JP3991813B2 - Silicon single crystal growth method - Google Patents

Silicon single crystal growth method Download PDF

Info

Publication number
JP3991813B2
JP3991813B2 JP2002245053A JP2002245053A JP3991813B2 JP 3991813 B2 JP3991813 B2 JP 3991813B2 JP 2002245053 A JP2002245053 A JP 2002245053A JP 2002245053 A JP2002245053 A JP 2002245053A JP 3991813 B2 JP3991813 B2 JP 3991813B2
Authority
JP
Japan
Prior art keywords
diameter
magnetic field
crucible
single crystal
silicon single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002245053A
Other languages
Japanese (ja)
Other versions
JP2004083320A (en
Inventor
勇 宮本
秀樹 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2002245053A priority Critical patent/JP3991813B2/en
Publication of JP2004083320A publication Critical patent/JP2004083320A/en
Application granted granted Critical
Publication of JP3991813B2 publication Critical patent/JP3991813B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はCZ法(チョクラルスキー法)を用いたシリコン単結晶育成方法に関し、更に詳しくは、絞り工程での結晶径の変動を防止するために磁場印加を行うシリコン単結晶育成方法に関する。
【0002】
【従来の技術】
半導体基板に用いられるシリコン単結晶の製造方法には種々の方法があるが、工業的に広く使用されている方法は回転引上げ法であるCZ法である。CZ法によるシリコン単結晶の製造では、図3に示すように、チャンバ内に配置されたルツボ1が使用される。このルツボ1は、シリコンの溶融液13を収容する石英ルツボ1aを外側から黒鉛ルツボ1bで保持する2重構造であり、回転及び昇降が可能な支持軸6の上に固定されている。
【0003】
操業では、まずルツボ1内に充填された結晶用シリコン原料を、ルツボ1の外側に略同心円状に配置された円筒形状の抵抗加熱式ヒータ2により所定雰囲気中で溶融して、溶融液13を形成する。次いで、ルツボ1の中心軸上に配置され下端に種結晶15が装着された引上げ軸5を降下させて、種結晶15を溶融液13に浸漬する。そして、ルツボ1及び引上げ軸5を所定方向に所定速度で回転させつつ、引上げ軸5を上方へ引上げて、種結晶15の下方にシリコン単結晶12を成長させる。
【0004】
このようなCZ法では、種結晶15に元から含まれる転位や着液時の熱ショックで導入される転位を除去するために、着液後に種結晶15を直径3mm程度まで細く絞る操作が行われる。これが絞り工程である。その後、結晶径を徐々に増大させて、最終的には製品径に収束させる。これにより、細い絞り部の下に、直径が徐々に増大した肩部が形成され、更にその下に定径の直胴部が形成される。結晶径を徐々に増大させて肩部を形成する工程が増径工程であり、定径の直胴部を形成する工程が定径工程である。
【0005】
CZ法によるシリコン単結晶の製造に使用される石英ルツボは、シリコンの溶融液と接することにより、表面が溶融液中に溶け、溶融液中に酸素を放出する。こうして溶融液中に溶け込んだ酸素は、その一部がシリコン単結晶中に取り込まれ、シリコン単結晶の品質に様々な影響を及ぼす。そのため、CZ法では、シリコン単結晶中に取り込まれる酸素量を制御することが重要な技術課題となる。
【0006】
そして、このような酸素濃度の制御を行う方法の一つとして、MCZ(Magnetic-field-applied CZ )法と呼ばれる磁場印加CZ法がある。この方法は、石英ルツボ内の溶融液に磁場を印加することにより、磁力線に直行する方向の対流を抑制し、制御するものである。磁場の印加方法には種々の方法があるが、なかでも特に、水平方向に磁場印加を行うHMCZ(Horizontal MCZ)法の実用化が進んでいる。ここで用いられる磁場強度は通常0.3〜0.4テスラである。
【0007】
ところで、近年の傾向として、育成される単結晶の直径及び重量が急速に増大しており、現状では直径が300mmで重量は200kgを超える結晶も生産されている。そして、結晶重量は更に増える傾向にある。ところが、通常のCZ法の絞り工程における絞り部の直径(3mm程度)では、そのような大重量の結晶を保持するのが困難である。また、溶融液の対流による液温変動に伴って絞り部でも径変動が生じ、その結果として直径が部分的に細くなると、大重量結晶の保持は更に困難になる。
