JPS6286778A - Magnetoresistance effect element - Google Patents

Magnetoresistance effect element

Info

Publication number
JPS6286778A
JPS6286778A JP60227500A JP22750085A JPS6286778A JP S6286778 A JPS6286778 A JP S6286778A JP 60227500 A JP60227500 A JP 60227500A JP 22750085 A JP22750085 A JP 22750085A JP S6286778 A JPS6286778 A JP S6286778A
Authority
JP
Japan
Prior art keywords
thin film
layer
film
nife alloy
alloy film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60227500A
Other languages
Japanese (ja)
Inventor
Ryoji Namikata
量二 南方
Toru Yoshiya
吉屋 徹
Koji Otsuka
光司 大塚
Mitsuhiko Yoshikawa
吉川 光彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP60227500A priority Critical patent/JPS6286778A/en
Publication of JPS6286778A publication Critical patent/JPS6286778A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Abstract

PURPOSE:To avoid deterioration in the characteristics of a thin film magnetoresistance element caused by thermal factors by providing a diffusion prohibiting layer between an insulating layer and a ferromagnetic metal thin film which has magnetoresistance effect. CONSTITUTION:A Ti layer is provided between an NiFe alloy film and an SiO2 insulating film which constitute a thin film MR element. With this constitution, mutual diffusion between the NiFe alloy film and the SiO2 insulating film can be prohibited so that a thin film MR element which has sufficient thermal stability can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は金属強磁性薄膜の磁気抵抗効果を用いて磁気記
録媒体に記録された信号の検出を行う再生用薄膜磁気ヘ
ッドあるいは、回転角による磁界強度の変化を検出する
磁気ロータリーエンコーダ等に使用される薄膜磁気抵抗
効果素子(以下薄膜MR素子と称す)に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a thin film magnetic head for reproduction that detects signals recorded on a magnetic recording medium using the magnetoresistive effect of a metal ferromagnetic thin film, and The present invention relates to a thin film magnetoresistive element (hereinafter referred to as a thin film MR element) used in magnetic rotary encoders and the like that detect changes in magnetic field strength.

(従来の技術) 薄膜MR素子は、外部からの信号磁界により薄膜MR素
子内部の磁化方向が変化し、この磁化方向の変化に応じ
た薄膜MR素子の電気抵抗の変化を外部出力として取り
出すものである。この薄膜MR素子を再生用磁気ヘッド
に用いると、半導体の微細加工技術により高集積化及び
多素子化が容易に実現でき、しかも磁気記録媒体の移動
速度に依存しない磁束応答型のヘッドであることから多
チャンネルの固定ヘッド型PCM録音機の再生用磁気ヘ
ッドとして有望視されている。また磁気ロータリーエン
コーダにおいて、回転角を検出する素子としてすでに実
用化されている。
(Prior art) In a thin film MR element, the magnetization direction inside the thin film MR element changes due to an external signal magnetic field, and the change in electrical resistance of the thin film MR element corresponding to the change in the magnetization direction is output as an external output. be. When this thin film MR element is used in a magnetic reproduction head, high integration and multi-element technology can be easily realized using semiconductor microfabrication technology, and the head is a magnetic flux responsive type that does not depend on the moving speed of the magnetic recording medium. It is seen as a promising magnetic head for playback in multi-channel fixed head type PCM recorders. Furthermore, it has already been put into practical use as an element for detecting rotation angle in magnetic rotary encoders.

薄膜MR素子の構造の一例を第1図及び第2図に示して
いる。
An example of the structure of a thin film MR element is shown in FIGS. 1 and 2.

