JPS6286240A - Reinforced concrete pillar having bundled steel bar barce mounted therein - Google Patents

Reinforced concrete pillar having bundled steel bar barce mounted therein

Info

Publication number
JPS6286240A
JPS6286240A JP22733085A JP22733085A JPS6286240A JP S6286240 A JPS6286240 A JP S6286240A JP 22733085 A JP22733085 A JP 22733085A JP 22733085 A JP22733085 A JP 22733085A JP S6286240 A JPS6286240 A JP S6286240A
Authority
JP
Japan
Prior art keywords
column
reinforcing bars
reinforced concrete
concrete
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22733085A
Other languages
Japanese (ja)
Other versions
JPH0367175B2 (en
Inventor
若林 實
南 宏一
前田 篤美
清忠 宮井
輝雄 松谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konoike Construction Co Ltd
Original Assignee
Konoike Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konoike Construction Co Ltd filed Critical Konoike Construction Co Ltd
Priority to JP22733085A priority Critical patent/JPS6286240A/en
Publication of JPS6286240A publication Critical patent/JPS6286240A/en
Publication of JPH0367175B2 publication Critical patent/JPH0367175B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Rod-Shaped Construction Members (AREA)
  • Reinforcement Elements For Buildings (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、主として高層建物ないしは幅高層建築または
長スパン構築物の往など大きな荷重を受ける鉄筋コンク
リート柱を対象とする、たばね鉄筋プレース内蔵鉄筋コ
ンクリート柱に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a reinforced concrete column with a built-in spring reinforcing bar place, which is mainly intended for reinforced concrete columns that are subjected to heavy loads, such as those in high-rise buildings or high-rise buildings or long-span structures.

従来の技術 従来の鉄筋コンクリート柱はその耐力、待にじん性すな
わち粘り強さに限界があって、地11による激しい操り
返し荷重を受ければひび割れが生じ易いという欠点があ
る。従って高R建築物の柱上よび大規模m築物などの重
要な柱は、その欠点を補うために秩骨鉄肪コンクリート
柱としているのカイ埋伏である。
BACKGROUND OF THE INVENTION Conventional reinforced concrete columns have a limit in their strength, durability, or tenacity, and have the disadvantage that they are susceptible to cracking if subjected to severe backlash loads from the ground 11. Therefore, important pillars such as those of high-R buildings and large-scale buildings are made of solid-bone ferroconcrete pillars to compensate for their drawbacks.

発明が解決しようとする問題点 鉄筋コンクリート柱は一般に鉛直荷重に対しては相当大
きな荷重まで耐えられるが、地1などによる水平せん断
カセよび曲げ応力並びに引張り荷重に対しては比較的弱
くてひび割れが入り易く、特に一旦せん断亀裂の生じた
柱に鉛直荷重と同時に地震による操り返し水平荷重がか
かれば、亀裂が増大して急激に耐力を失い建物が崩壊す
る危険がある。
Problems to be Solved by the Invention Although reinforced concrete columns can generally withstand quite large vertical loads, they are relatively weak against horizontal shear and bending stress due to the ground, etc., as well as tensile loads and may crack. In particular, if a column with shear cracks is subjected to both a vertical load and a horizontal load due to an earthquake, the cracks will increase and there is a risk that the building will suddenly lose its strength and collapse.

この対策としてフープ(帯筋)を多く密に入れればそれ
だけせん断補強の効果が出て、初期亀裂発生後の急激な
破壊の拡大が防げてじん性を増すことができるが、それ
にも自づと限實があり、また過変にフープを多く密に入
れることは、施工手間がかかり所要1材号が増すばかり
でなくコンクリートの充填性をも阻害することとなる。
As a countermeasure for this, the more hoops (stir bars) are placed densely, the more effective the shear reinforcement will be, which will prevent the rapid spread of fracture after initial cracking and increase toughness. There is a limit in practice, and placing many hoops densely in the overhang will not only increase construction time and increase the number of materials required, but will also impede the filling properties of concrete.