【0008】
このような絞り部の径変動の問題を解決する手段として、特開平10−7487号公報、特開平9−165298号公報及び特開平11−209197号公報等により提示されている、絞り工程における磁場印加がある。
【0009】
具体的に説明すると、特開平10−7487号公報では、MCZ法における絞り工程で0.2テスラ以下の磁場印加を行い、絞り工程に続く増径工程では、定径工程に向けて0.2テスラ超まで磁場を強くすることが説明されている。
【0010】
特開平9−165298号公報では、通常のCZ法における絞り工程で0.15テスラ以上の磁場印加を行い、絞り工程に続く増径工程では、定径工程に向けて無磁場まで磁場を弱めることが説明されている。
【0011】
特開平11−209197号公報では、MCZ法における絞り工程及び増径工程で定径工程より弱い磁場印加を行うか無磁場とすることが開示されており、具体例としては絞り工程で0.1テスラの水平方向磁場を印加し、増径工程でその磁場を0.1テスラから0.4テスラまで強め、定径工程では0.4テスラの磁場印加を行うことが示されている。
【0012】
【発明が解決しようとする課題】
これから分かるように、絞り工程における磁場印加は、絞り工程に続く増径工程での磁場操作によって、その磁場を強める方法と弱める方法の2種類に大別される。いずれの方法でも、絞り工程で磁場印加を行うことにより、溶融液の対流が抑制され、絞り部の径変動が抑制される。
【0013】
ところが、絞り工程に続く増径工程で磁場を強めたり、絞り工程での磁場強度をそのまま維持すると、増径工程で有転位化を頻発するという問題がある。この理由は以下のように考えられる。
【0014】
シリコン溶融液中に磁場を印加した場合、「野上裕:日本機械学会第11回計算力学講演会講演論文集(1998)P414」に記載されているように、ルツボの中心を通り磁場印加方向に平行な面に対して対称となるロール状の流れが生じる。増径工程初期のように溶融液の温度が比較的高い状態では、この流れも強く、溶融液中に存在する異物が成長界面に輸送され、有転位化が促進されることになる。
【0015】
これに対し、特開平9−165298号公報に記載されているように増径工程で磁場印加を停止すると、上述したロール状の対流はなくなり、この対流による成長界面への異物輸送、及びこれによる有転位化は防止される。しかし、その一方では、消磁に伴う対流変化による温度差が増大し、結晶径が急増して制御不能に陥る危険性のあることが判明した。
【0016】
また、磁場印加が行われる絞り工程においても、ルツボの回転数によっては、磁場によって制止される溶融液とルツボ回転との相互作用によって溶融液の温度変動が大きくなり、絞り部の径変動が十分に抑制されない問題が生じる。この問題は、直径が700mm以上の大口径ルツボを使用して直径が200mm以上の大径結晶を引上げる場合に顕著となる。
【0017】
本発明の目的は、絞り工程での径変動を安定的に抑制でき、合わせて増径工程での有転位化も制御不能も回避できるシリコン単結晶成長方法を提供することにある。
【0018】
【課題を解決するための手段】
上記目的を達成するために、本発明者らは絞り部の形成に及ぼす磁場印加の影響、更には磁場以外の諸因子による影響を詳細に調査検討した。その結果、以下の事実が判明した。
【0019】
第1に、絞り部の径変動を抑制するためには、溶融液への磁場印加、とりわけ水平方向の磁場印加が有効である。第2に、絞り工程で磁場印加を行った場合に問題となる増径工程での有転位化を抑制するためには、増径工程で磁場印加を停止することが不可欠である。第3に、増径工程での消磁に伴う径制御の不安定化に対しては、絞り工程で印加する磁場をできるだけ弱くして、消磁したときの物理的変化を小さくするのが有効である。第4に、磁場印加により絞り部の径変動を抑制する場合、ルツボの回転数も径変動の抑制に対して重要因子となり、その回転数をできるだけ小さく抑えることが必要である。
【0020】
本発明のシリコン単結晶成長方法は、かかる知見を基礎として完成されたものであり、ルツボ内に結晶用シリコン原料を充填して溶融し、その溶融液に浸漬した種結晶を回転させながら引上げることにより、種結晶の下方にシリコン単結晶を成長させるCZ法によるシリコン単結晶成長方法において、転位を除去するための絞り工程でルツボ回転数を1rpm以下とすると共に、水平方向に0.1テスラ以下の磁場を印加し、絞り工程から増径工程に移行する段階でその磁場印加を停止するするものである。
【0021】
絞り部の径変動を抑制するためには、水平磁場の印加により溶融液の対流を抑制するのが有効である。しかしながら、0.1テスラを超える磁場を用いると、磁場印加を停止した場合に対流変化に伴う温度差が増大し、結晶径が急増して制御不能に陥る。従って、絞り工程で用いる磁場強度は0.1テスラ以下とし、0.08テスラ以下が特に好ましい。なお、絞り部の径変動の主因である溶融液の対流を抑制するためには0.03テスラ程度の微弱磁場でも十分に有効である。この観点から、磁場強度の下限については0.01テスラ以上が好ましく、0.03テスラ以上が特に好ましい。
【0022】
