JPS62191Y2 - - Google Patents

Info

Publication number
JPS62191Y2
JPS62191Y2 JP1983016597U JP1659783U JPS62191Y2 JP S62191 Y2 JPS62191 Y2 JP S62191Y2 JP 1983016597 U JP1983016597 U JP 1983016597U JP 1659783 U JP1659783 U JP 1659783U JP S62191 Y2 JPS62191 Y2 JP S62191Y2
Authority
JP
Japan
Prior art keywords
potential
circuit
electron beam
measured
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983016597U
Other languages
Japanese (ja)
Other versions
JPS58150839U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1659783U priority Critical patent/JPS58150839U/en
Publication of JPS58150839U publication Critical patent/JPS58150839U/en
Application granted granted Critical
Publication of JPS62191Y2 publication Critical patent/JPS62191Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Tests Of Electronic Circuits (AREA)

Description

【考案の詳細な説明】 本考案は、電子ビームを用いて半導体素子の任
意の部分の電位を測定することにより、半導体素
子の良否を測定する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for measuring the quality of a semiconductor element by measuring the potential of any part of the semiconductor element using an electron beam.

半導体製造技術の発展により集積回路(以下
ICという)の集積度が増大するに伴ない、1チ
ツプ上に搭載される半導体素子の数は次第に多く
なり、現在では数千以上に達している。しかし一
方ではICの外部端子数は高々数十本から百本程
度に抑えられている。このためICの電気的特性
を測定しようとするとき、外部端子を利用して直
接測定できる半導体素子の特性は極めて限られた
ものとなり、IC内部の直接外部端子に接続され
ていない多くの半導体素子の特性はマイクロプロ
ーバ等を用いた機械的な方法以外に適当な測定方
法がなかつた。このマイクロプローバによる機械
的な測定方法では極めて細いタングステン線から
なる接触子を用い、これを半導体素子の測定箇所
に押し当て、当該箇所の電位を測定することによ
り半導体素子の良否、配線パターンの断線等を検
出するものである。しかしこのような機械的な方
法では位置決め精度をそれ程高くとれず、また接
触子の径の限界から半導体素子との接触面積が大
きい等の問題がある。例えば現在のICでは半導
体素子の大きさが4〜5mm角程度、アルミニウム
配線パターンの幅は5μ程度であるが、タングス
テンの接触子の径をこの配線パターン程度に細く
すると機械的強度が不足して脆弱になり、取扱い
が不便になる。また配線パターンのアルミニウム
は空気中で極めて酸化しやすく、配線パターンの
表面は通常酸化膜で覆われている。電位測定のた
めには該酸化膜を破つて接触子を内部の配線パタ
ーンに直接接触させねばならないが、これは接触
子が脆弱であると不可能であり、絶縁物上に接触
子を押し当ててその内部の配線パターンの電位を
測定することになり、誤差が多い。また接触子が
強靭であると機械的接触により被測定素子を破壊
する危険性がある。
With the development of semiconductor manufacturing technology, integrated circuits (hereinafter referred to as
As the degree of integration of integrated circuits (ICs) increases, the number of semiconductor elements mounted on a single chip gradually increases, reaching several thousand or more at present. However, on the other hand, the number of external terminals on an IC is limited to about a few dozen to a hundred at most. Therefore, when trying to measure the electrical characteristics of an IC, the characteristics of semiconductor elements that can be directly measured using external terminals are extremely limited. There is no suitable method for measuring the characteristics other than a mechanical method using a microprober or the like. This mechanical measurement method using a microprober uses a contact made of an extremely thin tungsten wire, which is pressed against a measurement point on a semiconductor device and measures the potential at that point. etc. is detected. However, such a mechanical method does not have a very high positioning accuracy and has problems such as a large contact area with the semiconductor element due to the limit of the diameter of the contact. For example, in current ICs, the size of the semiconductor element is about 4 to 5 mm square, and the width of the aluminum wiring pattern is about 5 microns, but if the diameter of the tungsten contact was made as thin as this wiring pattern, the mechanical strength would be insufficient. It becomes fragile and difficult to handle. Further, the aluminum of the wiring pattern is extremely easily oxidized in the air, and the surface of the wiring pattern is usually covered with an oxide film. To measure potential, it is necessary to break the oxide film and bring the contact directly into contact with the internal wiring pattern, but this is impossible if the contact is fragile, so it is necessary to press the contact onto an insulator. This means that the potential of the internal wiring pattern is measured, which is subject to many errors. Furthermore, if the contactor is strong, there is a risk that the device to be measured may be destroyed by mechanical contact.