この薄膜MR素子は、NiFe合金等の金属強磁性薄膜
lと、信号検出用の電流端子2,2とによって構成され
、前記金属強磁性薄膜lを所定の形状にエツチング等で
加工し、その両端部にAβ等の導体層を成膜、エツチン
グして前記電流端子2.2が形成される。このような構
成からなる薄膜MR素子を用いて磁気ヘッドを構成する
場合、薄膜MR素子の片側若しくは両側にNiFe合金
等からなる磁気コア(図示省略)が形成されるため、こ
の磁気コアと前記金属強磁性薄膜lとを絶縁する必要か
ら薄膜MR素子の両側にSiO□等の絶縁層が形成され
る。
This thin film MR element is composed of a metal ferromagnetic thin film l made of NiFe alloy, etc., and current terminals 2, 2 for signal detection.The metal ferromagnetic thin film l is processed into a predetermined shape by etching, etc. The current terminal 2.2 is formed by forming and etching a conductor layer such as Aβ on the portion. When constructing a magnetic head using a thin film MR element having such a configuration, a magnetic core (not shown) made of a NiFe alloy or the like is formed on one or both sides of the thin film MR element. Insulating layers such as SiO□ are formed on both sides of the thin film MR element because it is necessary to insulate it from the ferromagnetic thin film l.

また、磁気ロータリーエンコーダのように磁気コアが形
成されない場合でも薄膜Ml?素子上に保護層としてS
i ot等の絶縁層4,5が形成されている。図中3は
基板である。
Furthermore, even when a magnetic core is not formed like in a magnetic rotary encoder, thin film Ml? S as a protective layer on the element
Insulating layers 4 and 5 such as iot are formed. 3 in the figure is a substrate.

(発明が解決しようとする問題点) ところで、薄膜MR素子に使用される金属強磁性薄膜の
膜厚は300〜500人と非常に薄く、従って両側の絶
縁層との間にわずかの拡散等が生じても薄膜MR素子の
特性に著しく大きな影響を与えることになる。この拡散
等による薄膜MR素子の特性劣下について、本発明者は
NiFe膜を350人の厚さに形成した試料を真空中で
200℃及び300℃でアニールした時のNiFe膜の
磁気特性の変化を確認した。この結果を第3図で示して
いる。同図において、300℃では2時間で著しく特性
が劣化しており、特に飽和磁化も減少していることから
この特性劣化は下地のSin。
(Problems to be Solved by the Invention) By the way, the thickness of the metal ferromagnetic thin film used in the thin film MR element is very thin by 300 to 500 mm, and therefore a slight amount of diffusion etc. may occur between the insulating layers on both sides. Even if this happens, it will significantly affect the characteristics of the thin film MR element. Regarding the deterioration of the characteristics of the thin film MR element due to this diffusion, the present inventors investigated the change in the magnetic properties of the NiFe film when a sample in which the NiFe film was formed to a thickness of 350 mm was annealed at 200°C and 300°C in vacuum. It was confirmed. The results are shown in FIG. In the figure, the characteristics deteriorate significantly in 2 hours at 300°C, and in particular, the saturation magnetization also decreases, so this characteristic deterioration is caused by the underlying Sin.

との相互拡散によるものと考えられる。一方、アニール
温度を200℃に下げても特性の劣化はかなりの速さで
生じることから薄膜磁気ヘッドあるいは磁気ロータリー
エンコーダの加工プロセス中の昇温によってすでに薄膜
MR素子の特性の劣化が生じる可能性があり、さらにま
た製品−そのものの耐熱性も悪くなるという問題がある
This is thought to be due to mutual diffusion with On the other hand, even if the annealing temperature is lowered to 200°C, the characteristics deteriorate considerably, so there is a possibility that the characteristics of the thin-film MR element may already deteriorate due to temperature increase during the manufacturing process of the thin-film magnetic head or magnetic rotary encoder. Furthermore, there is a problem that the heat resistance of the product itself is also deteriorated.

本発明は、薄膜磁気ヘッドあるいは磁気ロータリーエン
コーダ等に使用される薄膜MR素子の耐熱性を向上させ
ることにより、加工プロセス中の昇温あるいは高温雰囲
気下での使用等の熱的要因による薄膜MR素子の特性劣
化を防止することを目的とする。
The present invention improves the heat resistance of thin-film MR elements used in thin-film magnetic heads or magnetic rotary encoders, thereby improving the heat resistance of thin-film MR elements used in thin-film magnetic heads or magnetic rotary encoders. The purpose is to prevent deterioration of the characteristics of

(問題点を解決するための手段) 本発明は、磁気抵抗効果素子を有する金属強磁性薄膜と
絶縁層との間に拡散防止層を設けてなるものである。
(Means for Solving the Problems) According to the present invention, a diffusion prevention layer is provided between a metal ferromagnetic thin film having a magnetoresistive element and an insulating layer.