絞り工程における磁場印加を、大口径ルツボを使用した大径の大型単結晶の引上げに適用した場合、絞り工程におけるルツボ回転数が大きいと、磁場により制止される溶融液とルツボ回転との相互作用によって溶融液の温度変動が大きくなり、磁場印加を行っているにもかかわらず、むしろ逆効果になって絞り部の径変動が大きくなり、大重量結晶の保持が困難になる。このため、磁場印加下では絞り工程でのルツボ回転数は1rpm以下とする。このルツボ回転数の下限については、特に限定されるものではなく、ルツボ回転を停止さえしなければよい。装置精度上、ルツボの安定な回転を維持する観点からは、0.2rpm以上がよい。
【0023】
磁場停止後、このような低ルツボ回転のままで増径工程を行うと、ルツボ内の外周部から中心部に向かう自然対流が発生し、異物を成長界面に運搬するために、有転位化が生じやすくなる。この問題に対しては、ルツボ回転数を増加し、遠心力やそれに伴う強制対流により異物の運搬を阻止するのが有効である。具体的には、増径工程中で結晶径が100mmに達するまでにルツボ回転数を3rpm以上に変更するのが好ましい。
【0024】
以上により安定した絞り工程、増径工程が可能になり、更に、増径工程から定径工程への移行時に再び磁場を印加し、ルツボ回転数を所定の回転数に変更することにより、大重量のHMCZ法も可能となる。定径工程での磁場強度としては0.1〜0.4テスラが好ましく、ルツボ回転数としては0.2〜10rpmが好ましい。
【0025】
【発明の実施の形態】
以下に本発明の実施形態を図面に基づいて説明する。図1は本発明のシリコン単結晶成長方法の実施に適したCZ引上げ炉の縦断面図、図2はルツボ回転数の変更パターンを例示するグラフである。
【0026】
まず、本実施形態のシリコン単結晶成長方法に使用されるCZ引上げ炉の構造について説明する。
【0027】
本CZ引上げ炉は、炉体であるチャンバ7として、円筒形状のメインチャンバ7aと、メインチャンバ7a上に載置された小径のプルチャンバ7bとを備えている。
【0028】
メインチャンバ7a内の中心部には、ルツボ1が配置されている。ルツボ1は、シリコンの溶融液13を収容する石英ルツボ1aを外側から黒鉛ルツボ1bで保持する2重構造であり、回転及び昇降が可能な支持軸6の上に固定されている。
【0029】
ルツボ1の外側には、円筒形状の抵抗加熱式ヒータ2が略同心円状に配置されている。ヒータ2の更に外側には、円筒形状の保温筒8aが、メインチャンバ7aの内面に沿って配置されている。メインチャンバ7aの底部上には保温板8bが配置されている。
【0030】
ルツボ1の中心軸上には、引上げ軸5であるワイヤがプルチャンバ7bを通じて同心状に吊設されている。引上げ軸5は下端に種結晶15を保持しており、プルチャンバ7bの最上部に設けられた巻き取り機構により回転駆動されると共に昇降駆動される。
【0031】
一方、メインチャンバ7aの外側には、ルツボ1内の溶融液13に水平方向の磁場を印加するために1組の超電導磁石30a,30bが対向して配置されている。
【0032】
次に、このような引上げ炉を使用して直径が300mmのシリコン単結晶12を育成する方法について説明する。
【0033】
結晶用シリコン原料を300kg充填し不純物としてのリンを加えたルツボ1をチャンバ7内にセットする。石英ルツボ1aの直径は750mmである。チャンバ7内を25Torrに減圧し、不活性ガスとして100L/minのArガスを導入する。ルツボ1内の結晶用シリコン原料及びリンをヒータ2により加熱溶融して、溶融液13を形成する。
【0034】
溶融液13を形成した後、超電導磁石30a,30bによりその溶融液13に0.05テスラの水平方向磁場を印加し、融液温度が安定した後、種結晶15を溶融液13に浸漬し、ルツボ1及び引上げ軸5を所定方向に所定速度で回転させつつ、引上げ軸5を上方へ引上げて、結晶径を15mmから5mmまで縮小した。この絞り工程におけるルツボ1の回転数は1.0rpm、引上げ軸5の回転数は10rpmとした。磁場強度は0.05テスラを維持した。
【0035】
絞り工程が終わると直ちに磁場印加を停止し、増径工程に移行した。増径工程では、結晶径が100mmとなる時点でルツボ回転数が5rpmとなるようにルツボ回転数を結晶径の増大に伴って増大させた。その後は、ルツボ回転数を5rpmに維持したままで、結晶径を310mmまで増大させ、増径部(肩部)12aを完成させた。
【0036】
そして、結晶径が310mmに達した時点で定径工程に移行し、長さ1400mmの直胴部12bを育成した。育成された単結晶12の総重量は270kgである。絞り工程での印加磁場強度を0.1テスラ以下に下げると共に、ルツボ回転数を1rpm以下に下げ、増径工程で消磁したことにより、絞り部の径変動が僅かに抑制され、目標値である5mmがほぼ全長にわたって維持されると共に、増径工程でも安定な径制御が続行され、その結果として安定な引上げが行われた。また、結晶品質も良好であった。
【0037】
別の実施例として、増径工程までは先の実施例と同じに行い、結晶径が300mmに達した時点で0.03テスラの水平方向磁場を印加すると共に、ルツボ回転数を5rpmから1rpmに変更した。そして、1400mmの直胴部を育成した。安定な引上げが行われたのは勿論のこと、DF性、品質とも問題なかった。
【0038】
比較のために、通常のCZ法(無磁場)で形成した絞り部に対して引張試験を実施したところ、表1のように、300mm未満の荷重で破断が生じ、300kg以上の単結晶を引上げることができないことが判明した。
【0039】
【表1】

