JPS6287480A - Floating zone melting - Google Patents

Floating zone melting

Info

Publication number
JPS6287480A
JPS6287480A JP22716085A JP22716085A JPS6287480A JP S6287480 A JPS6287480 A JP S6287480A JP 22716085 A JP22716085 A JP 22716085A JP 22716085 A JP22716085 A JP 22716085A JP S6287480 A JPS6287480 A JP S6287480A
Authority
JP
Japan
Prior art keywords
melted
magnetic field
sample
rod
floating zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22716085A
Other languages
Japanese (ja)
Inventor
Kazuo Sawada
澤田 和夫
Masanobu Nishio
西尾 將伸
Yoshihiro Nakai
由弘 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP22716085A priority Critical patent/JPS6287480A/en
Publication of JPS6287480A publication Critical patent/JPS6287480A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:A part of the rod sample which is held vertically is melted and allowed to move relatively up and down, as the melted part is kept with the surface tension under application of magnetic field to effect high speed of sample purification without break-out and unevenness in the melted part. CONSTITUTION:A rod sample 1 is vertically held in vacuum and melted partially with a high-frequency coil 2 to form the melted part 3. Then, a static magnetic fields over 0.1 stera is applied to the melted part with a superconductive magnet 4 to keep the coil and the magnet 4 in constant positions, as the melted part is supported with its surface tension and the sample is allowed to vertically move up and down, relatively.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、材料の精製法に関し、特に、浮遊帯溶融法
の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] This invention relates to a method for refining materials, and in particular to an improvement in a floating zone melting method.

[従来の技術] 単結晶の棒状体を得たり、精製効果を高めたりするため
の精製法として、浮遊帯溶融法(フローティング・ゾー
ン・メルティング法)と称されるものがある。この浮遊
帯溶融法は、垂直に保持した棒状試料の一部を溶融し、
この溶融部を表面張力で支えながら上下方向に移動させ
るものである、この方法によれば、溶融部がるつぼ等と
接触しない。したがって、高融点材料等のようにるつぼ
材料によっては支持しにくい材料を精製する場合に有効
であり、またるつぼからの汚染を防止したい場合にも有
効である。
[Prior Art] As a refining method for obtaining a single crystal rod-like body and for enhancing the refining effect, there is a method called a floating zone melting method. This floating zone melting method melts a part of a rod-shaped sample held vertically.
According to this method, which moves the molten part in the vertical direction while supporting it by surface tension, the molten part does not come into contact with the crucible or the like. Therefore, it is effective when refining materials that are difficult to support depending on the crucible material, such as high melting point materials, and also when it is desired to prevent contamination from the crucible.

[発明が解決しようとする問題点コ しかし、この浮遊帯溶融法は、以下のような問題点を含
む。
[Problems to be Solved by the Invention] However, this floating zone melting method includes the following problems.

すなわち、溶融部が表面張力のみによって支持されるの
で、その支持が不安定であり、そこでのブレークアラ]
・の防止に厳密な制御が必要とされていた。また、この
方法によって精製し得る材料どしては、表面張力が十分
働き得る細径のものに限定される。さらに、溶融部の表
面はちょっとした振動や条件変化などにより不安定とな
るので、精製された単結晶材や精製材の表面の平滑さが
劣る。
In other words, since the molten part is supported only by surface tension, the support is unstable and breakage occurs there.
・Strict control was required to prevent. Furthermore, materials that can be purified by this method are limited to those with a small diameter that allows sufficient surface tension to work. Furthermore, since the surface of the molten part becomes unstable due to slight vibrations or changes in conditions, the surface smoothness of refined single crystal materials and purified materials is inferior.

それゆえに、この発明の目的は、上述の問題点を解消し
得る改良された浮遊帯溶融法を提供することである。
It is therefore an object of the present invention to provide an improved floating zone melting process that can overcome the above-mentioned problems.

[問題点を解決するための手段]および[発明の効果] この発明に従った浮遊帯溶融法は、垂直に保持した棒状
試料の一部を溶融し、この溶融部に磁場を付与した状態
で該溶融部を表面張力で支えながら上下方向に相対的に
移動させることを特徴とする。
[Means for Solving the Problems] and [Effects of the Invention] The floating zone melting method according to the present invention melts a part of a rod-shaped sample held vertically, and applies a magnetic field to the melted part. It is characterized in that the molten part is relatively moved in the vertical direction while being supported by surface tension.

溶融部に磁場を付与することによって、この溶融部の見
掛は粘度は増加し、それゆえに溶融部の見掛は表面張ノ
jが増大する。したがって、精製時にたとえ振動等が生
じたとしてもこの溶融部におけるブレークアウトや表面
の凹凸が少なくなる。
By applying a magnetic field to the melt, the apparent viscosity of the melt increases, and therefore the apparent surface tension of the melt increases. Therefore, even if vibrations or the like occur during refining, breakouts and surface irregularities in the molten zone are reduced.

こうして、従来のような溶融部に対する厳密な制御が不
要となり、精製作業が容易になる。また、溶融部の見掛
は表面張力が増大することから、従来よりも太い径の材
料にも本方法を適用することが可能どなり、また1qら
れた製品の表面平滑さが向上する。さらに、溶融部の見
掛は粘度が増加することから、溶融部における対流の発
生が防止されやすくなる。その結果、精製効果が向上し
、またより速い速度で精製することが可能になる。
This eliminates the need for strict control over the melting zone as in the past, making refining operations easier. In addition, since the apparent surface tension of the melted zone increases, this method can be applied to materials with a larger diameter than conventional ones, and the surface smoothness of the 1q product is improved. Furthermore, since the apparent viscosity of the melted zone increases, it becomes easier to prevent the occurrence of convection in the melted zone. As a result, the purification effect is improved and it becomes possible to purify at a faster rate.

上記磁場は、たとえば超電導マグネットによって付与さ
れる。また、磁場の大きさは、好ましくは、0.1テス
ラ以上とされる。この大きさであれば、溶融部における
具用は表面張力を効果的に増大させることができる。な
お、磁場は、たとえば静止ll場である。
The magnetic field is applied, for example, by a superconducting magnet. Further, the magnitude of the magnetic field is preferably 0.1 Tesla or more. With this size, the tooling in the melting zone can effectively increase the surface tension. Note that the magnetic field is, for example, a stationary ll field.

上述のような効果を奏するこの発明は、金属、半導体、
誘電体などの単結晶を得る場合に、また高融点材料を精
製する場合などに有利に利用され得る。
This invention, which has the above-mentioned effects, can be applied to metals, semiconductors,
It can be advantageously used when obtaining a single crystal such as a dielectric material or when refining a high melting point material.

[実施例] 実施例1 第1図は、この発明を実施するのに使用した装置の一例
を模式的に示す図である。図示する装置を用いて、MO
単結晶棒を得た。これは以下のような方法によってなさ
れた。まず、多結晶MOのφ1Qmm棒状試料1を真空
中にて垂直に保持した。
[Example] Example 1 FIG. 1 is a diagram schematically showing an example of an apparatus used to carry out the present invention. Using the illustrated apparatus, M.O.
A single crystal rod was obtained. This was done in the following way. First, a rod-shaped sample 1 of polycrystalline MO with a diameter of 1 Q mm was held vertically in a vacuum.

棒状試料1の下端部には、単結晶種を配置した。A single crystal seed was placed at the lower end of the rod-shaped sample 1.

そして、高周波コイル2によって棒状試料1の一部を溶
融させた。この溶融部3には、超電導マグネット4によ
って静止磁場を付与した。磁場の強さは0.5テスラで
あった。
Then, a part of the rod-shaped sample 1 was melted by the high-frequency coil 2. A static magnetic field was applied to this melted part 3 by a superconducting magnet 4. The strength of the magnetic field was 0.5 Tesla.

高周波コイル2と超電導マグネット4とを一定の位置に
保ち、棒状試料1をその保持機構とともに下方に移動さ
せた。こうして、溶融部3を、棒状試料1の下端部から
上端部まで移動させた。
The high-frequency coil 2 and the superconducting magnet 4 were kept at fixed positions, and the bar-shaped sample 1 was moved downward together with its holding mechanism. In this way, the melting section 3 was moved from the lower end of the rod-shaped sample 1 to the upper end.

上記操作によって、MO単結晶棒が容易に得られた。By the above operation, an MO single crystal rod was easily obtained.

上述の方法では溶融部3に磁場を付与していたが、比較
のため溶融部3に・磁場を付与しない方法も実施した。
In the above method, a magnetic field was applied to the melted part 3, but for comparison, a method in which no magnetic field was applied to the melted part 3 was also carried out.

以下に、その両者を比較して記述する。Below, the two will be compared and described.

本発明例: ■ 0.5テスラの磁場を付与した。Examples of the present invention: ■ A magnetic field of 0.5 Tesla was applied.

−5= ■ 平滑な表面の単結晶棒が安定して得られた。−5= ■ A single crystal rod with a smooth surface was stably obtained.

■ 試料の上部1/10と下部1/10の電気抵抗比(
上部/下部)が、1.3倍であり、精製効果が大であっ
た。
■ Electrical resistance ratio of the upper 1/10 and lower 1/10 of the sample (
(upper/lower) was 1.3 times as large, indicating a large purification effect.

比較例: ■ 溶融部に磁場を付与しなかった。Comparative example: ■ No magnetic field was applied to the molten part.

■ 溶融部においてブレークアウトしやすく、また精製
後に得られた試料の表面の平滑さが劣っていた。
■ Breakout was likely to occur in the melted zone, and the surface smoothness of the sample obtained after purification was poor.

■ 試料の上部1/10と下部1/10の電気抵抗比(
上部/下部)が、1.1倍であった。
■ Electrical resistance ratio of the upper 1/10 and lower 1/10 of the sample (
(upper/lower) was 1.1 times.

実施例2 第2A図は、この発明を実施するのに使用した装置の他
の例を模式的に示す図である。多結晶Siからなる棒状
試料11を垂直に保持した。この棒状試料11を回転さ
せながら赤外線加熱手段1′2によって一部を溶融させ
た。第2B図は、この溶融部13を上方から見た図であ
る。図示するように、溶融部13には、!1場付与機構
14によって0.3テスラの水平方向の磁場を付与する
よう6一 にしである。そして、棒状試料11の高さを一定に保ち
、赤外線加熱装置12と磁場付与機構14とを棒状試料
11の下端部から上端部まで移動させ、Si単結晶棒を
得た。
Example 2 FIG. 2A is a diagram schematically showing another example of the apparatus used to carry out the present invention. A rod-shaped sample 11 made of polycrystalline Si was held vertically. While rotating this rod-shaped sample 11, a part of it was melted by the infrared heating means 1'2. FIG. 2B is a view of this melting section 13 viewed from above. As shown in the figure, the melting section 13 includes ! The field applying mechanism 14 is designed to apply a horizontal magnetic field of 0.3 Tesla. Then, while keeping the height of the rod-shaped sample 11 constant, the infrared heating device 12 and the magnetic field applying mechanism 14 were moved from the lower end of the rod-shaped sample 11 to the upper end, thereby obtaining a Si single crystal rod.

なお、従来、St単結晶を作成しようとする場合、試料
をるつぼ内で溶解し、これをチョクラルスキー法によっ
て引き上げる方法が多用されていた。しかし、この方法
では、るつぼから酸素が含有するといったような問題点
があった。そのため、このような問題点を避けようとす
る場合、一部では浮遊帯溶融法が採用されてきた。しか
し、従来の浮遊帯溶融法では、適用し得る棒状体が細径
のものに限られ、さらに生産性が劣っているという問題
点があった。
Conventionally, when attempting to create an St single crystal, a method has often been used in which a sample is melted in a crucible and the sample is pulled up using the Czochralski method. However, this method has a problem in that oxygen is contained from the crucible. Therefore, in order to avoid such problems, floating zone melting methods have been adopted in some cases. However, the conventional floating zone melting method has the problem that the applicable rod-shaped bodies are limited to those with a small diameter, and furthermore, the productivity is poor.

これに対して、上述したような本発明に従った方法では
、含有する酸素化が、当然のことながら、チョクラルス
キー法の場合に比べて小さい。また、従来の浮遊帯溶融
法と比べて、すなわち溶融部13に磁場を付与しない場
合と比べて、以下のような改良点が見られた。すなわち
、第2A図および第2B図に示す装置で溶融部13に磁
場を付与しない場合に比べて、赤外線加熱装置12によ
って磁場を付与すれば、同一径の試料に対し、単結晶成
長速度を1.3倍に上昇せしめても安定した単結晶の成
長が得られた。また、磁場を付与しない場合に比べて、
安定して結晶成長せしめることが可能な試料径を、約1
.5ffiまで増大さぜることが可能であった。
In contrast, the method according to the invention as described above naturally contains less oxygenation than in the Czochralski method. Furthermore, compared to the conventional floating zone melting method, that is, compared to the case where no magnetic field is applied to the melted part 13, the following improvements were observed. That is, compared to the case where no magnetic field is applied to the melting zone 13 using the apparatus shown in FIGS. 2A and 2B, if a magnetic field is applied by the infrared heating device 12, the single crystal growth rate is reduced by 1 for a sample of the same diameter. Stable single crystal growth was obtained even when the temperature was increased 3 times. Also, compared to the case where no magnetic field is applied,
The sample diameter that allows stable crystal growth is set to approximately 1
.. It was possible to increase up to 5ffi.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明を実施するのに使用した装置の一例
を模式的に示す図である。第2A図は、この発明を実施
するのに使用した装置の他の例を模式的に示す図である
。第2B図は、第2A図に示す溶融部を上方から見た図
である。 図において、1は棒状試料、2は高周波コイル、3は溶
融部、4は超N導マグネットを示す。
FIG. 1 is a diagram schematically showing an example of an apparatus used to carry out the present invention. FIG. 2A is a diagram schematically showing another example of the apparatus used to carry out the present invention. FIG. 2B is a top view of the melting zone shown in FIG. 2A. In the figure, 1 is a rod-shaped sample, 2 is a high-frequency coil, 3 is a melting part, and 4 is a super N-conducting magnet.

Claims (3)

【特許請求の範囲】[Claims] (1)垂直に保持した棒状試料の一部を溶融し、この溶
融部に磁場を付与した状態で該溶融部を表面張力で支え
ながら上下方向に相対的に移動させる、浮遊帯溶融法。
(1) A floating zone melting method in which a part of a rod-shaped sample held vertically is melted, and a magnetic field is applied to the melted part, and the melted part is supported by surface tension and relatively moved in the vertical direction.
(2)前記磁場は、0.1テスラ以上の静止磁場である
、特許請求の範囲第1項に記載の浮遊帯溶融法。
(2) The floating zone melting method according to claim 1, wherein the magnetic field is a static magnetic field of 0.1 Tesla or more.
(3)前記磁場は、超電導マグネットによつて付与され
る、特許請求の範囲第1項または第2項に記載の浮遊帯
溶融法。
(3) The floating zone melting method according to claim 1 or 2, wherein the magnetic field is provided by a superconducting magnet.
JP22716085A 1985-10-11 1985-10-11 Floating zone melting Pending JPS6287480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22716085A JPS6287480A (en) 1985-10-11 1985-10-11 Floating zone melting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22716085A JPS6287480A (en) 1985-10-11 1985-10-11 Floating zone melting

Publications (1)

Publication Number Publication Date
JPS6287480A true JPS6287480A (en) 1987-04-21

Family

ID=16856432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22716085A Pending JPS6287480A (en) 1985-10-11 1985-10-11 Floating zone melting

Country Status (1)

Country Link
JP (1) JPS6287480A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170022306A (en) * 2015-08-20 2017-03-02 한국기초과학지원연구원 Apparatus for increasing the purity of the low melting metal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170022306A (en) * 2015-08-20 2017-03-02 한국기초과학지원연구원 Apparatus for increasing the purity of the low melting metal

Similar Documents

Publication Publication Date Title
US6607594B2 (en) Method for producing silicon single crystal
US3067139A (en) Method for treating materials having a high surface tension in the molten state in a crucible
JPS6287480A (en) Floating zone melting
JP3644227B2 (en) Method and apparatus for producing silicon single crystal
US3060123A (en) Method of processing semiconductive materials
JP2004189559A (en) Single crystal growth method
US3296036A (en) Apparatus and method of producing semiconductor rods by pulling the same from a melt
CA1053545A (en) Non-crucible zone-melting of a semi-conductor
JP3991813B2 (en) Silicon single crystal growth method
US3046100A (en) Zone melting of semiconductive material
US2981687A (en) Production of mono-crystal semiconductor bodies
JP2606046B2 (en) Control method of single crystal oxygen concentration during single crystal pulling
US3607109A (en) Method and means of producing a large diameter single-crystal rod from a polycrystal bar
JPS61251594A (en) Apparatus for producing single crystal
JPS61146788A (en) Method for growing single crystal
JP2705832B2 (en) Single crystal pulling device
Bartels et al. A new substrate holder for liquid phase epitaxy
CN107881553A (en) A kind of crystal pulling furnace
JPS6033297A (en) Pulling device for single crystal semiconductor
JPH0250077B2 (en)
KR19980068756A (en) Silicon Single Crystal Growth Method
JPS5950627B2 (en) Single crystal silicon pulling equipment
JPS62182190A (en) Production of compound semiconductor single crystal
JPH05319973A (en) Single crystal production unit
JPH02225391A (en) Zone-melting refining apparatus