JPH10289421A - Production of magneto-resistive multilayered films - Google Patents

Production of magneto-resistive multilayered films

Info

Publication number
JPH10289421A
JPH10289421A JP9098609A JP9860997A JPH10289421A JP H10289421 A JPH10289421 A JP H10289421A JP 9098609 A JP9098609 A JP 9098609A JP 9860997 A JP9860997 A JP 9860997A JP H10289421 A JPH10289421 A JP H10289421A
Authority
JP
Japan
Prior art keywords
layer
magnetic field
film
antiferromagnetic
exchange coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9098609A
Other languages
Japanese (ja)
Other versions
JP3822313B2 (en
Inventor
Shin Noguchi
伸 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP09860997A priority Critical patent/JP3822313B2/en
Publication of JPH10289421A publication Critical patent/JPH10289421A/en
Application granted granted Critical
Publication of JP3822313B2 publication Critical patent/JP3822313B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3295Spin-exchange coupled multilayers wherein the magnetic pinned or free layers are laminated without anti-parallel coupling within the pinned and free layers

Abstract

PROBLEM TO BE SOLVED: To prevent heat treatment from deteriorating the soft magnetic characteristics of a free layer by laminating spin valve films in order of a ground surface layer, an antiferromagnetic layer consisting of a material of an NiMn type, a p-i-n layer, a nonmagnetic layer, the free layer and a protective layer in this order, successively from a substrate side, thereby producing magneto-resistive multilayered films. SOLUTION: The production of the magneto-resistive mutilayered films consists in depositing the ground surface layer 15 and the antiferromagnetic layer 11 of the NiMn type on the substrate and laminating the ferromagnetic layer which is the p-i-n layer 12 and the protective layer 16 thereon. Next, the layers are subjected to the heat-treatment while a magnetic field is impressed in a desired direction. The entire part of the protective layer 16 and part of the p-i-n layer 12 are then removed by ion trimming, etc. The p-i-n layer 12 is added thereon and the nonmagnetic layer 13, the free layer 14 and the protective layer 16 are laminated in this order. The ferromagnetic layer 12 is not completely removed but part of the ferromagnetic layer 12 is removed to remain to the extent of not exposing the antiferromagnetic layer 11.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は磁気ヘッドあるいは磁気
センサ等の感磁部に使用される磁気抵抗効果素子に係わ
り、特に強磁性層と反強磁性層との間で作用する交換結
合磁界を利用した磁気抵抗効果多層膜の製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive element used in a magnetic sensing portion such as a magnetic head or a magnetic sensor, and more particularly to an exchange coupling magnetic field acting between a ferromagnetic layer and an antiferromagnetic layer. The present invention relates to a method for manufacturing a magnetoresistive multilayer film using the same.

【0002】[0002]

【従来の技術】ハードディスク装置に代表される磁気記
録再生装置の高記録密度化にともない、情報を記録する
単位である記録ビットはますます極小化されてきてい
る。このため従来の磁束の変化を電気的信号に変換する
誘導型磁気ヘッドでは信号出力が低下してしまい情報の
再生が一層困難になって来ている。そこで再生時にはよ
り高い感度を発現できる記録再生分離型磁気ヘッドが提
案されている。
2. Description of the Related Art With the increase in recording density of magnetic recording / reproducing devices represented by hard disk devices, recording bits, which are units for recording information, have been miniaturized more and more. For this reason, in the conventional inductive magnetic head which converts a change in magnetic flux into an electric signal, the signal output is reduced, and it becomes more difficult to reproduce information. Therefore, a recording / reproducing separated magnetic head capable of exhibiting higher sensitivity during reproduction has been proposed.

【0003】図8は記録再生分離型磁気ヘッドの構成で
ある。上部シールド膜24、上部磁極26およびコイル
25からなる記録ヘッドは、従来と同様にコイル25に
電流を通じることによって磁極先端部に磁界が発生する
誘導型の機構となっている。ボトムシールド膜22、上
部シールド膜24、磁気抵抗効果膜(MR膜)21およ
び電極23からなる再生部は外部磁界に対して電気抵抗
の変化を示す磁気抵抗効果材料を感磁部として使用し、
記録ビットから漏洩する磁界の変化を電気抵抗変化によ
って生じた電圧の変化として出力する。再生信号は、N
i−Fe合金等で構成されるMR膜21の両端に一対の
電極23を取り付けて定電流を流しておき、記録媒体か
らの信号磁界をMR膜21の電気抵抗変化による電圧変
動分として検出し、記録信号を再生するものである。こ
のような方式の再生ヘッドは感磁部素子にMR膜が用い
られるため、磁気抵抗効果型ヘッド(MRヘッド)と呼
ばれる。
FIG. 8 shows a configuration of a recording / reproducing separation type magnetic head. The recording head including the upper shield film 24, the upper magnetic pole 26, and the coil 25 has an induction type mechanism in which a magnetic field is generated at the tip of the magnetic pole by passing a current through the coil 25 as in the related art. The reproducing portion including the bottom shield film 22, the upper shield film 24, the magnetoresistive film (MR film) 21, and the electrode 23 uses a magnetoresistive material showing a change in electric resistance with respect to an external magnetic field as a magnetosensitive portion.
A change in the magnetic field leaking from the recording bit is output as a change in voltage caused by a change in electric resistance. The playback signal is N
A pair of electrodes 23 are attached to both ends of an MR film 21 made of an i-Fe alloy or the like, and a constant current is applied to the signal film. , For reproducing a recorded signal. A reproducing head of this type is called a magnetoresistive head (MR head) because an MR film is used for the magnetic sensing element.

【0004】MRヘッドで高い再生出力を得るためには
大きな磁気抵抗効果を示す材料が必要であるが、2〜3
%程度の抵抗変化率を有するNi−Fe合金膜がMR膜
として従来使用されてきた。しかし、強磁性層と非磁性
層を積層した多層膜において巨大磁気抵抗効果が発見さ
れて以来、Ni−Fe合金膜を上回る抵抗変化率をもつ
磁気抵抗効果多層膜が再生ヘッドに応用されるようにな
ってきた。
In order to obtain a high reproduction output with an MR head, a material exhibiting a large magnetoresistance effect is required.
A Ni—Fe alloy film having a resistance change rate of about% has been conventionally used as an MR film. However, since the giant magnetoresistance effect was discovered in a multilayer film in which a ferromagnetic layer and a nonmagnetic layer were stacked, a magnetoresistance effect multilayer film having a resistance change rate higher than that of a Ni—Fe alloy film has been applied to a reproducing head. It has become