Figure 0003991813
【0040】
また、絞り工程で磁場を印加しても、その強度が0.1テスラを超える例えば0.3テスラの場合は、増径工程への移行時に磁場印加を停止したにもかわらず、結晶径が100mmに達するまでの間に有転位化が生じた。なお、ルツボ回転数は図2のパターンとした。
【0041】
また、絞り工程で印加する磁場強度が0.1テスラ以下の例えば0.05テスラであり、且つ増径工程への移行時に磁場印加を停止した場合であっても、絞り工程でのルツボ回転数が1rpmを超える例えば3rpmの場合は絞り工程における径変動が大きくなり、大重量結晶を保持することが困難となる。
【0042】
また、絞り工程で印加する磁場強度が0.1テスラ以下の例えば0.05テスラで、且つ絞り工程でのルツボ回転数が1.0rpmの場合であっても、増径工程で引き続き磁場印加を行った場合は増径工程の初期において有転位化が頻発した。なお、ルツボ回転数は図2のパターンとした。
【0043】
【発明の効果】
以上に説明したとおり、本発明のシリコン単結晶成長方法は、転位を除去するための絞り工程でルツボ回転数を1rpm以下に制限すると共に、水平方向に0.1テスラ以下の微弱磁場を印加し、且つ、絞り工程から増径工程に移行する段階でその磁場印加を停止することにより、絞り工程での径変動を安定的に抑制でき、増径工程での有転位化及び制御不能も回避できる。
【図面の簡単な説明】
【図1】本発明のシリコン単結晶成長方法の実施に適したCZ引上げ炉の縦断面図である。
【図2】ルツボ回転数の変更パターンを例示するグラフである。
【図3】CZ法によるシリコン単結晶成長方法の説明図である。
【符号の説明】
1 ルツボ
2 ヒータ
5 引上げ軸
6 支持軸
7 チャンバ
12 単結晶
13 溶融液
15 種結晶
30 超電導磁石[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a silicon single crystal growth method using a CZ method (Czochralski method), and more particularly to a silicon single crystal growth method in which a magnetic field is applied in order to prevent fluctuations in crystal diameter in a drawing process.
[0002]
[Prior art]
There are various methods for producing a silicon single crystal used for a semiconductor substrate. A widely used industrial method is the CZ method which is a rotary pulling method. In the manufacture of a silicon single crystal by the CZ method, as shown in FIG. 3, a crucible 1 disposed in a chamber is used. The crucible 1 has a double structure in which a quartz crucible 1a that contains a silicon melt 13 is held from the outside by a graphite crucible 1b, and is fixed on a support shaft 6 that can be rotated and moved up and down.
[0003]
In operation, first, the silicon material for crystallization filled in the crucible 1 is melted in a predetermined atmosphere by a cylindrical resistance heating heater 2 disposed substantially concentrically outside the crucible 1, and a molten solution 13 is obtained. Form. Next, the pulling shaft 5 disposed on the central axis of the crucible 1 and having the seed crystal 15 attached to the lower end thereof is lowered to immerse the seed crystal 15 in the melt 13. Then, while rotating the crucible 1 and the pulling shaft 5 in a predetermined direction at a predetermined speed, the pulling shaft 5 is pulled upward to grow a silicon single crystal 12 below the seed crystal 15.
[0004]
In such a CZ method, in order to remove dislocations originally contained in the seed crystal 15 and dislocations introduced by heat shock at the time of landing, an operation of narrowing the seed crystal 15 to about 3 mm in diameter after landing is performed. Is called. This is a drawing process. Thereafter, the crystal diameter is gradually increased and finally converged to the product diameter. As a result, a shoulder portion having a gradually increasing diameter is formed under the narrow throttle portion, and a straight body portion having a constant diameter is further formed thereunder. The step of forming the shoulder portion by gradually increasing the crystal diameter is the diameter increasing step, and the step of forming the straight body portion having the constant diameter is the constant diameter step.
[0005]
A quartz crucible used for the production of a silicon single crystal by the CZ method is brought into contact with a silicon melt, whereby the surface thereof is dissolved in the melt and oxygen is released into the melt. A part of the oxygen dissolved in the molten liquid is taken into the silicon single crystal and affects the quality of the silicon single crystal in various ways. Therefore, in the CZ method, controlling the amount of oxygen taken into the silicon single crystal is an important technical issue.
[0006]
As one of the methods for controlling the oxygen concentration, there is a magnetic field application CZ method called MCZ (Magnetic-field-applied CZ) method. This method suppresses and controls convection in a direction perpendicular to the magnetic field lines by applying a magnetic field to the melt in the quartz crucible. There are various methods for applying a magnetic field, and in particular, the practical application of the HMCZ (Horizontal MCZ) method in which a magnetic field is applied in the horizontal direction is in progress. The magnetic field strength used here is usually 0.3 to 0.4 Tesla.
[0007]
By the way, as a recent trend, the diameter and weight of a grown single crystal are rapidly increasing. At present, crystals having a diameter of 300 mm and a weight exceeding 200 kg are also produced. And the crystal weight tends to increase further. However, it is difficult to hold such a heavy crystal with the diameter of the squeezed portion (about 3 mm) in the squeezing process of the normal CZ method. In addition, when the liquid temperature varies due to the convection of the melt, the diameter of the constricted part also varies, and as a result, when the diameter is partially reduced, it becomes more difficult to hold the heavy crystal.
[0008]
As means for solving such a problem of diameter variation of the throttle part, a magnetic field in the throttle process, which is presented by JP-A-10-7487, JP-A-9-165298, JP-A-11-209197, etc. There is application.
[0009]
Specifically, in Japanese Patent Application Laid-Open No. 10-7487, a magnetic field of 0.2 Tesla or less is applied in the MCZ method in the drawing process, and in the diameter increasing process following the drawing process, 0.2 is directed toward the constant diameter process. It is explained that the magnetic field is strengthened up to Tesla.
[0010]
In Japanese Patent Application Laid-Open No. 9-165298, a magnetic field of 0.15 Tesla or more is applied in the normal CZ method in the drawing process, and in the diameter increasing process following the drawing process, the magnetic field is weakened to a non-magnetic field toward the constant diameter process. Has been explained.
[0011]
In JP-A 11-209197, JP-has been disclosed that a non-magnetic field whether to weak magnetic field applied from the constant-radius step at higher drawing process and increasing径工in MCZ method, specific examples in the drawing step 0.1 It is shown that a horizontal magnetic field of Tesla is applied, the magnetic field is increased from 0.1 Tesla to 0.4 Tesla in the diameter increasing process, and a magnetic field of 0.4 Tesla is applied in the constant diameter process.
[0012]
[Problems to be solved by the invention]
As can be seen, magnetic field application in the narrowing step is roughly divided into two methods, a method for increasing the magnetic field and a method for weakening the magnetic field by manipulating the magnetic field in the diameter increasing step following the throttling step. In any method, by applying a magnetic field in the squeezing step, the convection of the melt is suppressed and the diameter variation of the squeezed portion is suppressed.
[0013]
However, if the magnetic field is strengthened in the diameter increasing process subsequent to the diameter reducing process or the magnetic field strength in the diameter reducing process is maintained as it is, there is a problem that dislocations frequently occur in the diameter increasing process. The reason is considered as follows.
[0014]
