JPS6287209A - Production of thin film - Google Patents

Production of thin film

Info

Publication number
JPS6287209A
JPS6287209A JP60228395A JP22839585A JPS6287209A JP S6287209 A JPS6287209 A JP S6287209A JP 60228395 A JP60228395 A JP 60228395A JP 22839585 A JP22839585 A JP 22839585A JP S6287209 A JPS6287209 A JP S6287209A
Authority
JP
Japan
Prior art keywords
thin film
molded body
oxygen
hexafluoropropylene
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60228395A
Other languages
Japanese (ja)
Other versions
JPH0691944B2 (en
Inventor
Kunihiro Inagaki
稲垣 訓宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP60228395A priority Critical patent/JPH0691944B2/en
Publication of JPS6287209A publication Critical patent/JPS6287209A/en
Publication of JPH0691944B2 publication Critical patent/JPH0691944B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To obtain the titled thin film whose performance to separate oxygen and nitrogen is especially improved by forming the plasma-polymerized thin film of a mixture of hexafluoropropylene and an aliphatic hydrocarbon on a substrate molded body. CONSTITUTION:Sheets, fibers, tubes, etc., consisting of a high molecular polymer and an inorg. material are used as the substrate molded body. The plasma- polymerized thin film of a mixture of hexafluoropropylene and an aliphatic hydrocarbon such as methane is formed on the substrate molded body. The mixing ratio of both materials is preferably regulated to 100/1-1/10 (by volume). The polymerization can be carried out at a temp. close to ordinary temp. The polymerization is conducted, for example, by using a device having 10cm diameter and 55cm length, the electric power of the radio wave is controlled to 10-200W and the flow rate of the monomer is adjusted to about 0.1-50 cm<3>(STP)/min. The thickness of the thin film is regulated to 0.01-10mum. The permeability coefficient of oxygen can be controlled to about 10<-8>cm<3>(STP)/ cm<2>.sec.cm Hg and the separation ratio of oxygen and nitrogen adjusted to about 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はヘキサフルオロプロピレン(ヘキサフルオロプ
ロペンとも称する)と脂肪族炭化水素との混合物をプラ
ズマ重合することにより基体成型体上に薄膜を形成させ
ることを特徴とする電気材料、分離膜等として有用な薄
膜の製造法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention forms a thin film on a base molded body by plasma polymerizing a mixture of hexafluoropropylene (also referred to as hexafluoropropene) and an aliphatic hydrocarbon. The present invention relates to a method for producing thin films useful as electrical materials, separation membranes, etc.

〔従来の技術〕[Conventional technology]

プラズマ重合とは真空下に低圧で存在するモノマー中で
グロー放電することによりモノマーを重合することを言
うが、この様な反応はモノマーが分裂を受ける為、二種
類のモノマーを吹き込めば両モノマー成分の要素を含ん
だポリマーが生成する可能性がある。本発明者は先に、
テトラフルオロメタンのプラズマ重合をメタンの共存下
に行うことによシ、薄膜を基板上に形成することを報告
した( J、 Macromol、 Sci、 −ch
em。
Plasma polymerization refers to the polymerization of monomers by glow discharge in monomers that exist under vacuum and low pressure.In such reactions, the monomers undergo splitting, so if two types of monomers are injected, both monomer components will be separated. Polymers containing the following elements may be produced. The inventor previously
reported that a thin film could be formed on a substrate by plasma polymerization of tetrafluoromethane in the coexistence of methane (J, Macromol, Sci, -ch
em.

Alt(す、pAA/−bqs(lqgコ))。Alt(su, pAA/-bqs(lqgco)).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、この薄膜は、たとえば気体分離性能につ
いては満足すべきものではなかった。
However, this thin film was not satisfactory in terms of gas separation performance, for example.

