction pHl; The Scarecrow's Old City Map Figure 1 The Invention I; Figure 4: Cross-sectional view of Asahi BI-I Koren C-Piece buried layer 1
5 Figure 7 = L - ↑ Arrival discussion - Surveillance round Figure 7 A T, T5 Mizokai's Shisu' trace traces Figure 8 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 絶縁性基板上に、両側を高抵抗層で囲まれた半導体発光
部を有し、該半導体発光部の下層の導電性半導体層と接
した導電性領域が前記半導体発光部以外の他の表面に表
出されて、該導電性領域上と前記半導体発光部上との同
一平面に正負電極が設けられていることを特徴とする半
導体発光装置。
A semiconductor light-emitting section surrounded by high-resistance layers on both sides is provided on an insulating substrate, and a conductive region in contact with a conductive semiconductor layer below the semiconductor light-emitting section is formed on a surface other than the semiconductor light-emitting section. A semiconductor light emitting device characterized in that positive and negative electrodes are exposed and provided on the same plane on the conductive region and the semiconductor light emitting section.
JP60230652A 1985-10-15 1985-10-15 Semiconductor light emitting device Pending JPS6288391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60230652A JPS6288391A (en) 1985-10-15 1985-10-15 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60230652A JPS6288391A (en) 1985-10-15 1985-10-15 Semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JPS6288391A true JPS6288391A (en) 1987-04-22

Family

ID=16911152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60230652A Pending JPS6288391A (en) 1985-10-15 1985-10-15 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JPS6288391A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS647681A (en) * 1987-06-30 1989-01-11 Fujikura Ltd Distributed reflex semiconductor laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS647681A (en) * 1987-06-30 1989-01-11 Fujikura Ltd Distributed reflex semiconductor laser

Similar Documents

Publication Publication Date Title
JP3242963B2 (en) Laser diode / waveguide monolithic integrated device
US6556605B1 (en) Method and device for preventing zinc/iron interaction in a semiconductor laser
US6200826B1 (en) Method of fabricating a reverse mesa ridge waveguide type laser diode
US5489798A (en) Opto-electronic integrated circuit
JPS6288391A (en) Semiconductor light emitting device
JPH0716081B2 (en) Semiconductor light emitting device
US5323412A (en) Semiconductor laser device
JPH05218585A (en) Semiconductor light emitting device
JPH07111361A (en) Buried type semiconductor laser device and manufacture thereof
JP2714642B2 (en) Method for manufacturing semiconductor light emitting device
JPS59202676A (en) Planar type light-emitting element
JP3266114B2 (en) Manufacturing method of semiconductor laser
KR950002207B1 (en) Semiconductor laser diode
JPH10510102A (en) Ridge laser in channel
KR100283958B1 (en) Laser diode fabricating method
JPS6453489A (en) Planar electrode type semiconductor element
JP2000174388A (en) Semiconductor laser and manufacture thereof
JPH01187993A (en) Semiconductor light-emitting device
JPS6167980A (en) Semiconductor laser
JPH06120615A (en) Manufacture of semiconductor laser element
JPS63164285A (en) Manufacture of optoelectronic integrated circuit
JPS5864086A (en) Buried hetero semiconductor laser
JPH10209561A (en) Semiconductor laser device
JPH01143383A (en) Optoelectronic integrated circuit and manufacture thereof
JPS63284877A (en) Manufacture of semiconductor device