When a magnetic field is applied to the silicon melt, as described in "Hiroshi Nogami: Proceedings of the 11th Computational Mechanics Lecture Meeting of the Japan Society of Mechanical Engineers (1998) P414", the direction of magnetic field application passes through the center of the crucible. A roll-like flow is generated which is symmetric with respect to parallel planes. In a state where the temperature of the melt is relatively high as in the initial stage of the diameter increasing process, this flow is also strong, and foreign matters present in the melt are transported to the growth interface, and the formation of dislocations is promoted.
[0015]
On the other hand, when the magnetic field application is stopped in the diameter increasing process as described in JP-A-9-165298, the above-described roll-shaped convection disappears, and foreign matter transport to the growth interface by this convection is caused. Dislocation is prevented. However, on the other hand, it has been found that there is a risk that the temperature difference due to the convection change accompanying demagnetization increases, and the crystal diameter rapidly increases, resulting in uncontrollability.
[0016]
Also, in the squeezing process in which a magnetic field is applied, depending on the number of rotations of the crucible, the temperature fluctuation of the molten liquid increases due to the interaction between the molten liquid restrained by the magnetic field and the crucible rotation, and the diameter fluctuation of the squeezed portion is sufficient. The problem which is not restrained occurs. This problem becomes prominent when a large-diameter crystal having a diameter of 200 mm or more is pulled using a large-diameter crucible having a diameter of 700 mm or more.
[0017]
An object of the present invention is to provide a silicon single crystal growth method that can stably suppress diameter fluctuations in the drawing step and can avoid dislocations and uncontrollability in the diameter increasing step.
[0018]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present inventors have investigated and examined in detail the influence of the magnetic field application on the formation of the throttle portion, and further the influence of various factors other than the magnetic field. As a result, the following facts were found.
[0019]
First, in order to suppress the diameter variation of the throttle portion, it is effective to apply a magnetic field to the melt, particularly to apply a magnetic field in the horizontal direction. Secondly, in order to suppress dislocation formation in the diameter increasing process, which becomes a problem when a magnetic field is applied in the drawing process, it is essential to stop the magnetic field application in the diameter increasing process. Thirdly, for destabilizing the diameter control accompanying demagnetization in the diameter increasing process, it is effective to make the magnetic field applied in the squeezing process as weak as possible so as to reduce the physical change when demagnetizing. . Fourthly, when the diameter variation of the throttle portion is suppressed by applying a magnetic field, the rotational speed of the crucible is also an important factor for suppressing the diameter fluctuation, and it is necessary to keep the rotational speed as small as possible.
[0020]
The silicon single crystal growth method of the present invention has been completed on the basis of such knowledge. The silicon raw material for crystal is filled in the crucible and melted, and the seed crystal immersed in the melt is pulled up while rotating. Thus, in the silicon single crystal growth method based on the CZ method in which a silicon single crystal is grown below the seed crystal, the crucible rotation speed is set to 1 rpm or less in the drawing process for removing dislocations, and the horizontal direction is 0.1 Tesla. The following magnetic field is applied, and the application of the magnetic field is stopped at the stage of shifting from the drawing step to the diameter increasing step.
[0021]
In order to suppress the diameter variation of the throttle portion, it is effective to suppress the convection of the melt by applying a horizontal magnetic field. However, when a magnetic field exceeding 0.1 Tesla is used, when the application of the magnetic field is stopped, the temperature difference associated with the convection change increases, and the crystal diameter increases rapidly, resulting in uncontrollability. Accordingly, the magnetic field strength used in the drawing step is 0.1 Tesla or less, and 0.08 Tesla or less is particularly preferable. Note that a weak magnetic field of about 0.03 Tesla is sufficiently effective in order to suppress the convection of the melt, which is the main cause of the diameter fluctuation of the throttle portion. From this viewpoint, the lower limit of the magnetic field strength is preferably 0.01 Tesla or more, and particularly preferably 0.03 Tesla or more.
[0022]
When applying a magnetic field in the drawing process to pulling up a large single crystal with a large diameter using a large-diameter crucible, if the crucible rotation speed in the drawing process is large, the interaction between the melt and the crucible rotation that is restrained by the magnetic field As a result, the temperature variation of the melt increases, and even though a magnetic field is applied, the reverse effect is rather increased and the diameter variation of the constricted portion increases, making it difficult to hold a large crystal. For this reason, under the application of a magnetic field, the crucible rotation speed in the drawing step is 1 rpm or less. The lower limit of the crucible rotation speed is not particularly limited, and it is only necessary to stop the crucible rotation. In view of device accuracy, 0.2 rpm or more is preferable from the viewpoint of maintaining stable rotation of the crucible.
[0023]
After stopping the magnetic field, if the diameter increasing process is performed with such a low crucible rotation, natural convection from the outer periphery to the center occurs in the crucible, and dislocations are generated in order to transport foreign matter to the growth interface. It tends to occur. For this problem, it is effective to increase the number of crucible rotations and to prevent foreign substances from being transported by centrifugal force or forced convection. Specifically, it is preferable to change the crucible rotation speed to 3 rpm or more before the crystal diameter reaches 100 mm in the diameter increasing step.
[0024]
As described above, a stable squeezing process and a diameter increasing process are possible. Further, when the magnetic field is applied again during the transition from the diameter increasing process to the constant diameter process, and the crucible rotation speed is changed to a predetermined rotation speed, a large weight is obtained. The HMCZ method is also possible. The magnetic field strength in the constant diameter process is preferably 0.1 to 0.4 Tesla, and the crucible rotation speed is preferably 0.2 to 10 rpm.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a longitudinal sectional view of a CZ pulling furnace suitable for carrying out the silicon single crystal growth method of the present invention, and FIG. 2 is a graph illustrating a change pattern of the crucible rotation speed.