【0005】図9に特開平4−358310号公報に開
示されている、巨大磁気抵抗果を示す多層膜の断面を示
す。この磁気抵抗効果多層膜は、別名スピンバルブ膜と
呼ばれている。この多層膜は非磁性層13で分離された
上下2層の強磁性層即ちフリー層14およびピン層12
を有し、ピン層12の上に積層された反強磁性層11か
らなる構成である。ピン層12の磁化は隣接する反強磁
性層11の磁気モーメントと交換結合するため、交換結
合磁界と呼ばれる見かけ上の磁界が印加される。その結
果、ピン層12の磁化方向は交換結合磁界の方向に固定
される。一方、フリー層14の磁化方向は記録媒体から
の信号磁界に対して自由に変化することができる。フリ
ー層14がこのように信号磁界に対して磁化方向が変化
するため、ピン層12とフリー層14の磁化の向きは平
行と反平行の間を推移することになる。スピンバルブ膜
の電気抵抗はピン層12とピン層14の磁化が平行に配
列したときよりも反平行に配列したときの方が高くな
る。このときスピンバルブ膜が示す抵抗変化率は4〜8
%に達し、Ni−Fe合金膜が示すそれよりも高い値が
得られる。
FIG. 9 shows a cross section of a multilayer film showing a giant magnetoresistive effect disclosed in Japanese Patent Application Laid-Open No. 4-358310. This magnetoresistive multilayer film is also called a spin valve film. This multilayer film is composed of two upper and lower ferromagnetic layers separated by a nonmagnetic layer 13, that is, a free layer 14 and a pinned layer 12.
And the antiferromagnetic layer 11 laminated on the pinned layer 12. Since the magnetization of the pinned layer 12 exchange-couples with the magnetic moment of the adjacent antiferromagnetic layer 11, an apparent magnetic field called an exchange coupling magnetic field is applied. As a result, the magnetization direction of the pinned layer 12 is fixed to the direction of the exchange coupling magnetic field. On the other hand, the magnetization direction of the free layer 14 can freely change with respect to the signal magnetic field from the recording medium. Since the magnetization direction of the free layer 14 changes in response to the signal magnetic field, the magnetization directions of the pinned layer 12 and the free layer 14 change between parallel and antiparallel. The electrical resistance of the spin valve film is higher when the magnetizations of the pinned layers 12 and 14 are arranged antiparallel than when the magnetizations are arranged parallel. At this time, the resistance change rate of the spin valve film is 4 to 8
%, Which is higher than that of the Ni—Fe alloy film.

【0006】スピンバルブ膜の各層に用いられる材料
は、各層に要求される特性を満たすように選ばれてい
る。即ち、フリー層14には軟磁気特性の優れたNi−
Fe合金やCo基非晶質合金が、非磁性層13には電気
抵抗の小さいCuが、ピン層12には磁気抵抗効果が大
きくなるCoあるいはCo−Fe合金がそれぞれ使用さ
れている。反強磁性層11には、ピン層12の磁化方向
をしっかり固定しておくために、高い交換結合磁界を発
生させることのできる材料を使用しなくてはならない。
そのため、より高い交換結合磁界を求めて様々な反強磁
性材料がこれまでに検討されている。それらは大別する
とFeMnタイプ、NiOタイプ、NiMnタイプの3
種類に分類できる。
The material used for each layer of the spin valve film is selected so as to satisfy the characteristics required for each layer. That is, the free layer 14 is made of Ni-
An Fe alloy or a Co-based amorphous alloy is used, the nonmagnetic layer 13 is made of Cu having a small electric resistance, and the pinned layer 12 is made of Co or a Co—Fe alloy having a large magnetoresistance effect. For the antiferromagnetic layer 11, a material capable of generating a high exchange coupling magnetic field must be used in order to firmly fix the magnetization direction of the pinned layer 12.
Therefore, various antiferromagnetic materials have been studied so far in search of a higher exchange coupling magnetic field. They are roughly classified into three types: FeMn type, NiO type and NiMn type.
Can be classified into types.

【0007】FeMnタイプの反強磁性材料は、結晶構
造がfcc構造の不規則合金であり、成膜状態で(熱処
理不要で)容易に交換結合磁界が得られる。交換結合磁
界の方向は成膜中に基板に印加されていた磁界方向と平
行になる。また反強磁性層を5nm程度まで薄くしても
交換結合磁界が得られるという長所がある。しかしその
反面、交換結合磁界の大きさが充分とは言えないこと、
さらに耐食性が悪いためヘッド製造工程中で腐食されて
しまうという大きな欠点がある。MnIr、MnRhな
どはこのタイプに分類される。
[0007] The FeMn type antiferromagnetic material is an irregular alloy having an fcc crystal structure, and can easily obtain an exchange coupling magnetic field in a film-formed state (without the need for heat treatment). The direction of the exchange coupling magnetic field is parallel to the direction of the magnetic field applied to the substrate during film formation. Further, there is an advantage that an exchange coupling magnetic field can be obtained even if the antiferromagnetic layer is thinned to about 5 nm. However, on the other hand, the magnitude of the exchange coupling magnetic field is not sufficient,
Further, there is a major drawback that the corrosion resistance is poor and the head is corroded during the manufacturing process. MnIr, MnRh, etc. are classified into this type.

【0008】NiOタイプの反強磁性材料も成膜状態で
交換結合磁界が得られる。交換結合磁界の方向は成膜中
に基板に印加されていた磁界方向と平行になる。さらに
絶縁体であるため、いわゆる分流損がなくなり高い抵抗
変化率が得られる長所がある。しかし交換結合磁界が小
さく、耐熱性に劣るためヘッド製造工程で一度熱が加え
られると膜構造が変化して交換結合磁界がなくなるとい
う欠点がある。CoOあるいはCoOとNiOの積層膜
がこのタイプに分類される。
An exchange coupling magnetic field can be obtained in a NiO type antiferromagnetic material in a film-formed state. The direction of the exchange coupling magnetic field is parallel to the direction of the magnetic field applied to the substrate during film formation. Furthermore, since it is an insulator, there is an advantage that a so-called shunt loss is eliminated and a high resistance change rate can be obtained. However, since the exchange coupling magnetic field is small and the heat resistance is inferior, there is a disadvantage in that once heat is applied in the head manufacturing process, the film structure changes and the exchange coupling magnetic field disappears. CoO or a laminated film of CoO and NiO is classified into this type.