そこで、本発明者は、さらに検討を重ね、ヘキサフルオ
ロプロピレンと脂肪族炭化水素の混合物から基本成型体
上にプラズマ重合によって形成された薄膜は物質の分離
、特に酸素と窒素の分離性能にすぐれた薄膜が形成され
ることを見出し本発明に到達した。
Therefore, the present inventor conducted further studies and found that a thin film formed from a mixture of hexafluoropropylene and aliphatic hydrocarbon by plasma polymerization on a basic molded body has excellent performance in separating substances, especially oxygen and nitrogen. The present invention was achieved by discovering that a thin film can be formed.

すなわち本発明は、ヘキサフルオロプロピレンと脂肪族
炭化水素との混合物をプラズマ重合することにより基体
成形体上に薄膜を形成させることを特徴とする薄膜の装
造法に存する。
That is, the present invention resides in a thin film forming method characterized by forming a thin film on a base molded body by plasma polymerizing a mixture of hexafluoropropylene and an aliphatic hydrocarbon.

〔問題点を解決するための手段〕[Means for solving problems]

本発明をさらに詳細に説明するに1本発明に使用される
基体成型体としては、ポリエチレン、ポリプロビレン、
ポリクーメチルペンテン−/などのポリオレフィン、ポ
リ塩化ビニル、ポリアクリロニトリル、ポリメタクリル
酸メチルなどのビニルモノマーの重合体、ポリフッ化ビ
ニリデンなどのフッ素含有モノマーの重合体、ポリシロ
キサン、ポリトリメチルビニルシラン、ポリトリメチル
シリルプロピレンなどのケイ素含有重合体、ポリアミド
、ポリイミド、ポリスエチルセルロース、アセチルセル
ロースナトのセルロース某重合体、金属、ガラスなどの
無機物等からなるシート、ファイバー、チューブなどが
あげられる。分離膜として用いる場合にはこれら重合体
や無機物の多孔性の成形体が、シート状、中空糸状、ス
パイラル状、管状などの形で用いられる。又通常非対称
膜と称するスキン層と多孔層からなる膜、又複合膜と称
する多孔膜の表面にコーティング、1nsitu重合、
プラズマ重合、ラミネートなどの方法によって均質な超
薄膜を形成した膜も基体成型体として用いることができ
る。電気材料、プラスチックの表面改質等の他の用途に
用いる場合には、目的に応じ、適宜、基板が選択される
To explain the present invention in more detail, the base molded body used in the present invention includes polyethylene, polypropylene,
Polyolefins such as polycoumethylpentene/, polyvinyl chloride, polyacrylonitrile, polymers of vinyl monomers such as polymethyl methacrylate, polymers of fluorine-containing monomers such as polyvinylidene fluoride, polysiloxane, polytrimethylvinylsilane, polytrimethylsilyl Examples include sheets, fibers, and tubes made of silicon-containing polymers such as propylene, polyamides, polyimides, polyethyl cellulose, certain cellulose polymers such as acetyl cellulose, metals, and inorganic materials such as glass. When used as a separation membrane, porous molded bodies of these polymers and inorganic substances are used in the form of sheets, hollow fibers, spirals, tubes, and the like. In addition, coating on the surface of a membrane consisting of a skin layer and a porous layer, which is usually called an asymmetric membrane, or a porous membrane, which is called a composite membrane, 1 nsitu polymerization,
A homogeneous ultra-thin film formed by a method such as plasma polymerization or lamination can also be used as the base molded body. When used for other purposes such as electrical materials and surface modification of plastics, the substrate is selected as appropriate depending on the purpose.

次に、ヘキサフルオロプロピレンの共存下に使用される
脂肪族炭化水素としてはアルカン。
Next, alkanes are used as aliphatic hydrocarbons in the coexistence of hexafluoropropylene.

アルケンが用いられる。好適には常温で気体であるもの
が用いられるが、メタンが最適である。
Alkenes are used. Preferably, a substance that is a gas at room temperature is used, and methane is most suitable.

ヘキサフルオロプロピレンと脂肪族炭化水素との割合は
特に限定されないが好ましくは10O:l−l:lO(
容積比)、特に好ましくは、20:/−i:s(容積比
)の割合で使用される。
The ratio of hexafluoropropylene to aliphatic hydrocarbon is not particularly limited, but is preferably 10O:l-l:lO(
(volume ratio), particularly preferably in a ratio of 20:/-i:s (volume ratio).