[0026]
First, the structure of the CZ pulling furnace used in the silicon single crystal growth method of this embodiment will be described.
[0027]
The CZ pulling furnace includes a cylindrical main chamber 7a and a small-diameter pull chamber 7b mounted on the main chamber 7a as a chamber 7 serving as a furnace body.
[0028]
A crucible 1 is disposed in the center of the main chamber 7a. The crucible 1 has a double structure in which a quartz crucible 1a containing a silicon melt 13 is held from the outside by a graphite crucible 1b, and is fixed on a support shaft 6 that can be rotated and moved up and down.
[0029]
On the outside of the crucible 1, a cylindrical resistance heating heater 2 is arranged substantially concentrically. On the further outer side of the heater 2, a cylindrical heat insulating cylinder 8a is disposed along the inner surface of the main chamber 7a. A heat insulating plate 8b is disposed on the bottom of the main chamber 7a.
[0030]
On the central axis of the crucible 1, a wire that is a pulling shaft 5 is concentrically suspended through a pull chamber 7b. The pulling shaft 5 holds a seed crystal 15 at the lower end, and is driven to rotate and to be moved up and down by a winding mechanism provided at the uppermost part of the pull chamber 7b.
[0031]
On the other hand, a pair of superconducting magnets 30a and 30b are arranged opposite to each other to apply a horizontal magnetic field to the melt 13 in the crucible 1 outside the main chamber 7a.
[0032]
Next, a method for growing the silicon single crystal 12 having a diameter of 300 mm using such a pulling furnace will be described.
[0033]
A crucible 1 filled with 300 kg of silicon raw material for crystal and added with phosphorus as an impurity is set in the chamber 7. The diameter of the quartz crucible 1a is 750 mm. The inside of the chamber 7 is decompressed to 25 Torr, and 100 L / min Ar gas is introduced as an inert gas. The crystal silicon material and phosphorus in the crucible 1 are heated and melted by the heater 2 to form a melt 13.
[0034]
After forming the melt 13, a horizontal magnetic field of 0.05 Tesla is applied to the melt 13 by the superconducting magnets 30 a and 30 b, and after the melt temperature is stabilized, the seed crystal 15 is immersed in the melt 13. While the crucible 1 and the pulling shaft 5 were rotated in a predetermined direction at a predetermined speed, the pulling shaft 5 was pulled upward to reduce the crystal diameter from 15 mm to 5 mm. In this drawing step, the rotational speed of the crucible 1 was 1.0 rpm, and the rotational speed of the pulling shaft 5 was 10 rpm. The magnetic field strength was maintained at 0.05 Tesla.
[0035]
Immediately after the squeezing process, the application of the magnetic field was stopped and the process increased to a diameter increasing process. In the diameter increasing step, the crucible rotation speed was increased as the crystal diameter increased so that the crucible rotation speed became 5 rpm when the crystal diameter reached 100 mm. Thereafter, while maintaining the crucible rotation speed at 5 rpm, the crystal diameter was increased to 310 mm to complete the increased diameter portion (shoulder portion) 12a.
[0036]
Then, when the crystal diameter reached 310 mm, the process shifted to a constant diameter process, and a straight body portion 12b having a length of 1400 mm was grown. The total weight of the grown single crystal 12 is 270 kg. By reducing the applied magnetic field strength in the squeezing process to 0.1 Tesla or less, and reducing the crucible rotation speed to 1 rpm or less and demagnetizing in the diameter increasing process, the diameter fluctuation of the squeezing part is slightly suppressed, which is the target value. While 5 mm was maintained over almost the entire length, stable diameter control was continued even in the diameter increasing process, and as a result, stable pulling was performed. The crystal quality was also good.
[0037]
As another example, the process up to the diameter increasing process is the same as the previous example. When the crystal diameter reaches 300 mm, a horizontal magnetic field of 0.03 Tesla is applied, and the crucible rotation speed is changed from 5 rpm to 1 rpm. changed. Then, a straight body portion of 1400 mm was grown. There was no problem in terms of DF and quality as well as stable pulling.
[0038]
For comparison, when a tensile test was performed on a constricted portion formed by a normal CZ method (no magnetic field), as shown in Table 1, fracture occurred at a load of less than 300 mm, and a single crystal of 300 kg or more was pulled. It turned out that it could not be raised.
[0039]
[Table 1]
Figure 0003991813
[0040]
In addition, even when a magnetic field is applied in the drawing process, if the strength exceeds 0.1 Tesla, for example 0.3 Tesla, the crystal diameter is reduced even though the application of the magnetic field is stopped when the process proceeds to the diameter increasing process. Dislocations occurred until reaching 100 mm. The crucible rotation speed was the pattern shown in FIG.
[0041]
Even if the magnetic field strength applied in the drawing process is 0.1 Tesla or less, for example, 0.05 Tesla, and the application of the magnetic field is stopped when shifting to the diameter increasing process, the number of crucible rotations in the drawing process In the case of 3 rpm exceeding 1 rpm, for example, the diameter variation in the drawing process becomes large, and it becomes difficult to hold the heavy crystal.
[0042]
Further, even when the magnetic field strength applied in the drawing process is 0.1 Tesla or less, for example 0.05 Tesla, and the crucible rotation speed in the drawing process is 1.0 rpm, the magnetic field application is continued in the diameter increasing process. When performed, dislocations frequently occurred in the initial stage of the diameter increasing process. The crucible rotation speed was the pattern shown in FIG.
[0043]
【The invention's effect】
As described above, the silicon single crystal growth method of the present invention limits the crucible rotation speed to 1 rpm or less in the drawing process for removing dislocations and applies a weak magnetic field of 0.1 Tesla or less in the horizontal direction. In addition, by stopping the application of the magnetic field at the stage of shifting from the drawing process to the diameter increasing process, it is possible to stably suppress diameter fluctuations in the drawing process, and to avoid dislocations and uncontrollability in the diameter increasing process. .
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a CZ pulling furnace suitable for carrying out a silicon single crystal growth method of the present invention.
FIG. 2 is a graph illustrating a crucible rotation speed change pattern.
FIG. 3 is an explanatory diagram of a silicon single crystal growth method by a CZ method.
[Explanation of symbols]
1 crucible 2 heater 5 pulling shaft 6 support shaft 7 chamber 12 single crystal 13 melt 15 seed crystal 30 superconducting magnet