【0009】NiMnタイプの反強磁性材料はfct構
造の規則合金(CuAuI型)であるが、この反強磁性
規則合金を得るためには成膜した後に磁界中熱処理が必
要である。交換結合磁界の方向は熱処理中に印加された
磁界の方向と平行になる。NiMnタイプが示す交換結
合磁界は上記2つのタイプの反強磁性材料に比べて格段
に大きく、さらに耐食性に優れているためヘッド製造工
程で腐食される恐れが少ないという長所をもっている。
ブロッキング温度(交換結合磁界が消失する温度)も上
記2つのタイプの反強磁性材料より高く、耐熱性も良好
である。しかし、図9に示した各層の配列では、規則合
金にするための熱処理によってフリー層/非磁性層/ピ
ン層の多層部分がダメージを受けるので、スピンバルブ
膜としては低い4%程度の抵抗変化率しか得られないと
いう欠点がある。Ni50Mn50合金のほかにPd5
0Mn50、Pt50Mn50等がこのタイプに分類さ
れる。この合金を本発明ではMnーX合金(XはNi,
Pd,Ptの少なくとも1種)と称する。本発明は特に
この成膜後に熱処理を必要とするMn−X合金を反強磁
性層として用いた磁気抵抗効果多層膜に関するものであ
り、高い抵抗変化率や低ノイズを維持し、熱処理を行え
る製造方法に関するものである。
The NiMn type antiferromagnetic material is an ordered alloy having a fct structure (CuAuI type). In order to obtain this antiferromagnetic ordered alloy, heat treatment in a magnetic field is required after film formation. The direction of the exchange coupling magnetic field is parallel to the direction of the magnetic field applied during the heat treatment. The exchange coupling magnetic field of the NiMn type is much larger than the above two types of antiferromagnetic materials, and has the advantage of being less likely to be corroded in the head manufacturing process because of its excellent corrosion resistance.
The blocking temperature (temperature at which the exchange coupling magnetic field disappears) is higher than those of the above two types of antiferromagnetic materials, and the heat resistance is good. However, in the arrangement of each layer shown in FIG. 9, since the multilayer portion of the free layer / nonmagnetic layer / pinned layer is damaged by the heat treatment for forming the ordered alloy, the resistance change of about 4% is low as a spin valve film. There is a disadvantage that only the rate can be obtained. Pd5 besides Ni50Mn50 alloy
0Mn50, Pt50Mn50 and the like are classified into this type. In the present invention, this alloy is referred to as a Mn-X alloy (X is Ni,
Pd and Pt). The present invention particularly relates to a magnetoresistive multilayer film using a Mn-X alloy as an antiferromagnetic layer which requires a heat treatment after the film formation, and is capable of performing a heat treatment while maintaining a high resistance change rate and low noise. It is about the method.

【0010】[0010]

【発明が解決しようとする課題】高い交換結合磁界を発
生できかつ優れた耐食性を有しているMn−X合金を反
強磁性材料として用いる場合、図10に示した従来の構
成では熱処理時にピン層/非磁性層/フリー層の多層部
分がダメージを受け、抵抗変化率が低下したりノイズが
増大したりして好ましくない。
When a Mn-X alloy capable of generating a high exchange coupling magnetic field and having excellent corrosion resistance is used as an antiferromagnetic material, the conventional structure shown in FIG. The multilayer portion of the layer / nonmagnetic layer / free layer is damaged, and the rate of change in resistance is reduced and noise is increased, which is not preferable.

【0011】また、Mn−X合金の規則化はMn−X合
金層の厚さにも依存する。同じ熱処理条件で比較した場
合、Mn−X合金層が薄いほど規則化しにくくなって交
換結合磁界が小さくなる。薄いMn−X合金層を十分に
規則合金化するためには高温で長時間の熱処理が必要で
あるが、上述したように多層部分が受けるダメージが深
刻になり磁気抵抗効果を示さなくなる。したがって、熱
処理温度を低く抑えてMn−X合金で十分な交換結合磁
界を得るためにはこの層の厚さを30nm程度まで厚く
しなければならなかった。電気抵抗変化率の大きいMn
−X合金がスピンバルブ膜の半分以上の膜厚を占めるよ
うになると、スピンバルブ膜全体の電気抵抗が上昇し
て、結果的に抵抗変化率を減少させる一因になるという
問題もあった。
[0011] The ordering of the Mn-X alloy also depends on the thickness of the Mn-X alloy layer. When compared under the same heat treatment conditions, the thinner the Mn-X alloy layer, the more difficult it is to order and the smaller the exchange coupling magnetic field. Long-term heat treatment at a high temperature is required to sufficiently form a thin Mn-X alloy layer into an ordered alloy. However, as described above, the multilayer portion is seriously damaged and no magnetoresistance effect is exhibited. Therefore, in order to keep the heat treatment temperature low and obtain a sufficient exchange coupling magnetic field with the Mn-X alloy, the thickness of this layer had to be increased to about 30 nm. Mn with large rate of change in electrical resistance
When the -X alloy occupies half or more of the thickness of the spin valve film, there is a problem that the electric resistance of the entire spin valve film increases, which eventually causes a reduction in the resistance change rate.

【0012】さらに、通常スピンバルブ膜では出力の線
形性を得るために交換結合磁界の方向とフリー層の容易
軸の方向を直交させておく必要がある。このためMn−
X合金を反強磁性層に用いた場合にはフリー層の容易軸
と直角の方向に外部磁界を印加しながら熱処理しなくて
はならない。この磁界中熱処理によってフリー層の容易
軸が回転してしまう結果、フリー層の保磁力が大きくな
ってしまうという問題もあった。これらの問題はいずれ
も反強磁性層の熱処理に伴う問題であった。
Furthermore, in a spin valve film, it is necessary to make the direction of the exchange coupling magnetic field perpendicular to the direction of the easy axis of the free layer in order to obtain the linearity of the output. For this reason, Mn-
When an X alloy is used for the antiferromagnetic layer, the heat treatment must be performed while applying an external magnetic field in a direction perpendicular to the easy axis of the free layer. As a result of the easy axis of the free layer being rotated by the heat treatment in the magnetic field, there is a problem that the coercive force of the free layer is increased. All of these problems were associated with the heat treatment of the antiferromagnetic layer.

【0013】かかる欠点を解消するために図10に示す
ように基板の上にまず下地層15を設け次に反強磁性層
11、ピン層12、非磁性層13、フリー層14、保護
層16の順に積層する構成がある。この構成では下地層
15と反強磁性層11を製膜した後にまず熱処理を行う
ことが可能であり、熱処理後にイオンミリング等で反強
磁性層11の表面にある劣化層を取り除いた後、ピン層
12から上の部分を反強磁性層11の上に積層する。こ
のようにすることでピン層12、フリー層14に熱が加
わらないので磁気特性の劣化がないと予想される。
As shown in FIG. 10, an underlayer 15 is first provided on a substrate, and then an antiferromagnetic layer 11, a pinned layer 12, a nonmagnetic layer 13, a free layer 14, and a protective layer 16 are provided. Are stacked in this order. In this configuration, heat treatment can be performed first after the underlayer 15 and the antiferromagnetic layer 11 are formed. After the heat treatment, the degraded layer on the surface of the antiferromagnetic layer 11 is removed by ion milling or the like. The portion above the layer 12 is laminated on the antiferromagnetic layer 11. By doing so, heat is not applied to the pinned layer 12 and the free layer 14, so that it is expected that there is no deterioration in magnetic properties.