(作用) 拡散防止層によって、金属強磁性薄膜と絶縁層間に生じ
る相互拡散が防止され、このことにより薄膜MR素子の
特性劣下が防止される。
(Function) The diffusion prevention layer prevents mutual diffusion between the metal ferromagnetic thin film and the insulating layer, thereby preventing deterioration of the characteristics of the thin film MR element.

(実施例) 以下、本発明の実施例について図面を参照して説明する
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

まず、NiFe合金膜の下地層としてTiNを用いた場
合の実験例について以下に述べる。
First, an experimental example using TiN as the base layer of the NiFe alloy film will be described below.

ガラス基板上に厚さ約100人のTi層をEB蒸着法で
形成した後、厚さ約350人のN!F。
After forming a Ti layer with a thickness of about 100 layers on a glass substrate by EB evaporation, a Ti layer with a thickness of about 350 layers is formed on a glass substrate. F.

合金膜を磁場中で抵抗加熱法で形成した試料を同じ磁場
中で200℃で2時間真空中アニールをした時の磁歪定
数の変化を表1に示す。比較のため従来使用されている
3、02下地層上に形成されたNiFe合金膜の磁歪定
数の変化も表1に示している。
Table 1 shows the change in magnetostriction constant when a sample of an alloy film formed by resistance heating in a magnetic field was annealed in vacuum at 200° C. for 2 hours in the same magnetic field. For comparison, Table 1 also shows changes in the magnetostriction constant of the NiFe alloy film formed on the conventionally used 3,02 underlayer.

〔表 1〕 この表中の磁歪定数は外部から応力にょるN。[Table 1] The magnetostriction constant in this table is N due to external stress.

F0合金膜の一軸異方性磁界の変化から容易に測定でき
、しかもNiFe合金膜の組成に著しく敏感であること
からNiFe合金膜と下地との拡散による組成変化を検
出するのに適している。
It can be easily measured from changes in the uniaxial anisotropy magnetic field of the F0 alloy film, and is extremely sensitive to the composition of the NiFe alloy film, making it suitable for detecting compositional changes due to diffusion between the NiFe alloy film and the underlying layer.

表1かられかるように、下地層にしてTi層を用いた場
合には磁歪定数はアニールによって変化することはない
が、一方5=Oz下地層を用いた場合にはアニールによ
って磁歪定数が減少しており、NiFe合金膜とS、O
□下地層との拡散によりNiFe合金膜中のF0構成が
減少したことを示している。従って薄膜MR素子となる
N、F。
As can be seen from Table 1, when a Ti layer is used as the underlayer, the magnetostriction constant does not change due to annealing, but on the other hand, when a 5=Oz underlayer is used, the magnetostriction constant decreases due to annealing. NiFe alloy film and S, O
□ This shows that the F0 structure in the NiFe alloy film was reduced due to diffusion with the underlying layer. Therefore, N and F become thin film MR elements.

合金膜とS、0□絶縁膜との間にTi層を設けることに
より、通常の加工プロセス中の昇温等にょるNiFe合
金膜とSt O2絶縁層との拡散を防止することができ
十分熱的に安定な薄膜MR素子を得ることができる。
By providing a Ti layer between the alloy film and the S,0□ insulating film, it is possible to prevent diffusion between the NiFe alloy film and the StO2 insulating layer due to temperature rise during normal processing processes, and to ensure sufficient heat. It is possible to obtain a thin film MR element that is economically stable.

次に、NiFe合金膜の上側保護層としてTi層を用い
た場合の実験例について以下に述べる。
Next, an experimental example in which a Ti layer is used as the upper protective layer of the NiFe alloy film will be described below.

下地層としてはすでに述べた実験結果からガラス基板上
にEB蒸着法で形成した厚さ約100人のTi層を使用
した。この下地層の上に、厚さ約350人のNiFe合
金膜を磁場中で抵抗加熱法で形成した後、厚さ約100
人のTi層を形成した試料を磁場中で200℃で2時間
真空中アニールをした時の磁歪定数の変化を表2に示す
。比較のため、NiFe合金膜上に直接絶縁層となるS
iO□層をRF2極スパッタ法で形成した試料の磁歪定
数の変化も表2に示している。
As the underlayer, a Ti layer having a thickness of about 100 nm was used, which was formed on a glass substrate by EB evaporation based on the experimental results described above. On this base layer, a NiFe alloy film with a thickness of approximately 350 mm was formed using a resistance heating method in a magnetic field, and then a NiFe alloy film with a thickness of approximately 100 mm was formed using a resistance heating method in a magnetic field.
Table 2 shows the change in magnetostriction constant when a sample with a Ti layer formed thereon was annealed in a vacuum at 200° C. for 2 hours in a magnetic field. For comparison, S was used as an insulating layer directly on the NiFe alloy film.
Table 2 also shows the change in the magnetostriction constant of the sample in which the iO□ layer was formed by the RF bipolar sputtering method.

〔表 2〕 表2かられかるように、NiFe合金膜上に直接絶縁層
となるS10□層を形成した場合には、アニールによっ
て磁歪定数は正から負に変化しており表1に示す実験例
と同様にNiFe合金膜とS、O□層との拡散によりN
iFe合金膜中のF。
[Table 2] As shown in Table 2, when the S10□ layer, which serves as an insulating layer, is formed directly on the NiFe alloy film, the magnetostriction constant changes from positive to negative due to annealing, and the experiments shown in Table 1 As in the example, N is caused by diffusion between the NiFe alloy film and the S, O
F in the iFe alloy film.

成分が減少したことを示している。一方N、F。This indicates that the components have decreased. On the other hand, N and F.

合金膜上にT1層を形成した場合には、磁歪定数の変化
は非常に小さくなっている。従って薄膜MR素子となる
NiFe合金膜の両側にT4層を設けることにより絶縁
層となるSi ox層との拡散を防止することができる
When the T1 layer is formed on the alloy film, the change in the magnetostriction constant is extremely small. Therefore, by providing T4 layers on both sides of the NiFe alloy film that will become the thin film MR element, it is possible to prevent diffusion with the Si ox layer that will become the insulating layer.

上記の実験例で示したように、薄膜MR素子となるNi
Fe合金膜の両側に拡散防止層となるT。
As shown in the above experimental example, Ni
T serves as a diffusion prevention layer on both sides of the Fe alloy film.

層を設けることにより8.0□絶絶縁とN、F。By providing a layer, 8.0□ insulation and N, F.

合金膜との間の拡散を防止することができ、加工プロセ
ス中の昇温あるいは製品使用時の温度履歴等の熱的要因
による薄膜MR素子の特性の劣化を防止することができ
る。上記の実験例では薄膜MR素子と5=Oz等の絶縁
層との間の拡散防止層としてT8層を用いているが拡散
防止層としてはTiの他にM、、W、Ti等の他の高融
点金属あるいはこれらの合金等も使用できる。また上記
の実験例では薄膜MR素子としてNiFe合金膜を使用
した場合について示しているが、薄膜MR素子としてN
iFe合金膜の他にNi F、C,、Ni00等の他の
金属強磁性膜を使用した場合にもまた同様の効果が得ら
れることは明らかである。
Diffusion with the alloy film can be prevented, and deterioration of the characteristics of the thin film MR element due to thermal factors such as temperature increase during processing or temperature history during product use can be prevented. In the above experimental example, a T8 layer is used as a diffusion prevention layer between the thin film MR element and an insulating layer such as 5=Oz, but other than Ti, other materials such as M, W, Ti, etc. can be used as a diffusion prevention layer. High melting point metals or alloys thereof can also be used. Furthermore, although the above experimental example shows the case where a NiFe alloy film is used as the thin film MR element,
It is clear that similar effects can be obtained when other metal ferromagnetic films such as NiF, C, Ni00, etc. are used in addition to the iFe alloy film.

′ (発明の効果) 以上述べたように、本発明によれば、薄膜MR素子の耐
熱性を向上でき、加工プロセス中の昇温や高温雰囲気中
での使用による特性劣下の防止を図ることができる。
(Effects of the Invention) As described above, according to the present invention, the heat resistance of the thin film MR element can be improved, and deterioration of characteristics due to temperature increase during the processing process or use in a high-temperature atmosphere can be prevented. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来使用されている薄膜MR素子の構成を示す
平面図、第2図は同素子の断面図、第3図はSt O2
絶縁層上に直接薄膜MR素子となるNiFe合金膜を形
成したものの磁気特性の変化を示す特性図である。
Figure 1 is a plan view showing the configuration of a conventionally used thin film MR element, Figure 2 is a cross-sectional view of the element, and Figure 3 is a St O2
FIG. 4 is a characteristic diagram showing changes in magnetic properties of a NiFe alloy film formed directly on an insulating layer to serve as a thin film MR element.

Claims (1)

【特許請求の範囲】 1)磁気抵抗効果を有する金属強磁性薄膜と絶縁層との
間に拡散防止層を設けたことを特徴とする磁気抵抗効果
素子。 2)前記金属強磁性薄膜がNiFe合金膜で、前記絶縁
層がSiO_2層で、前記拡散防止層がTi層からなる
特許請求の範囲第1項記載の磁気抵抗効果素子。
[Scope of Claims] 1) A magnetoresistive element characterized in that a diffusion prevention layer is provided between a metal ferromagnetic thin film having a magnetoresistive effect and an insulating layer. 2) The magnetoresistive element according to claim 1, wherein the metal ferromagnetic thin film is a NiFe alloy film, the insulating layer is a SiO_2 layer, and the diffusion prevention layer is a Ti layer.
JP60227500A 1985-10-12 1985-10-12 Magnetoresistance effect element Pending JPS6286778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60227500A JPS6286778A (en) 1985-10-12 1985-10-12 Magnetoresistance effect element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60227500A JPS6286778A (en) 1985-10-12 1985-10-12 Magnetoresistance effect element

Publications (1)

Publication Number Publication Date
JPS6286778A true JPS6286778A (en) 1987-04-21

Family

ID=16861863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60227500A Pending JPS6286778A (en) 1985-10-12 1985-10-12 Magnetoresistance effect element

Country Status (1)

Country Link
JP (1) JPS6286778A (en)

Similar Documents

Publication Publication Date Title
JP3514487B2 (en) Multilayer dielectric member and method of forming the same
KR100266353B1 (en) Ferromagnetic tunnel-junction magnetic sensor
JP3447468B2 (en) Magnetoresistive element, method of manufacturing the same, and magnetic head using the same
US5804250A (en) Method for fabricating stable magnetoresistive sensors
US20170301855A1 (en) Novel Composite Seed Layer
JP2612997B2 (en) Magnetoresistance read transducer
JP2008034784A (en) Tunnel-type magnetic detection element and method of manufacturing the same
JPS62128015A (en) Magneto-resistance effect type magnetic head
JP5062832B2 (en) Method for manufacturing magnetoresistive element
JPS6286778A (en) Magnetoresistance effect element
KR20050051655A (en) Magnetoresistance effect element and production method and application method therefor
JPH08129721A (en) Production of nio antiferromagnetic film, production of magnetoresistance effect element and its element
JPH0447890B2 (en)
JP2011123944A (en) Method of manufacturing tmr read head, and tmr laminated body
JP2001076323A (en) Production of spin valve magneto-resistance effect element and production of thin film magnetic head provided with the same
JP2001006932A (en) Magnetoresistive film and magnetic reading sensor using the same
JPH1093159A (en) Magnetoresistance effect element using ferromagnetic tunnel effect film and manufacture thereof
JPH03268216A (en) Composite bias magnetoresistance effect head and production thereof
JPH10289421A (en) Production of magneto-resistive multilayered films
JP2002074616A (en) Thin film magnetic head
JP2008078379A (en) Manufacturing method of tunnel-type magnetism detecting element
JP3551134B2 (en) Method for manufacturing magnetic tunnel effect element
JP2569623B2 (en) Magnetoresistive thin film magnetic head
JP2850584B2 (en) Method of manufacturing magnetoresistive element
JPH09198619A (en) Magnetoresistive head and its production