本考案はかゝる問題を改善しようとするもの
で、被測定素子の測定すべき任意の部分に電子ビ
ームを照射し、照射された部分からこの時放射さ
れる二次電子量を検出することにより、当該部分
の電位を測定し、これにより良否判定を行なう。
この方式によれば、IC内部のいかなる微細部分
の電位をも容易に測定することができ、また機械
的な接触は行なわないからビーム電流および加速
電圧を適当に選択することによりIC中の半導体
素子を破壊することもない。
The present invention aims to improve this problem by irradiating an arbitrary part of the device to be measured with an electron beam and detecting the amount of secondary electrons emitted from the irradiated part. The potential of the relevant part is measured, and the quality is judged based on this.
According to this method, it is possible to easily measure the potential of any minute part inside the IC, and since there is no mechanical contact, by appropriately selecting the beam current and acceleration voltage, it is possible to easily measure the potential of any minute part inside the IC. neither will it destroy it.

本考案の電子ビームを用いた測定装置は測定条
件に基ずく入力信号を加えて作動状態においた半
導体素子の任意選択された部分に電子ビームを照
射する装置と、該電子ビーム照射装置へ、該任意
選択された部分へ電子ビームを偏向するための信
号を出力し、かつ該部分における予定電位を出力
する制御手段と、該任意選択された部分から放出
される二次電子を捕集してその二次電子量から当
該部分の電位を測定する回路と、前記電位測定回
路の出力電位と前記制御手段からの予定電位とを
比較し、これらの電位の一致及び不一致により前
記半導体素子の当該部分の良否を判別する一致回
路とを備えることを特徴とするが、以下図面の実
施例を参照しながら本考案を詳細に説明する。
The measuring device using an electron beam of the present invention includes a device that applies an input signal based on measurement conditions to irradiate an arbitrarily selected portion of a semiconductor device in an operating state with an electron beam, and a device that irradiates an arbitrarily selected portion of a semiconductor device with an electron beam to the electron beam irradiation device. a control means for outputting a signal for deflecting the electron beam to an arbitrarily selected portion and outputting a predetermined potential at the portion; and a control means for collecting secondary electrons emitted from the arbitrarily selected portion. A circuit that measures the potential of the part from the amount of secondary electrons compares the output potential of the potential measuring circuit with the planned potential from the control means, and depending on whether these potentials match or do not match, determines the potential of the part of the semiconductor element. The present invention will be described in detail below with reference to embodiments of the drawings.

第1図は本考案に係る測定装置を示し、1は電
子銃、2は焦点レンズ、3は電子ビーム偏向器、
4は被測定集積回路、5はビーム偏向回路、6は
二次電子検出回路、7は入力信号発生回路、8は
信号変換回路、9は一致回路、10は制御回路で
ある。
FIG. 1 shows a measuring device according to the present invention, in which 1 is an electron gun, 2 is a focusing lens, 3 is an electron beam deflector,
4 is an integrated circuit to be measured, 5 is a beam deflection circuit, 6 is a secondary electron detection circuit, 7 is an input signal generation circuit, 8 is a signal conversion circuit, 9 is a coincidence circuit, and 10 is a control circuit.

次に測定方法を説明すると、制御回路10は予
め用意された被測定集積回路4の測定条件を入力
信号発生回路7に入力する。入力信号発生回路7
はこの測定条件に基づく入力信号を発生し、これ
は被測定集積回路4に入力されてこの回路を正規
の動作状態とする。例えば集積回路4が第3図に
示すようにアンドゲートG1,G2、入力端子t1
t3、出力端子t4からなるとすると、回路7はこれ
らの入力端子t1,t2,t3に例えば“1”,“1”,
“1”の如き2値信号を入力する。この結果集積
回路4は正規状態ではアンドゲートG1,G2の2
つの入力および1つの出力がいずれもハイレベル
即ち“1”である状態をとる。次に制御回路10
は集積回路4中の測定箇所例えば点Pへ電子ビー
ムを投射するに必要なX軸、Y軸各偏向電圧を指
令する信号を出力し、これをビーム偏向回路5へ
入力する。更に制御回路10は、予めシユミレー
シヨン等の方法により求めておいた測定箇所の予
定電位、本例では“1”を出力して、これを一致
回路9の基準値端子に入力する。一致回路9へ入
力する予定電位信号は、電子計算機から取入れる
ようにしてもよく、集積回路4が複雑な回路構成
を持つ場合はこの方が制御回路10を大型化しな
いので適切である。
Next, the measurement method will be described. The control circuit 10 inputs measurement conditions for the integrated circuit under test 4 prepared in advance to the input signal generation circuit 7. Input signal generation circuit 7
generates an input signal based on this measurement condition, which is input to the integrated circuit under test 4 to put this circuit into a normal operating state. For example, as shown in FIG. 3, the integrated circuit 4 has AND gates G1 , G2 , input terminals t1 to
t 3 and an output terminal t 4 , the circuit 7 inputs, for example, " 1 ", " 1 ",
Input a binary signal such as "1". As a result, the integrated circuit 4 has two AND gates G 1 and G 2 in the normal state.
One input and one output are all at high level, that is, "1". Next, the control circuit 10
outputs a signal instructing the X-axis and Y-axis deflection voltages necessary to project the electron beam to a measurement location, for example, point P in the integrated circuit 4, and inputs this signal to the beam deflection circuit 5. Further, the control circuit 10 outputs a predetermined potential at the measurement point, which has been determined in advance by a method such as simulation, which is "1" in this example, and inputs this to the reference value terminal of the matching circuit 9. The predetermined potential signal input to the matching circuit 9 may be taken from an electronic computer, which is appropriate when the integrated circuit 4 has a complicated circuit configuration because it does not increase the size of the control circuit 10.

電子銃1から電子ビーム11を発射すると、こ
の電子ビーム11は焦点レンズ2で集積回路4上
に正しく焦点を結ぶように調整され、そして電子
ビーム偏向器3で所定のX軸方向及びY軸方向の
偏向を受け、集積回路4上の被測定部分に正しく
入射する。電子ビーム11が入射すると被測定部
分から反射電子、主として二次電子が放出され
る。この二次電子量は被測定部分の電位と強い相
関関係があるので、これを装定することにより逆
に被測定部分の電位を求めることができる。放出
された二次電子は二次電子検出回路6で捕集さ
れ、信号変換回路8により電位に変換される。こ
の測定電位は一致回路9に入力され、制御回路9
から入力された被測定部分の予定電位値と比較さ
れ、一致不一致が判定される。一致回路9は両電
位が一致したとき集積回路4の被測定部分が正常
であることを表わす信号を出力し、不一致の時は
異常信号を出力する。制御回路10はこの正常、
異常信号を受けて適当な表示あるいは記録を行な
い、然るのち集積回路4の次の被測定部分を測定
するために必要な信号を出力し、これらを入力信
号発生回路7及びビーム偏向回路5に入力させ
る。
When an electron beam 11 is emitted from an electron gun 1, the electron beam 11 is adjusted by a focusing lens 2 so that it is properly focused on an integrated circuit 4, and then is focused in a predetermined X-axis direction and Y-axis direction by an electron beam deflector 3. The beam is deflected by the beam and is correctly incident on the part to be measured on the integrated circuit 4. When the electron beam 11 is incident, reflected electrons, mainly secondary electrons, are emitted from the portion to be measured. Since this amount of secondary electrons has a strong correlation with the potential of the part to be measured, by setting this amount, the potential of the part to be measured can be determined conversely. The emitted secondary electrons are collected by a secondary electron detection circuit 6 and converted into a potential by a signal conversion circuit 8. This measured potential is input to the matching circuit 9, and the control circuit 9
It is compared with the predetermined potential value of the part to be measured input from , and a match or mismatch is determined. The matching circuit 9 outputs a signal indicating that the part to be measured of the integrated circuit 4 is normal when the two potentials match, and outputs an abnormal signal when they do not match. The control circuit 10 is normal,
After receiving the abnormal signal, it performs appropriate display or recording, then outputs the signals necessary to measure the next part of the integrated circuit 4 to be measured, and sends these to the input signal generation circuit 7 and the beam deflection circuit 5. Let them input.

以下同様にして次の被測定箇所の電位の測定、
一致回路による判定を行なう。こうして本装置で
は、制御回路10により多数の集積回路部分の測
定を次々に自動的に行なうことができる。
Measure the potential of the next measured point in the same manner.
Judgment is made by a matching circuit. In this way, in this apparatus, the control circuit 10 can automatically measure a large number of integrated circuit parts one after another.

電子ビーム11の加速電圧およびビーム電流は
適当に設定し、被測定集積回路の各半導体素子が
電子ビーム11により破壊されないようにする。
電子ビーム11の偏向は自由自在でありまたビー
ム径は1μm程度にも絞ることができるので、任
意の微少な部分例えば幅のせまいアルミ配線パタ
ーンの所望位置に電子ビームを投射し、測定を行
なうことができる。
The accelerating voltage and beam current of the electron beam 11 are appropriately set so that each semiconductor element of the integrated circuit to be measured is not destroyed by the electron beam 11.
Since the electron beam 11 can be deflected freely and the beam diameter can be narrowed down to about 1 μm, the electron beam can be projected onto any minute part, such as a desired position on a narrow aluminum wiring pattern, and the measurement can be carried out. I can do it.

電子ビームを利用した測定又は検査は、例えば
電子顕微鏡ですでに行なわれている。しかし電子
顕微鏡の場合は被検体の所望部分を走査すること
になるので、これを集積回路の検査に利用すると
第2図に示すように集積回路4の半導体素子4
a,4b,4cの所望のもの例えば4bを電子ビ
ームが走査し、このとき放出される二次電子を検
出器が受け、増幅器等を介してこの検出器の出力
を陰極線管に入力し、素子4bの二次電子像を画
像表示し、これを予めシユミレートしておいた予
定二次電子像と見較べて正常、異常判断を行なわ
ざるを得ない。しかしながらかゝる方法では画像
同志の比較という厄介な操作が入り、実用的でな
い。この点本発明によれば電位同志の比較である
から、簡単な回路構成の一致回路9で容易に正
常、異常を判断することができる。
Measurements or inspections using electron beams have already been carried out, for example with electron microscopes. However, in the case of an electron microscope, a desired part of the object to be examined is scanned, so when this is used for inspecting integrated circuits, the semiconductor elements 4 of the integrated circuit 4 are scanned as shown in FIG.
A, 4b, and 4c, for example, 4b, are scanned by the electron beam, and a detector receives the secondary electrons emitted at this time.The output of this detector is input to the cathode ray tube via an amplifier, etc. It is necessary to display the secondary electron image of 4b and compare it with a planned secondary electron image simulated in advance to determine whether it is normal or abnormal. However, such a method involves a complicated operation of comparing images, and is not practical. In this respect, according to the present invention, since the potentials are compared, normality and abnormality can be easily determined using the matching circuit 9 having a simple circuit configuration.

以上詳細に説明したように本考案では電子ビー
ムを照射したとき放出される二次電子量と電位の
相関関係に着目して、正規の動作状態においた
IC中の任意の測定箇所に電子ビームを照射し
て、該箇所からの二次電子量により電位を測定し
ている。このため、、マイクロプローバ等の機械
的測定方法と異なり非接触で電位測定ができ、
IC内部の半導体素子の良否及び金属配線部分の
断線、短絡を容易に検出することができ、しかも
測定は自動的に行なうことができる利点が得られ
る。
As explained in detail above, the present invention focuses on the correlation between the amount of secondary electrons emitted when irradiated with an electron beam and the electric potential.
An electron beam is irradiated onto an arbitrary measurement location in the IC, and the potential is measured based on the amount of secondary electrons emitted from that location. Therefore, unlike mechanical measurement methods such as microprobers, potential can be measured without contact.
This method has the advantage that it is possible to easily detect the quality of the semiconductor element inside the IC, as well as disconnections and short circuits in the metal wiring portion, and that the measurement can be performed automatically.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案に係る測定装置の構成を示すブ
ロツク図、第2図および第3図は被測定集積回路
の説明図である。 図において1,2,3,5は電子ビーム照射装
置、6,8は測定回路、4は集積回路、4a,4
b,4cは半導体素子、9は一致回路、10は制
御回路である。
FIG. 1 is a block diagram showing the configuration of a measuring device according to the present invention, and FIGS. 2 and 3 are explanatory diagrams of an integrated circuit to be measured. In the figure, 1, 2, 3, 5 are electron beam irradiation devices, 6, 8 are measurement circuits, 4 is an integrated circuit, 4a, 4
b, 4c are semiconductor elements, 9 is a coincidence circuit, and 10 is a control circuit.

Claims (1)

【実用新案登録請求の範囲】 測定条件に基ずく入力信号を加えて作動状態に
おいた半導体素子の任意選択された部分に電子ビ
ームを照射する装置と、 該電子ビーム照射装置へ、該任意選択された部
分へ電子ビームを偏向するための信号を出力し、
かつ該部分における予定電位を出力する制御手段
と、 該任意選択された部分から放出される二次電子
を捕集してその二次電子量から当該部分の電位を
測定する回路と、 前記電位測定回路の出力電位と前記制御手段か
らの予定電位とを比較し、これらの電位の一致及
び不一致により前記半導体素子の当該部分の良否
を判定する一致回路とを備えることを特徴とする
電子ビームを用いた測定装置。
[Claims for Utility Model Registration] A device for irradiating an arbitrarily selected portion of a semiconductor device into an operating state with an electron beam by applying an input signal based on measurement conditions; outputs a signal to deflect the electron beam to the
and a control means for outputting a predetermined potential in the portion; a circuit that collects secondary electrons emitted from the arbitrarily selected portion and measures the potential of the portion from the amount of secondary electrons; and the potential measurement. A matching circuit that compares the output potential of the circuit with a predetermined potential from the control means and determines the quality of the corresponding part of the semiconductor element based on the match or mismatch of these potentials. Measuring device.
JP1659783U 1983-02-07 1983-02-07 Measuring device using electron beam Granted JPS58150839U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1659783U JPS58150839U (en) 1983-02-07 1983-02-07 Measuring device using electron beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1659783U JPS58150839U (en) 1983-02-07 1983-02-07 Measuring device using electron beam

Publications (2)

Publication Number Publication Date
JPS58150839U JPS58150839U (en) 1983-10-08
JPS62191Y2 true JPS62191Y2 (en) 1987-01-07

Family

ID=30028960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1659783U Granted JPS58150839U (en) 1983-02-07 1983-02-07 Measuring device using electron beam

Country Status (1)

Country Link
JP (1) JPS58150839U (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4974484A (en) * 1972-11-17 1974-07-18

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4974484A (en) * 1972-11-17 1974-07-18

Also Published As

Publication number Publication date
JPS58150839U (en) 1983-10-08

Similar Documents

Publication Publication Date Title
US4706019A (en) Electron beam test probe system for analyzing integrated circuits
JP3534582B2 (en) Pattern defect inspection method and inspection device
KR100775437B1 (en) Pattern inspection device and method
US20090189075A1 (en) Inspection method and inspection system using charged particle beam
JPH11326247A (en) Substrate-inspection device and substrate-inspection system provided therewith and substrate-inspection method
JPH09320505A (en) Electron beam type inspecting method, device therefor, manufacture of semiconductor, and its manufacturing line
JP2001127125A (en) Method and system for inspecting/analyzing defect and inspection device for semiconductor device pattern
US5053699A (en) Scanning electron microscope based parametric testing method and apparatus
JPH10134757A (en) Multi-beam inspection device
US5045783A (en) Method for testing a printed circuit board with a particle probe
JPH11154695A (en) Method for locating faulty point on integrated circuit and apparatus for locating faulty point
JP3330382B2 (en) Test and repair equipment for integrated circuits
JPS62191Y2 (en)
JPH03146951A (en) Aperture inspecting method for converged ion beam device
JP2002139464A (en) Inspection method and device of semiconductor device
JP2000077019A (en) Electron microscope
JPS6089050A (en) Strobo scanning electron microscope
JP2978971B2 (en) Charged particle beam apparatus and charged particle beam positioning method
JPH0815173B2 (en) Semiconductor integrated circuit operation evaluation method
JP2000304827A (en) Non-contact continuity testing method device
JPS6164135A (en) Semiconductor analyzer
JPH0725724Y2 (en) Micro pad
JPS61156627A (en) Sample voltage measuring apparatus
JP2557847B2 (en) Operation analysis method and operation analysis apparatus for semiconductor integrated circuit
JPH0417250A (en) Electron beam device