【0014】しかしながら発明者が検討したところ、図
10の構成で、反強磁性層11を成膜した後熱処理を行
い、この後にピン層12、非磁性層13の順で積層した
試料では期待に反して抵抗変化率は向上せず、またノイ
ズも低減されなかった。これは、ピン層12と反強磁性
層11との交換結合が弱く、十分な交換結合磁界が得ら
れなかったためである。そこで本発明ではかかる図1の
順の積層構成で、反強磁性層にNiMnタイプのものを
使用したスピンバルブ膜において、熱処理が抵抗変化率
とフリー層の軟磁気特性を劣化させることの無いような
手段を提供することにある。
However, the inventor examined that the antiferromagnetic layer 11 having the configuration shown in FIG. 10 was subjected to a heat treatment, and then the pinned layer 12 and the nonmagnetic layer 13 were stacked in this order. On the contrary, the resistance change rate did not improve and the noise was not reduced. This is because the exchange coupling between the pinned layer 12 and the antiferromagnetic layer 11 was weak, and a sufficient exchange coupling magnetic field could not be obtained. Therefore, in the present invention, in the spin-valve film using the NiMn type antiferromagnetic layer in the laminated configuration in the order of FIG. 1, it is assumed that the heat treatment does not deteriorate the resistance change rate and the soft magnetic characteristics of the free layer. It is to provide a simple means.

【0015】[0015]

【課題を解決するための手段】図2に示したように、ス
ピンバルブ膜を基板側から、下地層15、NiMnタイ
プの材料からなる反強磁性層11、ピン層12、非磁性
層13、フリー層14、保護層16の順で積層した構造
とする。このスピンバルブ膜を図1に示した方法で作製
する。即ち、 工程1.基板上に下地層15、NiMnタイプの反強磁
性層11を成膜し、その上にピン層12となる強磁性層
および保護層16を積層する。 工程2.所望の方向に磁界を印加しながら熱処理を施
す。 工程3.保護層16の全部とピン層12の一部をイオン
ミリング等で取り除く。 工程4.その上にピン層12を付加して、非磁性層1
3、フリー層14、保護層16の順で積層する。
As shown in FIG. 2, a spin-valve film is formed by depositing an underlayer 15, an antiferromagnetic layer 11 made of a NiMn type material, a pinned layer 12, a nonmagnetic layer 13, The structure is such that the free layer 14 and the protective layer 16 are laminated in this order. This spin valve film is manufactured by the method shown in FIG. That is, Step 1. An underlayer 15 and a NiMn type antiferromagnetic layer 11 are formed on a substrate, and a ferromagnetic layer serving as a pinned layer 12 and a protective layer 16 are stacked thereon. Step 2. Heat treatment is performed while applying a magnetic field in a desired direction. Step 3. The entire protective layer 16 and a part of the pinned layer 12 are removed by ion milling or the like. Step 4. A pinned layer 12 is added on top of the non-magnetic layer 1.
3, the free layer 14 and the protective layer 16 are laminated in this order.

【0016】このような方法が従来と異なる点は、強磁
性層12は全て取り除くのではなく、反強磁性層11が
露出しない程度に、強磁性層12を一部残存させること
である。以下に実施例を示し詳述する。
The point that such a method differs from the conventional method is that the ferromagnetic layer 12 is not removed entirely, but is partially left so that the antiferromagnetic layer 11 is not exposed. Examples will be described below in detail.

【0017】(実施例1)図2に示した構造のスピンバ
ルブ膜を以下の方法で作製した。 工程1.デュアルイオンビームスパッタ装置を用いてS
i単結晶基板上に、Ta(5nm)/NiMn(20n
m)/Co(3nm)/Ta(3nm)の積層膜を成膜
した。括弧内の数字は各層の層厚である。Si単結晶基
板側のTa層は積層膜全体の結晶性を向上させるための
下地膜として、また最上部のTa層は積層膜を熱処理中
の酸化から守るための保護膜としてそれぞれ設けた。各
層の成膜条件はいずれも、イオンガン加速電圧500
V、Arガス圧6.0×10−2Pa、イオン電流6m
A、基板印加磁界8kA/mである。チャンバー内の到
達圧力は2×10−5Pa以下である。NiMnの膜組
成はNi51Mn49(at%)であることを別途確認
した。 工程2.真空熱処理炉を用いて、工程1で作製した積層
膜に1×10−3Pa以下の真空中で300℃×6時間
の磁界中熱処理を施した。熱処理中に印加した磁界の強
さは40kA/mである。熱処理後、VSMでこの積層
膜の磁化曲線を測定することにより、32kA/mの交
換結合磁界が発生していることを確認した。 工程3.積層膜を再びデュアルイオンビームスパッタ装
置にセットし、サブイオンガンを用いて積層膜表面のT
a保護層全部とCo層1.5nmをイオンミリングによ
り取り除いた。ミリング条件は、サブイオンガン加速電
圧300V、Arガス圧6.0×10−2Pa、イオン
電流0.6mAである。このプロセスによって積層膜は
NiMn層の上に厚さ1.5nmのCo層が残された状
態となる。 工程4.真空を破らずに(つまり、積層膜を大気にさら
すことなく)上記積層膜の上にCo(1.5nm)/C
u(2nm)/Co(1nm)/Ni80Fe20(5
nm)/Ta(5nm)の順で各層を積層した。成膜条
件は工程1と同じである。ただし、始めのCo層を成膜
する際には基板に印加される磁界方向を交換結合磁界の
方向(即ち熱処理中の磁界印加方向)と平行にし、フリ
ー層となるCo(1nm)/NiFe(5nm)の部分
を成膜する際には基板印加磁界の方向を交換結合磁界と
直交させた。これにより、交換結合磁界の方向とフリー
層の容易軸方向が直交する。以上のプロセスの結果、本
実施例の全体構造は、基板/Ta(5nm)/NiMn
(20nm)/Co(3nm)/Cu(2nm)/Co
(1nm)/NiFe(5nm)/Ta(5nm)とな
る。結果的にピン層は合計3nmの厚さのCoで構成さ
れることになる。
(Example 1) A spin valve film having the structure shown in FIG. 2 was produced by the following method. Step 1. S using a dual ion beam sputtering system
On a single crystal substrate, Ta (5 nm) / NiMn (20 n
m) / Co (3 nm) / Ta (3 nm). The number in parentheses is the thickness of each layer. The Ta layer on the Si single crystal substrate side was provided as a base film for improving the crystallinity of the entire laminated film, and the Ta layer on the top was provided as a protective film for protecting the laminated film from oxidation during heat treatment. The film formation conditions for each layer were all ion gun acceleration voltage 500
V, Ar gas pressure 6.0 × 10 −2 Pa, ion current 6 m
A, the substrate applied magnetic field is 8 kA / m. The ultimate pressure in the chamber is 2 × 10 −5 Pa or less. It was separately confirmed that the film composition of NiMn was Ni51Mn49 (at%). Step 2. Using a vacuum heat treatment furnace, the laminated film produced in step 1 was subjected to heat treatment in a magnetic field at 300 ° C. for 6 hours in a vacuum of 1 × 10 −3 Pa or less. The strength of the magnetic field applied during the heat treatment is 40 kA / m. After the heat treatment, the magnetization curve of this laminated film was measured with a VSM to confirm that an exchange coupling magnetic field of 32 kA / m was generated. Step 3. The laminated film is set in the dual ion beam sputtering apparatus again, and T
a All of the protective layer and the 1.5 nm Co layer were removed by ion milling. Milling conditions are a sub ion gun acceleration voltage of 300 V, an Ar gas pressure of 6.0 × 10 −2 Pa, and an ion current of 0.6 mA. By this process, the laminated film is in a state where a Co layer having a thickness of 1.5 nm is left on the NiMn layer. Step 4. Co (1.5 nm) / C is deposited on the laminated film without breaking the vacuum (that is, without exposing the laminated film to the atmosphere).
u (2 nm) / Co (1 nm) / Ni80Fe20 (5
nm) / Ta (5 nm). The film forming conditions are the same as in step 1. However, when the first Co layer is formed, the direction of the magnetic field applied to the substrate is made parallel to the direction of the exchange coupling magnetic field (that is, the direction of the applied magnetic field during the heat treatment), and Co (1 nm) / NiFe ( 5 nm), the direction of the magnetic field applied to the substrate was perpendicular to the exchange coupling magnetic field. Thereby, the direction of the exchange coupling magnetic field is orthogonal to the easy axis direction of the free layer. As a result of the above process, the overall structure of the present embodiment is: substrate / Ta (5 nm) / NiMn
(20 nm) / Co (3 nm) / Cu (2 nm) / Co
(1 nm) / NiFe (5 nm) / Ta (5 nm). As a result, the pinned layer is made of Co having a total thickness of 3 nm.