Claims (4)

ルツボ内に結晶用シリコン原料を充填して溶融し、その溶融液に浸漬した種結晶を回転させながら引上げることにより、種結晶の下方にシリコン単結晶を成長させるCZ法によるシリコン単結晶成長方法において、転位を除去するための絞り工程でルツボ回転数を1rpm以下とすると共に、水平方向に0.1テスラ以下の磁場を印加し、絞り工程から増径工程に移行する段階でその磁場印加を停止することを特徴とするシリコン単結晶成長方法。  A silicon single crystal growth method by a CZ method in which a silicon raw material for crystal is filled in a crucible and melted, and a seed crystal immersed in the melt is pulled up while rotating to grow a silicon single crystal below the seed crystal. In the drawing process for removing dislocation, the crucible rotation speed is set to 1 rpm or less, a magnetic field of 0.1 Tesla or less is applied in the horizontal direction, and the magnetic field application is performed at the stage of shifting from the drawing process to the diameter increasing process. A silicon single crystal growth method characterized by stopping. 増径工程中で結晶径が100mm以下の時点でルツボ回転数を3rpm以上に変更することを特徴とする請求項1に記載のシリコン単結晶成長方法。  2. The silicon single crystal growth method according to claim 1, wherein the crucible rotation speed is changed to 3 rpm or more when the crystal diameter is 100 mm or less in the diameter increasing step. 増径工程から定径工程への移行時に再び磁場を印加し、ルツボ回転数を所定の回転数に変更することを特徴とする請求項1又は2に記載のシリコン単結晶成長方法。  3. The silicon single crystal growth method according to claim 1, wherein a magnetic field is applied again at the time of transition from the diameter increasing step to the constant diameter step, and the crucible rotation speed is changed to a predetermined rotation speed. 直径が700mm以上の大口径ルツボを使用して直径が200mm以上の大径結晶を引上げることを特徴とする請求項1、2又は3に記載のシリコン単結晶成長方法。  4. The method for growing a silicon single crystal according to claim 1, wherein a large-diameter crystal having a diameter of 200 mm or more is pulled using a large-diameter crucible having a diameter of 700 mm or more.
JP2002245053A 2002-08-26 2002-08-26 Silicon single crystal growth method Expired - Fee Related JP3991813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002245053A JP3991813B2 (en) 2002-08-26 2002-08-26 Silicon single crystal growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002245053A JP3991813B2 (en) 2002-08-26 2002-08-26 Silicon single crystal growth method