次にプラズマ重合の条件について説明する。Next, conditions for plasma polymerization will be explained.

重合温度には特に制限はなく、常温付近でよい。There are no particular restrictions on the polymerization temperature, and it may be around room temperature.

プラズマ重合の装置は公知のものでよく1例えば内部電
極方式ではJournal of Applisd P
olymerSQ1enQ13第17巻、gざ左頁(/
97.7)、又は同誌筒−g巻、3629頁(19rp
)  に記載された装置、無電極方式ではJourna
l of Apl:IliedPolymar 5ci
ence第1j巻、2コア7頁(/q?/)に記載され
た装置等があげられる。モノマーの流速は装置の大きさ
と、電力の大きさに関係し例えば直径10cnr、長さ
j!;cmの装置でラジオ波の電力10〜200Wでの
モノマーの流速は0.7〜50d(STP)/分程度が
選ばれる。
The apparatus for plasma polymerization may be a known one; for example, in the case of an internal electrode system,
olymerSQ1enQ13 Volume 17, gza left page (/
97.7), or the same magazine, volume g, page 3629 (19rp
), the electrodeless method is called Journa.
l of Apl: Ilied Polymar 5ci
Examples include the device described in ence Volume 1j, 2 Cores, page 7 (/q?/). The flow rate of the monomer is related to the size of the device and the amount of electric power.For example, the diameter is 10 cnr, the length is j! The flow rate of the monomer is selected to be about 0.7 to 50 d(STP)/min with a radio wave power of 10 to 200 W in a cm device.

プラズマ重合で基体成形体上に形成される極薄膜の厚さ
は重合時間と流速によってコントロールすることが出来
る。分離膜として使用する場合の極薄膜の膜厚は薄い種
物質の透過速度が大きくなシ好ましいが、一方極端に薄
い場合にはピンホールの生成などによって分離性能が低
下し好ましくない。そこで通常の場合0.0 /μm〜
IOμmの範囲の膜厚になるように基体成形体の表面に
形成させて使用される。
The thickness of the extremely thin film formed on the substrate molded body by plasma polymerization can be controlled by the polymerization time and flow rate. When used as a separation membrane, the thickness of an ultra-thin membrane is preferable because the permeation rate of a thin seed substance is high, but on the other hand, an extremely thin membrane is undesirable because the separation performance deteriorates due to the formation of pinholes. Therefore, normally 0.0/μm~
It is used by forming it on the surface of a base molded body so as to have a film thickness in the range of IO μm.

〔実施例〕〔Example〕

以下、実施例及び比較例により、より具体的に説明する
Hereinafter, a more specific explanation will be given using Examples and Comparative Examples.

比較例 Journal of Applied Polyme
r 5aience第2g巻、3429頁(iqgダ年
)に記載された装置と同じ型の直径ll00m、長さ’
100mの内部電極式重合反応器中に、円形のミリポア
フィルタ−(ミリポアリミテッド社製多孔質膜、平均孔
径オロプロピレンを導入し、  Af電流75mA(2
0KHz)で重合を開始し、モノマー流量gcrd(S
TP)7分、圧力/ b Paにてコ時間プラズマ重合
を行った。
Comparative Example Journal of Applied Polyme
The same type of device as described in r 5aience Volume 2g, page 3429 (Iqg da year), diameter 100 m, length'
A circular Millipore filter (porous membrane manufactured by Millipore Limited, average pore size olopropylene) was introduced into a 100 m internal electrode type polymerization reactor, and an Af current of 75 mA (2
0 KHz), and monomer flow rate gcrd (S
TP) Co-hour plasma polymerization was carried out for 7 minutes at a pressure of /b Pa.

ミリポアフィルタ−の上に形成されたプラズマ重合膜の
酸素と窒素の透過係数を、膜の一次側(気体の供給側)
の圧力は/ kg / cnt、膜の二次側(透過側)
の圧力はs kg 7 crlにて測定し。
The oxygen and nitrogen permeability coefficients of the plasma polymerized membrane formed on the Millipore filter are calculated from the primary side (gas supply side) of the membrane.
The pressure is / kg / cnt, on the secondary side (permeate side) of the membrane
The pressure was measured in s kg 7 crl.

次の結果を得た。I got the following results.

Po2=1.oxlo−”  Cm”(STP)−何ハ
ゴ・Sec・mH,9PH2=t、、、、2×1O−1
0crtlSrp)−6V/CrI−eec−、mgP
 o 2 / PN 2 ==ム7 尚、この時のプラズマ重合膜の膜厚は0.’l 68m
であった。
Po2=1. oxlo-”Cm”(STP)-What Hago・Sec・mH,9PH2=t,,,2×1O−1
0crtlSrp)-6V/CrI-eec-, mgP
o 2 / PN 2 ==mu7 Note that the thickness of the plasma polymerized film at this time is 0. 'l 68m
Met.

実施例/ モノマートシてヘキサフルオロプロピレンとメタンの3
二/の混合物を使用する他は比較例と同様にプラズマ重
合を行い、ミリポアフィルタ−上に形成された薄膜の酸
素と窒素の透過係数を測定し、次の結果を得た。
Example / Monomer 3 of hexafluoropropylene and methane
Plasma polymerization was carried out in the same manner as in the comparative example except that a mixture of 2/2 was used, and the oxygen and nitrogen permeability coefficients of the thin film formed on the Millipore filter were measured, and the following results were obtained.

PO,=:り、り×/θ−’   c7IIl(STP
)−αV仝ゴ・sec−mHJ7pN2= J、+X 
/ (7−” 7(S TP ) ・卿d@sθCII
ttnHyPO2/ PN2= s、ワ 尚、このときのプラズマ重合膜の膜厚は0.3?μmで
あった。
PO, =: Ri, Ri×/θ−' c7IIl(STP
)-αV仝GO・sec-mHJ7pN2=J、+X
/ (7-” 7(S TP) ・ Sird@sθCII
ttnHyPO2/PN2= s, the thickness of the plasma polymerized film at this time is 0.3? It was μm.

上の結果からヘキサフルオロプロピレンにメタンを混合
してプラズマ重合することにより、ヘキサフルオロプロ
ピレン単独の場合と比較して酸素の透過係数は約10倍
増加し、酸素と窒素の透過係数の比によって示される分
離性能もコ、ワに増加することがわかる。
From the above results, by mixing hexafluoropropylene with methane and subjecting it to plasma polymerization, the oxygen permeability coefficient increases by about 10 times compared to the case of hexafluoropropylene alone, which is shown by the ratio of oxygen and nitrogen permeability coefficients. It can be seen that the separation performance increases significantly.

実施例コ 実施例1で使用した膜と同一の膜を・使用し、02コア
ーIN、  N27コ、2%、を含む混合ガスの透過性
能を測定した。
Example Using the same membrane as that used in Example 1, the permeation performance of a mixed gas containing 2% of 02 core IN and N27 core was measured.

?、1I7X 10−’m(STP)/7− t3ec
−tynHjiの速度で得られた透過ガスの組成をガス
クロマトグラフィーで測定し酸素s7./%、窒素qコ
、9%の結果を得た。
? , 1I7X 10-'m(STP)/7-t3ec
The composition of the permeated gas obtained at a rate of -tynHji was measured by gas chromatography and oxygen s7. /%, nitrogen qco, 9% results were obtained.

上記の結果から酸素及び窒素の透過係数を計算すると Pa□==ヲ、!;X10″m(STP ) ・ctr
y’crll・s e c ・cmHlPN、 =、?
 、 9X10″m1(STP) aary’cr/b
 a e c acmH9であシ、供給ガスの組成と透
過ガスの組成から求めた分離係数は α= 3.6 であった。
Calculating the permeability coefficients of oxygen and nitrogen from the above results, Pa□==ヲ! ;X10″m (STP) ・ctr
y'crll・sec・cmHlPN, =,?
, 9X10″m1 (STP) aary'cr/b
ae c acmH9, and the separation coefficient determined from the composition of the feed gas and the composition of the permeate gas was α=3.6.

〔発明の効果〕〔Effect of the invention〕

本発明に係る薄膜の製造法によれば、特に酸素と窒素の
分離性能の向上した薄膜を得ることができる。
According to the method for manufacturing a thin film according to the present invention, it is possible to obtain a thin film with particularly improved oxygen and nitrogen separation performance.

Claims (1)

【特許請求の範囲】[Claims] (1)ヘキサフルオロプロピレンと脂肪族炭化水素との
混合物をプラズマ重合することにより基体成型体上に薄
膜を形成させることを特徴とする薄膜の製造法
(1) A thin film manufacturing method characterized by forming a thin film on a base molded body by plasma polymerizing a mixture of hexafluoropropylene and an aliphatic hydrocarbon.
JP60228395A 1985-10-14 1985-10-14 Thin film manufacturing method Expired - Lifetime JPH0691944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60228395A JPH0691944B2 (en) 1985-10-14 1985-10-14 Thin film manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60228395A JPH0691944B2 (en) 1985-10-14 1985-10-14 Thin film manufacturing method

Publications (2)

Publication Number Publication Date
JPS6287209A true JPS6287209A (en) 1987-04-21
JPH0691944B2 JPH0691944B2 (en) 1994-11-16

Family

ID=16875795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60228395A Expired - Lifetime JPH0691944B2 (en) 1985-10-14 1985-10-14 Thin film manufacturing method

Country Status (1)

Country Link
JP (1) JPH0691944B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007512436A (en) * 2003-11-20 2007-05-17 アピト コープ.エス.アー. Plasma thin film deposition method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5533815A (en) * 1978-08-30 1980-03-10 Showa Alum Ind Kk Semicontinuous casting apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5533815A (en) * 1978-08-30 1980-03-10 Showa Alum Ind Kk Semicontinuous casting apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007512436A (en) * 2003-11-20 2007-05-17 アピト コープ.エス.アー. Plasma thin film deposition method

Also Published As

Publication number Publication date
JPH0691944B2 (en) 1994-11-16

Similar Documents

Publication Publication Date Title
US4657564A (en) Fluorinated polymeric membranes for gas separation processes
JPH0457372B2 (en)
US4759776A (en) Polytrialkylgermylpropyne polymers and membranes
Li et al. Gas-separating properties of membranes coated by HMDSO plasma polymer
WO2007030202A2 (en) Preparation of membranes using solvent-less vapor deposition followed by in-situ polymerization
JPS588517A (en) Preparation of composite film with selective permeability for gas
JPS6312316A (en) Gas permselective composite film manufactured by plasma polymerization coating technique
JPS6287209A (en) Production of thin film
Lin et al. Improvement of oxygen/nitrogen permselectivity of poly [1-(trimethylsilyl)-1-propyne] membrane by plasma polymerization
JPH0157614B2 (en)
Matsuyama et al. Plasma polymerized membranes from organosilicon compounds for separation of oxygen over nitrogen
JPH051048B2 (en)
Inagaki et al. Gas separation membranes made by plasma polymerization of perfluorobenzene/cf4 and pentafluorobenzene/cf4 mixtures
Klta et al. Preparation of plasma-polymerized membranes from I-(trimethylsilyl)-I-propyne and gas permeability through the membranes
JPH0451218B2 (en)
JPH0387B2 (en)
Inagaki et al. Gas separation membrane made by plasma polymerization of 1, 3‐ditrifluoromethylbenzene/CF4 mixture
JPS6197008A (en) Manufacture of thin membrane
JPS6256775B2 (en)
JPS6368619A (en) Production of thin film
JPS61101207A (en) Preparation of membrane
JPH0781009B2 (en) Thin film manufacturing method
JPS6071023A (en) Gas permselective membrane
JPH0262294B2 (en)
JPH0525531B2 (en)