【0018】(比較例1)実施例1のスピンバルブ膜と
比較するために図9に示した従来構造のスピンバルブ膜
を比較例1として作製した。比較例1の多層構造は図2
に示す実施例1のスピンバルブ膜を上下反転させた構造
になっている。比較例1もデュアルイオンビームスパッ
タ装置を使用して作製した。成膜条件等は実施例1と同
様であるが、比較例1の場合には全体を同一チャンバー
内で連続的に積層した後、真空熱処理炉で250℃×6
時間の磁界中熱処理を施した。熱処理中の印加磁界方向
は成膜中の印加磁界方向(フリー層の容易軸方向)と直
角の方向である。比較例1における交換結合磁界の大き
さは34kA/mであった。
Comparative Example 1 A spin valve film having a conventional structure shown in FIG. 9 was manufactured as Comparative Example 1 for comparison with the spin valve film of Example 1. The multilayer structure of Comparative Example 1 is shown in FIG.
Has a structure in which the spin valve film of Example 1 shown in FIG. Comparative Example 1 was also manufactured using a dual ion beam sputtering apparatus. The film forming conditions and the like are the same as in Example 1, but in the case of Comparative Example 1, after the whole was continuously laminated in the same chamber, the film was heated at 250 ° C. × 6 in a vacuum heat treatment furnace.
Heat treatment was performed for a long time in a magnetic field. The direction of the applied magnetic field during the heat treatment is perpendicular to the direction of the applied magnetic field during film formation (the direction of the easy axis of the free layer). The magnitude of the exchange coupling magnetic field in Comparative Example 1 was 34 kA / m.

【0019】図4および図5にはそれぞれ実施例1と比
較例1の磁気抵抗曲線を示す。これらの磁気抵抗曲線は
交換結合磁界と平行に最大で8kA/mの外部磁界を印
加しながら電気抵抗変化を測定したものである。図では
便宜上、外部磁界が交換結合磁界に対して逆向きに印加
されている場合を正、平行に印加されている場合を負と
している。実施例1も比較例1と同様に交換結合磁界の
大きさは最大印加磁界8kA/mに比べて十分大きいの
で、ピン層の磁化方向はこの場合しっかりと固定されて
いる。従って、図5および図6に現れている抵抗変化率
はフリー層の磁化回転によるものである。図5および図
6を比較して明らかなように、実施例1は比較例1より
も抵抗変化率が高く、さらに磁気抵抗曲線がヒステリシ
スの小さい線形性の良好な形状をしている。このような
長所は、前述のようにピン層/非磁性層/フリー層の多
層部分が磁界中熱処理によるダメージを被っていないた
めである。このように本発明の磁気抵抗効果多層膜は従
来の図9の構成のものに比べて高性能である。
FIGS. 4 and 5 show magnetoresistive curves of Example 1 and Comparative Example 1, respectively. These magnetoresistance curves are obtained by measuring the change in electric resistance while applying an external magnetic field of 8 kA / m at the maximum in parallel with the exchange coupling magnetic field. In the figure, for convenience, the case where the external magnetic field is applied in the opposite direction to the exchange coupling magnetic field is positive, and the case where the external magnetic field is applied in parallel is negative. In Example 1, as in Comparative Example 1, the magnitude of the exchange coupling magnetic field is sufficiently larger than the maximum applied magnetic field of 8 kA / m, so that the magnetization direction of the pinned layer is firmly fixed in this case. Therefore, the resistance change rates shown in FIGS. 5 and 6 are due to the magnetization rotation of the free layer. As is clear from the comparison between FIGS. 5 and 6, the resistance change rate of Example 1 is higher than that of Comparative Example 1, and the magnetoresistive curve has a shape with small hysteresis and good linearity. Such an advantage is because, as described above, the multilayer portion of the pinned layer / nonmagnetic layer / free layer is not damaged by the heat treatment in the magnetic field. As described above, the magnetoresistive effect multilayer film of the present invention has higher performance than the conventional structure of FIG.

【0020】(実施例2)従来技術では、NiMn層の
厚さは抵抗変化率を左右する要因の一つとなっている。
そこで、本発明における抵抗変化率とNiMn層の厚さ
の関係を明らかにするために、実施例1と同一の多層構
造でNiMn層厚を変化させたスピンバルブ膜を実施例
2として作製した。作製方法は実施例1と同様である
が、工程の1で成膜する積層膜の構成を基板/Ta(5
nm)/NiMn(x nm)/Co(3nm)/Ta
(3nm)としてNiMn層厚xをパラメーターとし
た。
(Embodiment 2) In the prior art, the thickness of the NiMn layer is one of the factors affecting the rate of change in resistance.
Therefore, in order to clarify the relationship between the resistance change rate and the thickness of the NiMn layer in the present invention, a spin-valve film having the same multilayer structure as in Example 1 but having a varied NiMn layer thickness was manufactured as Example 2. The manufacturing method is the same as that in Example 1, except that the configuration of the laminated film formed in Step 1 is changed to the substrate / Ta (5
nm) / NiMn (x nm) / Co (3 nm) / Ta
(3 nm), the NiMn layer thickness x was used as a parameter.

【0021】(比較例2)実施例1と同様の多層構造で
NiMn層厚を変化させたスピンバルブ膜を比較例2と
して作製した。作製方法は実施例1と以下の点を除き同
じ工程で形成したものである。すなわち、比較例2では
実施例1の3の工程でTaおよびCo層をイオンミリン
グのより取り除く際にNiMn層が露出するまでミリン
グを行った。
(Comparative Example 2) A spin valve film having a multilayer structure similar to that of Example 1 but having a different NiMn layer thickness was produced as Comparative Example 2. The manufacturing method was the same as that of Example 1 except for the following points. That is, in Comparative Example 2, when the Ta and Co layers were removed by ion milling in Step 3 of Example 1, milling was performed until the NiMn layer was exposed.

【0022】図6は抵抗変化率のNiMn層厚依存性を
実施例2と比較例2で比較したものである。比較例2の
抵抗変化率は実施例2よりも全てのNiMn層厚さに渡
って小さい。このようにミリング時にNiMn層を露出
させない方が高性能である。この理由は完全には明らか
ではないが、一般に反強磁性層と強磁性層との界面にお
ける交換結合は界面の状態に極めて敏感であることか
ら、NiMn層を露出させた場合雰囲気ガス分子の吸着
やミリングによって生じた凹凸によってピン層との交換
結合磁界が損なわれたことが原因と考えられる。本発明
ではNiMn層はミリング時に露出されないため、この
ような問題はない。さらに強磁性層同士の交換結合は界
面の状態には比較的鈍感であるため、ピン層を露出させ
ても交換結合に問題は生じない。
FIG. 6 shows the dependency of the resistance change rate on the NiMn layer thickness in Example 2 and Comparative Example 2. The resistance change rate of Comparative Example 2 is smaller than that of Example 2 over the entire thickness of the NiMn layer. Thus, the performance is higher if the NiMn layer is not exposed during milling. Although the reason for this is not completely clear, the exchange coupling at the interface between the antiferromagnetic layer and the ferromagnetic layer is generally very sensitive to the state of the interface. It is considered that the exchange coupling magnetic field with the pin layer was impaired by irregularities generated by the milling and milling. In the present invention, such a problem does not occur because the NiMn layer is not exposed during milling. Furthermore, since the exchange coupling between the ferromagnetic layers is relatively insensitive to the state of the interface, exposing the pinned layer does not cause a problem in the exchange coupling.

【0023】更に従来法の比較例2ではNiMn層厚が
20nm以下になると抵抗変化率は急激に減少するのに
対して、実施例2ではNiMn層厚が15nm前後の薄
い領域でも7%程度の高い抵抗変化率を示す。これは、
NiMn層を従来よりも薄くできたため、スピンバルブ
膜全体の電気抵抗が下がるとともにNiMn層へのセン
ス電流の分流が抑えられた結果である。本発明ではこの
ような効果もある。
Further, in Comparative Example 2 of the conventional method, the resistance change rate sharply decreases when the thickness of the NiMn layer becomes 20 nm or less, whereas in Example 2, even in a thin region where the thickness of the NiMn layer is about 15 nm, it is about 7%. It shows a high rate of resistance change. this is,
The result is that the electric resistance of the entire spin valve film is reduced and the shunt of the sense current to the NiMn layer is suppressed because the NiMn layer can be made thinner than before. The present invention also has such an effect.

【0024】(実施例3)スピンバルブ膜を薄くすると
抵抗変化率が向上するだけでなく、MRヘッドの再生分
解能を上げられるという利点もある。そこでよりNiM
n層を薄くするためにTa下地膜とNiMn層の間にC
uからなる厚さ3nmの緩衝層をもうけたスピンバルブ
膜を実施例3として作製した。実施例3の多層構造を図
7に示す。作製方法は実施例1および2と同様である。
(Embodiment 3) When the spin valve film is thinned, not only the resistance change rate is improved, but also the reproduction resolution of the MR head can be increased. So more NiM
In order to reduce the thickness of the n-layer, a C
A spin-valve film having a buffer layer made of u and having a thickness of 3 nm was prepared as Example 3. FIG. 7 shows a multilayer structure of the third embodiment. The fabrication method is the same as in Examples 1 and 2.

【0025】図6には実施例3における抵抗変化率のN
iMn層厚依存性が併せて示されている。図のように実
施例3の場合には、NiMnを5nmまで薄くしても抵
抗変化率の劣化はなく、8%程度の高い抵抗変化率が得
られた。実施例2よりも、スピンバルブ膜全体の膜厚を
さらに7nm低減することが薄い緩衝層を設けることで
可能になった。この理由は次の様に推測される。すなわ
ちNiMn層の成膜初期層は特性が劣化しやすいが、干
渉層が存在すると身代わり的に緩衝層が結晶学的に均一
な層となり、この上に成膜されるNiMnの初期層は欠
陥が無く特性劣化を招かないと推測される。
FIG. 6 shows the resistance change rate N in the third embodiment.
The iMn layer thickness dependence is also shown. As shown in the figure, in the case of Example 3, even if NiMn was thinned to 5 nm, the resistance change rate did not deteriorate, and a high resistance change rate of about 8% was obtained. The thickness of the entire spin valve film can be further reduced by 7 nm as compared with the second embodiment by providing a thin buffer layer. The reason is presumed as follows. In other words, the characteristics of the initial layer of the NiMn layer tend to deteriorate, but the presence of the interference layer makes the buffer layer a crystallographically uniform layer instead, and the initial layer of NiMn formed thereon has defects. It is presumed that the characteristics do not deteriorate.

【0026】緩衝層にはCu以外にも多くの遷移金属元
素が使用可能である。実施例3の多層構造でCuの代わ
りに、Ti、V、Cr、Zr、Nb、Mo、Ru、P
d、Ir、Pt、Auを使用したところ、NiMn層が
5nmと薄くても7〜8%の高い抵抗変化率が全ての元
素で得られた。
Many transition metal elements other than Cu can be used for the buffer layer. Ti, V, Cr, Zr, Nb, Mo, Ru, P instead of Cu in the multilayer structure of the third embodiment
When d, Ir, Pt, and Au were used, a high resistance change rate of 7 to 8% was obtained for all elements even if the NiMn layer was as thin as 5 nm.

【0027】実施例1〜3では反強磁性材料としてNi
Mn合金を用いて説明したが、本発明が適用できる反強
磁性材料はそれに限定されず、従来の技術で述べたNi
Mnタイプのものであれば上述と同様の効果が得られ
る。具体的には、PdMnおよびPtMnの2元合金
で、組成がMn50%近傍のものがこれに当たる。ま
た、NiPdMn、NiPtMn、PdPtMnの3元
合金で、組成がMn50%近傍のものもこれに当たる。
これらの合金は結晶構造が正方晶のCuAuI型規則合
金のときに反強磁性体となり、強い交換結合磁界を発生
させることができるが、規則合金化のためにやはり熱処
理が必要というNiMnと全く同じ特徴をもった材料で
ある。耐食性や耐熱性に優れているというその他の特徴
もNiMnと変わりない。従って、これらの反強磁性材
料のいずれを使用した場合でも本発明は有効で、より高
い抵抗変化率と線形性に優れた磁気抵抗曲線を得ること
ができる。
In Examples 1 to 3, Ni was used as the antiferromagnetic material.
Although the description has been made using the Mn alloy, the antiferromagnetic material to which the present invention can be applied is not limited thereto.
The same effect as described above can be obtained with a Mn type. Specifically, a binary alloy of PdMn and PtMn having a composition of about 50% Mn corresponds to this. A ternary alloy of NiPdMn, NiPtMn and PdPtMn having a composition of around 50% Mn also corresponds to this.
These alloys become antiferromagnetic when the crystal structure is a tetragonal CuAuI type ordered alloy and can generate a strong exchange coupling magnetic field, but are exactly the same as NiMn, which also requires heat treatment for ordered alloying. It is a material with features. Other features such as excellent corrosion resistance and heat resistance are not different from NiMn. Therefore, the present invention is effective even when any of these antiferromagnetic materials is used, and a magnetoresistance curve having a higher resistance change rate and excellent linearity can be obtained.

【0028】実施例1〜3では下地層および保護層にT
aを用いて説明したが、これ以外にもHfあるいはそれ
らの合金を用いても良い。これらの金属は薄膜の状態で
は非晶質となり、下地層として用いれば多層膜の結晶性
の向上に効果があるものである。また、これらの金属は
いずれも酸素と反応して安定な不動態層を形成するので
保護層としての効果がある。
In Examples 1 to 3, the underlayer and the protective layer
Although the description has been made using a, Hf or an alloy thereof may be used. These metals become amorphous in a thin film state, and if they are used as an underlayer, they are effective in improving the crystallinity of the multilayer film. In addition, any of these metals reacts with oxygen to form a stable passivation layer, which is effective as a protective layer.

【0029】成膜方法はイオンビームスパッタ法に限ら
ない。DCマグネトロンスパッタ法やその他の適当な成
膜方法が使用可能である。本実施例ではイオンミリング
でTaとCo層(の一部)を取り除いたが、その他にも
RFエッチング等の方法が使用可能である。
The film forming method is not limited to the ion beam sputtering method. DC magnetron sputtering and other suitable film forming methods can be used. In the present embodiment, the Ta and Co layers (part of) are removed by ion milling, but other methods such as RF etching can be used.

【0029】[0029]

【発明の効果】本発明は、磁気特性、耐食性、耐熱性に
優れているものの熱処理が必要なためにスピンバルブ膜
への適用が困難であったNiMnタイプの反強磁性材料
を、スピンバルブ膜へ適用する多層構造とその製造方法
を提供する。本発明にかかるスピンバルブ膜は、NiM
nタイプの反強磁性材料が本来もつ高い交換結合と耐食
性、耐熱性を損なわないまま、高い抵抗変化率と線形で
ヒステリシスの小さい磁気抵抗曲線を兼ね備えたものと
なる。高い抵抗変化率はMRヘッドの再生出力を向上さ
せ、線形の磁気抵抗曲線はMRヘッドの再生波形を対称
にしかつノイズを小さくすることができる。さらに薄い
緩衝層を付加することによってスピンバルブ膜を従来よ
りも薄くできるので、本発明によるスピンバルブ膜を使
用したMRヘッドはギャップ長を小さくでき、分解能の
良いものにすることができる。
According to the present invention, a NiMn type antiferromagnetic material which is excellent in magnetic properties, corrosion resistance and heat resistance but is difficult to be applied to a spin valve film due to the need for heat treatment is used. The present invention provides a multilayer structure applied to a semiconductor device and a method for manufacturing the same. The spin valve film according to the present invention is made of NiM.
The n-type antiferromagnetic material has both the high exchange coupling, corrosion resistance, and heat resistance inherently possessed by the n-type antiferromagnetic material, and has both a high resistance change rate and a linear, low-hysteresis magnetoresistance curve. A high rate of change in resistance improves the read output of the MR head, and a linear magnetoresistance curve makes the read waveform of the MR head symmetric and reduces noise. By adding a thinner buffer layer, the spin-valve film can be made thinner than before, so that the MR head using the spin-valve film according to the present invention can have a smaller gap length and better resolution.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による磁気抵抗効果多層膜の作製方法を
示す工程図である。
FIG. 1 is a process chart showing a method for producing a magnetoresistive effect multilayer film according to the present invention.

【図2】本発明による多層構成断面図である。FIG. 2 is a sectional view of a multilayer structure according to the present invention.

【図3】従来の多層構成断面図である。FIG. 3 is a cross-sectional view of a conventional multilayer structure.

【図4】本発明による磁気抵抗効果多層膜の磁気抵抗曲
線である。
FIG. 4 is a magnetoresistance curve of the magnetoresistance effect multilayer film according to the present invention.

【図5】従来の磁気抵抗効果多層膜の磁気抵抗曲線であ
る。
FIG. 5 is a magnetoresistance curve of a conventional magnetoresistance effect multilayer film.

【図6】抵抗変化率対NiMn層の厚さ特性である。FIG. 6 is a graph showing a relationship between a rate of change in resistance and a thickness of a NiMn layer.

【図7】他の実施例である積層構成の断面図である。FIG. 7 is a cross-sectional view of a laminated structure according to another embodiment.

【図8】記録再生分離型ヘッドの斜視図である。FIG. 8 is a perspective view of a recording / reproducing separation type head.

【図9】従来の多層磁気抵抗効果膜の構成断面図であ
る。
FIG. 9 is a sectional view showing the configuration of a conventional multilayer magnetoresistive film.

【図10】従来の多層膜の構成である。FIG. 10 shows a configuration of a conventional multilayer film.

【符号の説明】[Explanation of symbols]

10 基板、11 反強磁性層、12 強磁性層(ピン
層)、13 非磁性層、14 強磁性層(フリー層)、
15 下地層、16 保護層、17 緩衝層、21 磁
気抵抗効果膜(MR膜)、22 下部シールド膜、23
電極、24上部シールド膜、25 コイル、26 上
部磁極
10 substrate, 11 antiferromagnetic layer, 12 ferromagnetic layer (pinned layer), 13 nonmagnetic layer, 14 ferromagnetic layer (free layer),
Reference Signs List 15 base layer, 16 protective layer, 17 buffer layer, 21 magnetoresistive effect film (MR film), 22 lower shield film, 23
Electrode, 24 upper shield film, 25 coil, 26 upper magnetic pole

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 非磁性層で分離された2層以上の強磁性
層を有し、この分離された強磁性層のうち1層は隣接す
る反強磁性層からの交換結合磁界が印加される構造の磁
気抵抗効果多層膜において、前記反強磁性層の上に強磁
性層を積層した後、磁界を印加しながら熱処理を施し、
その後前記強磁性層の一部を取り除いた後、交換結合磁
界が印加される強磁性層、非磁性層、交換結合磁界が印
加されない強磁性層の順で積層する工程を有することを
特徴とする磁気抵抗効果多層膜の製造方法。
The present invention has two or more ferromagnetic layers separated by a nonmagnetic layer, and one of the separated ferromagnetic layers receives an exchange coupling magnetic field from an adjacent antiferromagnetic layer. In the magnetoresistive multilayer film having a structure, after laminating a ferromagnetic layer on the antiferromagnetic layer, heat treatment is performed while applying a magnetic field,
Then, after removing a part of the ferromagnetic layer, a step of laminating a ferromagnetic layer to which an exchange coupling magnetic field is applied, a nonmagnetic layer, and a ferromagnetic layer to which no exchange coupling magnetic field is applied is provided. A method of manufacturing a magnetoresistive multilayer film.
【請求項2】 請求項1に記載の磁気抵抗効果多層膜の
製造方法において、前記反強磁性層として正方晶構造を
有するMn−X合金(XはNi、Pd、Ptの少なくと
も一種)を形成する工程を含むことを特徴とする磁気抵
抗効果多層膜の製造方法。
2. The method according to claim 1, wherein a Mn—X alloy (X is at least one of Ni, Pd, and Pt) having a tetragonal structure is formed as the antiferromagnetic layer. A method of manufacturing a magnetoresistive effect multilayer film, comprising:
【請求項3】 請求項2に記載の磁気抵抗効果多層膜の
製造方法において、前記反強磁性層の下層にHf、T
a、あるいはそれらの合金からなる下地層を設ける工程
を有することを特徴とする磁気抵抗効果多層膜の製造方
法。
3. The method of manufacturing a magnetoresistive effect multilayer film according to claim 2, wherein Hf, T is formed below said antiferromagnetic layer.
a. A method for producing a magnetoresistive multilayer film, comprising the step of providing an underlayer made of a or an alloy thereof.
【請求項4】 請求項3に記載の磁気抵抗効果多層膜の
製造方法において、前記下地層と前記反強磁性層との間
に立方晶構造を有する非磁性遷移金属、あるいはそれら
の合金からなる緩衝層を形成する工程を有することを特
徴とする磁気抵抗効果多層膜の製造方法。
4. The method for manufacturing a magnetoresistive multilayer film according to claim 3, wherein the nonmagnetic transition metal has a cubic structure between the underlayer and the antiferromagnetic layer, or an alloy thereof. A method for manufacturing a magnetoresistive effect multilayer film, comprising a step of forming a buffer layer.
【請求項5】 請求項3または4のいずれかに記載の磁
気抵抗効果多層膜の製造方法において、前記反強磁性層
の厚さが20nm以下に制御する工程を含むことを特徴
とする磁気抵抗効果多層膜の製造方法。
5. The method according to claim 3, further comprising the step of controlling the thickness of the antiferromagnetic layer to 20 nm or less. Method for producing effect multilayer film.
JP09860997A 1997-04-16 1997-04-16 Method for manufacturing magnetoresistive multilayer film Expired - Lifetime JP3822313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09860997A JP3822313B2 (en) 1997-04-16 1997-04-16 Method for manufacturing magnetoresistive multilayer film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09860997A JP3822313B2 (en) 1997-04-16 1997-04-16 Method for manufacturing magnetoresistive multilayer film

Publications (2)

Publication Number Publication Date
JPH10289421A true JPH10289421A (en) 1998-10-27
JP3822313B2 JP3822313B2 (en) 2006-09-20

Family

ID=14224346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09860997A Expired - Lifetime JP3822313B2 (en) 1997-04-16 1997-04-16 Method for manufacturing magnetoresistive multilayer film

Country Status (1)

Country Link
JP (1) JP3822313B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6519117B1 (en) 1999-12-06 2003-02-11 International Business Machines Corporation Dual AP pinned GMR head with offset layer
US6560078B1 (en) 2000-07-13 2003-05-06 International Business Machines Corporation Bilayer seed layer for spin valves
JP2012060144A (en) * 2011-10-27 2012-03-22 Toshiba Corp Magnetoresistance effect element, magnetoresistive head, magnetic storage device, and magnetic memory

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9741372B1 (en) * 2016-08-26 2017-08-22 Allegro Microsystems, Llc Double pinned magnetoresistance element with temporary ferromagnetic layer to improve annealing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6519117B1 (en) 1999-12-06 2003-02-11 International Business Machines Corporation Dual AP pinned GMR head with offset layer
US6560078B1 (en) 2000-07-13 2003-05-06 International Business Machines Corporation Bilayer seed layer for spin valves
JP2012060144A (en) * 2011-10-27 2012-03-22 Toshiba Corp Magnetoresistance effect element, magnetoresistive head, magnetic storage device, and magnetic memory

Also Published As

Publication number Publication date
JP3822313B2 (en) 2006-09-20

Similar Documents

Publication Publication Date Title
US6295186B1 (en) Spin-valve magnetoresistive Sensor including a first antiferromagnetic layer for increasing a coercive force and a second antiferromagnetic layer for imposing a longitudinal bias
JP3890893B2 (en) Spin tunnel magnetoresistive film and element, magnetoresistive sensor using the same, magnetic device, and manufacturing method thereof
JP3976231B2 (en) Tunnel magnetoresistive element and manufacturing method thereof, and tunnel magnetoresistive head and manufacturing method thereof
US6313973B1 (en) Laminated magnetorestrictive element of an exchange coupling film, an antiferromagnetic film and a ferromagnetic film and a magnetic disk drive using same
JP3137580B2 (en) Magnetic multilayer film, magnetoresistive element and magnetic transducer
US6258470B1 (en) Exchange coupling film, magnetoresistance effect device, magnetoresistance effective head and method for producing exchange coupling film
JP3263016B2 (en) Spin valve type thin film element
US20030011941A1 (en) Spin-valve type magnetoresistive element and its manufacturing method
US7450351B2 (en) Magnetoresistive element having current-perpendicular-to-plane structure, magnetic head, and magnetic memory apparatus thereof
US6833981B2 (en) Spin valve magnetic head with three underlayers
JPH10341048A (en) Spin valve type thin-film device
KR100304770B1 (en) Magnetoresistive effect film and method of manufacture thereof
US6765769B2 (en) Magnetoresistive-effect thin film, magnetoresistive-effect element, and magnetoresistive-effect magnetic head
JP2924819B2 (en) Magnetoresistive film and method of manufacturing the same
JP2001184613A (en) Magneto resistive sensor
US7206173B2 (en) Magnetoresistive-effect element having a prominent magnetoresistive effect, and method of manufacturing same
JP3822313B2 (en) Method for manufacturing magnetoresistive multilayer film
JP2003318462A (en) Magnetoresistance effect element and magnetic head and magnetic memory using the element
JP3575672B2 (en) Magnetoresistance effect film and magnetoresistance effect element
US8124253B2 (en) Tunneling magnetic sensing element including MGO film as insulating barrier layer
JP2000150235A (en) Spin valve magnetoresistive sensor and thin-film magnetic head
JP3764775B2 (en) Manufacturing method of magnetoresistive head
JP2003204093A (en) Magnetoresistive sensor
JP2004178659A (en) Spin valve head and magnetic recorder
JP3036587B2 (en) Magnetoresistive head and method of manufacturing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040223

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060622

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4