Publications (2)

Publication Number Publication Date
JP2004083320A JP2004083320A (en) 2004-03-18
JP3991813B2 true JP3991813B2 (en) 2007-10-17

Family

ID=32053358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002245053A Expired - Fee Related JP3991813B2 (en) 2002-08-26 2002-08-26 Silicon single crystal growth method

Country Status (1)

Country Link
JP (1) JP3991813B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4640796B2 (en) * 2005-05-26 2011-03-02 コバレントマテリアル株式会社 Method for producing silicon single crystal
US20090038537A1 (en) 2007-08-07 2009-02-12 Covalent Materials Corporation Method of pulling up silicon single crystal
JP5136252B2 (en) * 2008-07-11 2013-02-06 株式会社Sumco Method for growing silicon single crystal
JP5660020B2 (en) * 2011-12-16 2015-01-28 信越半導体株式会社 Method for producing silicon single crystal

Also Published As

Publication number Publication date
JP2004083320A (en) 2004-03-18

Similar Documents

Publication Publication Date Title
TW219955B (en)
JP2940437B2 (en) Method and apparatus for producing single crystal
US5851283A (en) Method and apparatus for production of single crystal
JPH0431386A (en) Pulling up semiconductor single crystal
JP3841863B2 (en) Method of pulling silicon single crystal
US6607594B2 (en) Method for producing silicon single crystal
JPH0321515B2 (en)
JPH11268987A (en) Silicon single crystal and its production
JP3991813B2 (en) Silicon single crystal growth method
JP4013324B2 (en) Single crystal growth method
JP2004189559A (en) Single crystal growth method
TW202225501A (en) Crystal growth method and crystal growth apparatus
JP5051033B2 (en) Method for producing silicon single crystal
JP3512074B2 (en) Semiconductor single crystal growing apparatus and semiconductor single crystal growing method
JP4951186B2 (en) Single crystal growth method
JP4640796B2 (en) Method for producing silicon single crystal
JP3521862B2 (en) Single crystal growth method
JP2007254200A (en) Method for manufacturing single crystal
JP4314974B2 (en) Silicon single crystal manufacturing method and silicon single crystal
JP2000239096A (en) Production of silicon single crystal
JP5003733B2 (en) Single crystal growth method
JP4801869B2 (en) Single crystal growth method
WO2014174752A1 (en) Method for producing silicon single crystal
JP4513407B2 (en) Method for producing single crystal
JP5136252B2 (en) Method for growing silicon single crystal

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040217

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20040722

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070716

R150 Certificate of patent or registration of utility model

Ref document number: 3991813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees