JPS6287875A - Apparatus for inspecting continuity - Google Patents

Apparatus for inspecting continuity

Info

Publication number
JPS6287875A
JPS6287875A JP60226762A JP22676285A JPS6287875A JP S6287875 A JPS6287875 A JP S6287875A JP 60226762 A JP60226762 A JP 60226762A JP 22676285 A JP22676285 A JP 22676285A JP S6287875 A JPS6287875 A JP S6287875A
Authority
JP
Japan
Prior art keywords
voltage
circuit
electron beam
converted
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60226762A
Other languages
Japanese (ja)
Other versions
JPH065238B2 (en
Inventor
Takanori Ninomiya
隆典 二宮
Yasuo Nakagawa
中川 泰夫
Toshimitsu Hamada
浜田 利満
Hitoshi Kubota
仁志 窪田
Fumiyuki Kobayashi
小林 二三幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60226762A priority Critical patent/JPH065238B2/en
Publication of JPS6287875A publication Critical patent/JPS6287875A/en
Publication of JPH065238B2 publication Critical patent/JPH065238B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To realize automatic inspection with high reliability by bringing the generation of inferiority during inspection due to the damage of a pattern, by performing continuity inspection by utilizing electron beam without bringing the direct contact with the surface of a fine circuit pattern. CONSTITUTION:An electron beam irradiating system consists of an electric field radiation type electron gun 11 capable of changing acceleration voltage by an acceleration voltage changeover circuit 10, an electronic lens and an electrostatic deflection plate 13. An energy filter system consists of a lead-out electrode 14, a speed-reducing electrode 15 and secondary electron detectors 16a, 16b. The signal selectively taken out from an external connection electrode 17 through a signal changeover circuit 19 is converted by a current/voltage converter 20c and further converted by an A/D converter 21c to be inputted to MC(microcomputer)22. The signals detected by a plurality of secondary electron detectors are converted by current/voltage converters 20a, 20b and added by an adder 23 while the added signal is converted by an A/D converter 21a to be inputted to MC22. MC22 compares voltage variation obtained from these measuring means with a variation state expected from normal connection relation to judge disconnection and a short circuit failure.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は印刷回路基板等、配線基板の回路パターンの導
通検査に係り、特に微細回路パターンを有する配線基板
に好適な導通検査装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to continuity testing of circuit patterns on wiring boards such as printed circuit boards, and particularly to a continuity testing device suitable for wiring boards having fine circuit patterns.

〔発明の背景〕[Background of the invention]

従来の導通検査装置は、配線基板上の回路パターンに直
接′成極針を接触させ、回路パターン電極間の電気抵抗
を測定し、回路パターンの断線、短絡を検出する方法を
とっていた。
Conventional continuity testing devices employ a method in which a polarization needle is brought into direct contact with a circuit pattern on a wiring board, and the electrical resistance between electrodes of the circuit pattern is measured to detect breaks or short circuits in the circuit pattern.

しかし、この方法によると、′亀甑針の接触によって回
路パターンに損傷を与えたり、特に回路パターンが微細
な場合、’を極針に?を細なものを必要とするため、電
極針の安定な接触が困難になる等の問題点があった。
However, according to this method, if the circuit pattern is damaged by contact with the turtle needle, or if the circuit pattern is particularly fine, there is no possibility of damaging the circuit pattern due to contact with the turtle needle. Since the electrode needle needs to be thin, there are problems such as making stable contact with the electrode needle difficult.

一方、非接触で回路動作状態を測定する手段として、例
えば、日本学術振興会、荷電粒子ビームの工業への応用
第152委員会、第89回研究会資料に記載された「対
物レンズと一体化した電位検出器(TLD形エネルギー
フィルタ)によるEBテスタの高性能化」(戸所他2名
)という論文に示されているような、電子ビームテスタ
がある。
On the other hand, as a means to measure the circuit operating state without contact, for example, there is a method for measuring the operating state of a circuit using the "integrated There is an electron beam tester such as the one described in the paper "Improving the performance of EB tester using a potential detector (TLD type energy filter)" (by Todokoro et al.).

これによると非接触で回路パターンの電圧が測れるため
、配線基板の導通検査機への応用が考えられるが、この
電子ビームテスタにおいては、外部から(接触的に)回
路K を圧を与えることが前提となっているため、電圧
印加手段として、接触式の電極針を使う必要が生じ、前
述した接触型の導通検査機の問題点を根本的には解決で
きない。
According to this, the voltage of the circuit pattern can be measured without contact, so it can be applied to a continuity tester for wiring boards, but with this electron beam tester, it is not possible to apply pressure to the circuit K from the outside (contact). Because of this assumption, it becomes necessary to use a contact-type electrode needle as a voltage application means, and the problems of the above-mentioned contact-type continuity tester cannot be fundamentally solved.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、微細回路パターンを有する配線基板の
導通検査に好適な、非接触式の導通検査機を提供するこ
とにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a non-contact continuity tester suitable for testing continuity of a wiring board having a fine circuit pattern.

〔発明の概要〕[Summary of the invention]

電気的な導通検査を実現するには、回路パターンに電圧
又は電流を与える手段と、回路パターンの接続状態を検
出するため、その電圧又は電流を測定する手段が必要で
ある。本発明においては、これらをそれぞれ電子ビーム
により非接触で行なう。
In order to perform an electrical continuity test, a means for applying a voltage or current to a circuit pattern, and a means for measuring the voltage or current in order to detect the connection state of the circuit pattern are required. In the present invention, each of these steps is performed in a non-contact manner using an electron beam.

まず、本発明による回路パターンに電圧を与える方法に
ついて説明する。第2図は一般的な多層配線基板の断面
構造を示したものである。
First, a method of applying voltage to a circuit pattern according to the present invention will be explained. FIG. 2 shows a cross-sectional structure of a general multilayer wiring board.

1α、1bは信号服であり導体でできている。この断線
、短絡が本発明装置の検出対象である。信号線は、通常
、絶縁物2を介して電源又は接地)N5C以下まとめて
電源層と呼ぶ)に一定間隔で対向しており、いわゆる、
マイクロストリップラインを形成している。また、信号
線は、スルーホール4a等を介して、配線基板表面の2
置所以上の電極(パッド)5に接続されている。
1α and 1b are signal clothing made of conductors. These disconnections and short circuits are the objects of detection by the device of the present invention. The signal lines usually face the power supply or ground (N5C and below, collectively referred to as the power supply layer) at regular intervals via an insulator 2, and the so-called
It forms a microstrip line. In addition, the signal line is connected to the 2nd side of the wiring board surface via the through hole 4a etc.
It is connected to electrodes (pads) 5 at the same location.

かかる状況においては、電磁理論の教える通り信号線と
電源又は接地層の間に電気的な容it(以下単に容量と
いう)が生じる。第2図において、容量のみに着目した
等価回路を第5図に示す。
In such a situation, as taught by electromagnetic theory, an electrical capacitance (hereinafter simply referred to as capacitance) occurs between the signal line and the power supply or ground layer. In FIG. 2, an equivalent circuit focusing only on capacitance is shown in FIG.

さて、今、電極5GVC電子ビームを照射すると信号線
1αにIIc荷が生じるため、次に示す電圧X(単位:
ポル) 〔V) )が、信号−と電源層の間に生じる。
Now, when the electrode 5GVC electron beam is irradiated, a IIc charge is generated on the signal line 1α, so the following voltage X (unit:
pol) [V)) is generated between the signal layer and the power layer.

’s ”              (11C1 ここに、Qlは与えられた電荷量(単位:クーロン〔C
〕)、qは信号線1αと電源層5F!’lの容量(単位
二ファラッド〔F〕)である。電荷tQlは、電子ビー
ムの電流が一定値工(単位二アンペア〔A〕)、照射時
間t(単位二秒〔S〕)であった場合、 −Q、=(1−δ)It(21 となる。ここく、δは2次電子放出率(照射電子ビーム
電流と放出される2次電子電流の比)であり、電子ビー
ムの照射対象の材料と、電子ビームの加速電圧によって
決まるものである。
's ” (11C1 Here, Ql is the given charge (unit: coulomb [C
]), q is the signal line 1α and the power layer 5F! 'l capacity (unit: two farads [F]). When the electron beam current is constant (unit: 2 amperes [A]) and the irradiation time t (unit: 2 seconds [S]), the charge tQl is expressed as -Q, = (1 - δ) It (21). Here, δ is the secondary electron emission rate (the ratio of the irradiated electron beam current to the emitted secondary electron current), which is determined by the material to be irradiated with the electron beam and the accelerating voltage of the electron beam. .

δと加速電圧の関係の一例を第4図に示す。効率良(信
号線に電荷を与えるには、式(21に示したように、δ
が小さいことが望ましい。本発明においては第4図のC
の範囲で十分高い加速電圧を用いる。
An example of the relationship between δ and acceleration voltage is shown in FIG. Efficient (to give charge to the signal line, as shown in equation (21), δ
It is desirable that the value is small. In the present invention, C in FIG.
Use a sufficiently high accelerating voltage within the range of .

つぎ罠1本発明による回路パターンの電圧を測定する方
法について説明する。照射電子ビームの加速電圧一定と
して、照射対象物の電圧を変化させると、放出される2
次電子のエネルギー分布は変化する。この変化をエネル
ギーフィルタで検出する。エネルギーフィルタの購成法
の一例が、前述の論文に示されている。本発明において
は、電圧測定中に電圧が変化するのを防ぐため、第4図
のE点近傍を電子ビームの加速電圧として選ぶ。
Next, a method for measuring the voltage of a circuit pattern according to the present invention will be explained. When the acceleration voltage of the irradiated electron beam is constant and the voltage of the irradiated object is changed, 2 is emitted.
The energy distribution of secondary electrons changes. This change is detected by an energy filter. An example of how to purchase an energy filter is given in the aforementioned article. In the present invention, in order to prevent the voltage from changing during voltage measurement, the vicinity of point E in FIG. 4 is selected as the electron beam acceleration voltage.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図により説明する。装置
は、 加速電圧切替回路1oによって加速電子の切替えが可能
な電界放射型電子銃11と、電子ビームの収束用電子レ
ンズ12、静電場によって2次元的に電子ビームを偏向
する2対の静ti向板15よりなる電子ビーム照射系と
、 回路パターンから発生する2次電子を引き出すため、プ
ラスの電圧VEをかけた引き出し電極14と、特定のエ
ネルギーを越える電子のみを選択的に通過させるための
減速電極15と、減速電極を通過した2次電子を検出す
る複数の2次電子検出器16とから成るエネルギーフィ
ルタ系と配線基板の外部電極17とコネクタ18を介し
て電気的導・由をとり、外部接続電極に選択的に電源の
電圧をかけるか又は選択的に信号を取り出す信号切替回
路19と、 外部接続′電極から選択的に取り出された信号を電流−
電圧変換20Cシ、A/Di換21Cシた後マイクロコ
ンピュータ22に入力する回路と、複数の2次電子検出
器で検出された信号を電流−重圧変換20α、bした後
、和25をとり、A/D変換21αしてマイクロコンビ
エータ22に入力する回路と、 マイクロコンビエータ22の指示に従ってビームの照射
位置を制御する偏向制御回路24と、電子ビーム照射系
、エネルギーフィルタ系。
An embodiment of the present invention will be described below with reference to FIG. The device includes a field emission type electron gun 11 capable of switching accelerated electrons by an accelerating voltage switching circuit 1o, an electron lens 12 for converging the electron beam, and two pairs of static titers that deflect the electron beam two-dimensionally by an electrostatic field. An electron beam irradiation system consisting of a facing plate 15, an extraction electrode 14 to which a positive voltage VE is applied in order to extract secondary electrons generated from the circuit pattern, and an extraction electrode 14 to selectively pass only electrons exceeding a specific energy. Electrical conduction is achieved through an energy filter system consisting of a deceleration electrode 15 and a plurality of secondary electron detectors 16 that detect secondary electrons that have passed through the deceleration electrode, an external electrode 17 of the wiring board, and a connector 18. , a signal switching circuit 19 that selectively applies a power supply voltage to externally connected electrodes or selectively extracts signals;
After voltage conversion 20C and A/Di conversion 21C, the circuit input to the microcomputer 22 and the signals detected by the plurality of secondary electron detectors are subjected to current-pressure conversion 20α, b, and then the sum 25 is taken, A circuit for A/D conversion 21α and input to the micro combinator 22; a deflection control circuit 24 for controlling the beam irradiation position according to instructions from the micro combinator 22; an electron beam irradiation system; and an energy filter system.

テーブル系を真壁状態に保つ真空室25と、マイクロコ
ンピュータ22の指示に従って被検を対象50を位置決
めするテーブル制御回路51と以上の装置全体を制御し
、断線、短絡を検出−j6マイクロコンピエータ22よ
り成る。
A vacuum chamber 25 that keeps the table system in a solid state, a table control circuit 51 that positions the object 50 to be tested according to instructions from the microcomputer 22, and a j6 microcomputer 22 that controls the entire device and detects disconnections and short circuits. Consists of.

第5図に演算増幅器を用いた電流−電圧変換回路の一例
を示す。また、2次電子検出器16はミンチレータと光
電子増倍管な組合せたものである。
FIG. 5 shows an example of a current-voltage conversion circuit using an operational amplifier. Further, the secondary electron detector 16 is a combination of a mintilator and a photomultiplier tube.

次に動作について説明する。Next, the operation will be explained.

まず、テーブル52を配線基板装着位置に移動させる。First, the table 52 is moved to the wiring board mounting position.

被検査対象50の配線基板をコネクタ18に装着し、マ
イクロコンビエータ22に作業開始を指示すると、マイ
クロコンビエータ22ハ内蔵されたソフトウェアに従っ
て、以下に示す自動検査動作を実行する。
When the wiring board of the object to be inspected 50 is attached to the connector 18 and the micro combinator 22 is instructed to start work, the micro combinator 22 executes the following automatic inspection operation according to the built-in software.

まず真空室内25の空気を排気し、高真空状態にする。First, the air in the vacuum chamber 25 is evacuated to create a high vacuum state.

つぎにテーブル52を駆動し、配線基板50を所定の位
置に位置決めする。マイクロコンピュータ22は、記憶
装置55の中に、配線パターン上の電極(以降パッドと
呼ぶ)の基板表面における位置とそれらの間の正しい導
通関係、及び外部電極間の導通関係、及び外部電極とパ
ッド間の導通関係、及び外部電極のうち電源層、接地層
上接続されている電極の情報を持っている。
Next, the table 52 is driven to position the wiring board 50 at a predetermined position. The microcomputer 22 stores in the storage device 55 the positions of electrodes (hereinafter referred to as pads) on the wiring pattern on the substrate surface and the correct conductive relationship between them, the conductive relationship between the external electrodes, and the external electrodes and the pads. It has information on the conduction relationship between the external electrodes and the electrodes connected to the power layer and ground layer among the external electrodes.

自動検査動作は次のように行なわれる。The automatic inspection operation is performed as follows.

(1)  外部電極間の導通関係の情報を用いて切替え
回路19を制御し、外部電極間の断線、短絡を検出する
。このとき、外部電極への電圧の印加は、本来接続関係
にある回路パターン毎に行ない、各′1圧印加毎に配線
基板表面の全パッドに1つずつ電子ビームを当てて、電
圧の変化を測定する。この時の加速電圧は第4図に示し
たE点すなわち、約1KVとする。この測定結果及び外
部電極とパッド間の導通関係を表わす情報より、外部電
極とパッド間のv@、短絡を検出する。すなわち、外部
電極にプラスの電圧をかげた場合、基板表面の電極と導
通がある場合、電圧が上昇し、2次電子電流は減小する
。一方、導通がない場合、2次電子電流は変化しない。
(1) The switching circuit 19 is controlled using the information regarding the conduction relationship between the external electrodes, and a disconnection or short circuit between the external electrodes is detected. At this time, voltage is applied to the external electrodes for each circuit pattern that is originally in a connection relationship, and for each voltage applied, an electron beam is applied to all pads on the surface of the wiring board one by one to measure changes in voltage. Measure. The acceleration voltage at this time is set to point E shown in FIG. 4, that is, about 1 KV. Based on this measurement result and information representing the conduction relationship between the external electrode and the pad, v@ between the external electrode and the pad and a short circuit are detected. That is, when a positive voltage is applied to the external electrode and there is conduction with the electrode on the surface of the substrate, the voltage increases and the secondary electron current decreases. On the other hand, when there is no conduction, the secondary electron current does not change.

この情報と先に述べた外部電極パッド間の導通関係を示
す情報より、断線、短絡が検出できる。
A disconnection or a short circuit can be detected from this information and the information indicating the conduction relationship between the external electrode pads described above.

(2)  つぎに切替回路19を制御して外部電極のう
ち、電源層に接続されている電極を接地し、その他の電
極を開放とする。本来接続関係にある回路パターンのう
ち、外部電極との接続がないものを一つ選び、その回路
パターン上にある基板表面のパッドのうち、一つのパッ
ドに゛α電子ビーム照射し、本発明の概要に示した涼@
に従って、パターンに電圧を与える。この場合の加速電
圧は、第4図に示したCの範囲、たとえば20KVとす
る。つぎに、配線基板表面の全パッドに一つずつ電子ビ
ームを当て、電圧の変化を測定する。この時のX速ゼ圧
は、第4図に示したE点、たとえば約1Kvとする。電
源層との短絡がなければ加速電圧20KVの成子ビーム
の照射によって、回路パターンにはマイナスの電圧が与
えられる。導通関係にあるパッドに成子ビームを照射し
た場合は、2仄醒子電流が増大し、導通がない場合には
、変化がない。この情報と先に述べたパッド相互間の導
通関照を示す情報とを比較し、断線、短絡を検出する。
(2) Next, the switching circuit 19 is controlled to ground the external electrodes that are connected to the power supply layer, and to open the other electrodes. Among the circuit patterns that are originally in a connection relationship, one of the circuit patterns that has no connection with the external electrode is selected, and among the pads on the surface of the substrate on the circuit pattern, one pad is irradiated with an α electron beam, and the method of the present invention is performed. Ryo @ shown in the overview
Apply voltage to the pattern according to the following. The accelerating voltage in this case is set in the range C shown in FIG. 4, for example, 20 KV. Next, an electron beam is applied to all pads on the surface of the wiring board one by one, and changes in voltage are measured. The X-speed zero pressure at this time is set to point E shown in FIG. 4, for example, about 1 Kv. If there is no short circuit with the power supply layer, a negative voltage is applied to the circuit pattern by irradiation with the steron beam at an accelerating voltage of 20 KV. When a conductive pad is irradiated with a beam, the double current increases; when there is no conduction, there is no change. This information is compared with the information indicating the continuity between the pads described above to detect disconnections and short circuits.

ここで、成子ビームによる電圧印加時間を試算する。た
とえば電子ビーム直流を10ルA、δ=0.5.印加電
圧1vとし、エポキシ基板を、!8縁物とした特性イン
ピーダンス50Ωの信号線で、100mmの長さのもの
を対象とした場合、式(I)。
Here, the voltage application time using the Seiko beam is estimated. For example, the electron beam DC is 10 A, δ=0.5. The applied voltage is 1V, and the epoxy board is,! When considering a signal line with a characteristic impedance of 50Ω and a length of 100 mm, the formula (I) is expressed as follows.

(2)より C=0゜12 X 100 = 12  (pF ) 
     (3)Q : eV : 12 X 10−
’X(−1)>12X10’穎〕(4)−Q    1
2X10−” t ニー :        :0,0024 (S)
 +51(1−J)I  a、5x1ox1o−’すな
わち、1回路パターン当り2 、477!JFどなる。
From (2), C=0°12 x 100 = 12 (pF)
(3) Q: eV: 12 x 10-
'X(-1)>12X10') (4)-Q 1
2X10-”t Knee: :0,0024 (S)
+51(1-J)I a, 5x1ox1o-', that is, 2,477 per circuit pattern! JF yells.

本実施例によれば、外部電極からの電圧の印加と、電子
ビームによる電圧の印加を併用しているので、すべての
回路パターンの導通検査を能率よ(行なうことができる
According to this embodiment, since the application of voltage from the external electrode and the application of voltage by the electron beam are used together, continuity testing of all circuit patterns can be carried out efficiently.

本実施例では、電界放射型の電子銃を用いたが熱電子放
射型の電子銃を用いてもよい。またテーブル移動を併用
する等して、電子ビームの偏向角が小さくできる場合、
静電偏向の代わりに′電磁偏向を用いてもよい。さらに
、複数の2次電子検出器の信号の合成手段として、アナ
ログ信号の和をとったが、これはA/D変換後、ディジ
タル的に行なってもよい。また、第1図において、被検
査基板の外部電極端子は、基板裏面より出ているように
記述したが、基板側面又は上面より出ていてもよいこと
はもちろんである。さらに、第1図に示した2次電子検
出器は、ミンチレータと光電子増倍管の組合せに限らず
、マルチチャネルプレート、半導体上ンサ等のものでも
かまわない。
In this embodiment, a field emission type electron gun is used, but a thermionic emission type electron gun may also be used. In addition, if the deflection angle of the electron beam can be reduced by using table movement, etc.,
Electromagnetic deflection may be used instead of electrostatic deflection. Further, although analog signals are summed as means for synthesizing signals from a plurality of secondary electron detectors, this may be done digitally after A/D conversion. Further, in FIG. 1, the external electrode terminals of the substrate to be inspected are described as coming out from the back surface of the substrate, but it goes without saying that they may come out from the side surface or the top surface of the substrate. Further, the secondary electron detector shown in FIG. 1 is not limited to the combination of a mintilator and a photomultiplier tube, but may be a multi-channel plate, a semiconductor-based sensor, or the like.

〔発明の効果〕 本発明によれば、回路パターン表面に直接触れろことな
く導通検査できるので、パターンの損傷による検査中の
不良発生をOにすることができ、高信頼の自動検査が実
現できる。
[Effects of the Invention] According to the present invention, continuity testing can be performed without directly touching the surface of the circuit pattern, so the occurrence of defects during testing due to damage to the pattern can be reduced to zero, and highly reliable automatic testing can be realized. .

また、電圧の印加、検出に電子ビームを用いているので
、微細かつ高密度パターンの24通検査が可能になると
いう効果がある。
Furthermore, since an electron beam is used for voltage application and detection, it is possible to inspect 24 fine and high-density patterns.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例、第2図は本発明が対象とす
る配線基板の断面の一例を示した図、第5図は第2図の
電気的等価回路、第4図は電子ビームによる2次電子放
出率の変化を示した図、第5図は電流−電圧変換回路の
一例を示した図である。 1・・・信号線、2・・・;I8縁体、5・・・電源1
研、4・・・スルーホール、5・・・電極、10・・・
加速電圧切替回路、11・・・電子鏡、12・・・電子
レンズ、15・・・偏向板、14・・・引き出し′1極
、15・・・減速電極、16・・・2次電子検出器、1
7・・・外部電極、18・・・ソケット、19・・・切
替回路、20・・・電流−゛電圧変換回路、21・・・
A、f)変換器、22・・・マイクロコンピュータ、2
5・・・加算回路、24・・・偏向制御卸回路、25・
・・真空呈、60・・・被検査基板、51・・・テーブ
ル制−回路、32・・・テーブル、55・・・記憶装置
Fig. 1 is an embodiment of the present invention, Fig. 2 is a diagram showing an example of a cross section of a wiring board to which the present invention is applied, Fig. 5 is an electrical equivalent circuit of Fig. 2, and Fig. 4 is an electronic FIG. 5 is a diagram showing changes in the secondary electron emission rate due to the beam, and is a diagram showing an example of a current-voltage conversion circuit. 1... Signal line, 2...; I8 edge body, 5... Power supply 1
Grind, 4... Through hole, 5... Electrode, 10...
Accelerating voltage switching circuit, 11... Electronic mirror, 12... Electronic lens, 15... Deflection plate, 14... Drawer '1 pole, 15... Deceleration electrode, 16... Secondary electron detection vessel, 1
7... External electrode, 18... Socket, 19... Switching circuit, 20... Current-voltage conversion circuit, 21...
A, f) Converter, 22...Microcomputer, 2
5... Addition circuit, 24... Deflection control wholesale circuit, 25.
. . . Vacuum display, 60 . . . Board to be inspected, 51 . . . Table system circuit, 32 .

Claims (1)

【特許請求の範囲】 1、回路配線パターンの断線、短絡欠陥を検出する導通
検査装置において、 電子ビームによって回路配線パターンに電荷を付与する
手段と、 回路配線パターンの電圧変動を電子ビームの照射により
発生する二次電子の変動を検出することにより計測する
手段と、 上記計測手段より得られた電圧変動を、正規の接続関係
から期待される変動状態と比較し、断線、短絡欠陥を判
定する手段とから成ることを特徴とする導通検査装置。
[Claims] 1. A continuity testing device for detecting disconnections and short-circuit defects in a circuit wiring pattern, comprising means for applying an electric charge to the circuit wiring pattern using an electron beam, and detecting voltage fluctuations in the circuit wiring pattern by irradiating the electron beam. A means for measuring by detecting fluctuations in secondary electrons generated; and a means for comparing the voltage fluctuation obtained by the measuring means with a fluctuation state expected from a normal connection relationship to determine a disconnection or short circuit defect. A continuity testing device comprising:
JP60226762A 1985-10-14 1985-10-14 Continuity inspection device Expired - Lifetime JPH065238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60226762A JPH065238B2 (en) 1985-10-14 1985-10-14 Continuity inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60226762A JPH065238B2 (en) 1985-10-14 1985-10-14 Continuity inspection device

Publications (2)

Publication Number Publication Date
JPS6287875A true JPS6287875A (en) 1987-04-22
JPH065238B2 JPH065238B2 (en) 1994-01-19

Family

ID=16850215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60226762A Expired - Lifetime JPH065238B2 (en) 1985-10-14 1985-10-14 Continuity inspection device

Country Status (1)

Country Link
JP (1) JPH065238B2 (en)

Also Published As

Publication number Publication date
JPH065238B2 (en) 1994-01-19

Similar Documents

Publication Publication Date Title
US4573008A (en) Method for the contact-free testing of microcircuits or the like with a particle beam probe
US4415851A (en) System for contactless testing of multi-layer ceramics
CA1187201A (en) Inspection of multilayer ceramic circuit modules by electrical inspection of unfired green sheets
JPH0614084B2 (en) Conductive path test method
JP2002176088A (en) Semiconductor device inspecting device
US3764898A (en) Methods of testing the continuity of an electrical conductor by use of an electron beam
US4855673A (en) Electron beam apparatus
US5053699A (en) Scanning electron microscope based parametric testing method and apparatus
US6154039A (en) Functional OBIC analysis
CA1277773C (en) Method for testing conductor networks
JP2004296771A (en) Device and method for inspecting semiconductor
US6369590B1 (en) Apparatus and method using photoelectric effect for testing electrical traces
JPS6287875A (en) Apparatus for inspecting continuity
Brunner et al. Electron-beam MCM testing and probing
JP2002318258A (en) Device and method for inspecting circuit board
JP3080158B2 (en) Inspection method and inspection device for printed circuit board
US6459283B1 (en) Method and system for testing an electrical component
JPS62191Y2 (en)
JPH02174138A (en) Board inspection apparatus using electron beam
JPH02185054A (en) Substrate inspection device using electron beam
JP2002064127A (en) Sample inspection device
WO2024008309A1 (en) Method for testing a packaging substrate, and apparatus for testing a packaging substrate
JPH01199172A (en) Method of continuity test by electron beam
JPS6164135A (en) Semiconductor analyzer
KR20020019995A (en) Apparatus and methods of contactless voltage measurements for electronic circuits

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term