従って高層建物ないしは超高層建築または大きな荷重を
受ける大スパン、大規模構築物などの重要な柱は、鉄骨
鉄筋コンクリート造または鉄骨造としてじん性を大きく
することによって、地震による激しい操り返し荷重を受
けても急激に耐力が低下して破損することがないように
するのが一般的である。しかし鉄骨鉄筋コンクリート造
は鉄筋コンクリート造fこ比べて、手間も工期も多くか
かり所要鋼材量も増し、可成りのコストアップとなる。
Therefore, important columns such as high-rise buildings, super high-rise buildings, large spans, and large-scale structures that are subject to heavy loads can be made of steel-framed reinforced concrete or steel structures to increase their toughness, so that they can withstand intense backlash loads caused by earthquakes. Generally, it is necessary to prevent the product from suddenly decreasing its yield strength and causing damage. However, compared to reinforced concrete construction, steel-framed reinforced concrete construction requires more labor and construction time, and the amount of steel required increases, resulting in a considerable increase in costs.

また狭い空間に鉄骨と鉄筋が#1綜するので施工しにく
いばかりでなくコンクリートの充填性も悪く、強ぜの高
い硬練り良質のコンクリートが打てないという欠点もあ
る。
In addition, since the steel frame and reinforcing bars are placed in a narrow space, it is not only difficult to construct, but also has poor concrete filling properties, making it difficult to cast high-quality, hard-mixed concrete with high strength.

一方鉄骨柱は軽微な建物に用いる場合は簡便廉価である
が、荷重の大きい高層建物などでは逆に割高となり、ま
た耐火被覆や防錆塗装にも相当の工費と手間を要するも
のである。
On the other hand, steel columns are simple and inexpensive when used in small buildings, but they are more expensive for high-rise buildings with heavy loads, and they also require considerable construction costs and labor for fireproof coating and antirust coating.

なお地虜水平力に抵抗させる手段として、建物の要所に
耐震壁やプレース(筋かい)を設けることは有効であっ
て一般に行われているが、何れも建物の使用上邪魔にな
らない個所にしか設けられず、平面計画やデザインを行
う上での制約となる。また耐震壁やプレースには地震時
に荷重が集中して大きな応力が働くので、鉄筋コンクリ
ート耐震壁に対してはせん断補強筋を多く要し、鉄骨プ
レースでは室屈しないだけの大きな断面を使用すると共
に耐火被覆と防錆を行う必要もあって、相当のコストが
かかることとなる。
As a means of resisting horizontal forces, it is effective and common practice to install earthquake-resistant walls and braces at important points in buildings, but these should be installed at locations that do not interfere with the use of the building. This is a constraint on floor planning and design. In addition, because loads are concentrated on shear walls and places during earthquakes and large stresses act on them, reinforced concrete shear walls require many shear reinforcing bars, and steel places use large cross-sections that do not flex and are fireproof. It is also necessary to perform coating and rust prevention, which results in considerable cost.

これ等の問題点を解決する有効な手段として出願人は先
に“@願昭!ター/41Jり71渭棒トラス内蔵鉄筋コ
ンクリート造柱〃(以下“的願“と略称する)に於いて
、4木の鋼棒を本発明と同じ形伏の立体トラスに組み、
その外側に主筋とフープを配筋した鉄筋コンクリート柱
を開発した。この前頭は鉄骨と鉄筋の中間のような前例
のない新しい構法であるが、本発明はこれをさらに発穫
させて一般の鉄筋工事の延長として施工できるよう、−
R1便化を図ったものである。
As an effective means to solve these problems, the applicant previously proposed 4. Assemble wooden steel bars into a three-dimensional truss with the same shape as the present invention,
We developed a reinforced concrete column with main reinforcement and hoops arranged on the outside. This maegashira is an unprecedented new construction method that is intermediate between a steel frame and a reinforcing bar, but the present invention further takes advantage of this construction method so that it can be constructed as an extension of general reinforcing steel work.
This is intended to make it an R1 flight.

問題点を解決するための手段 四隅主筋セよびその間に必要に応じて必要量を配する中
間主筋と、主筋の外筒に巻くフープによって構咬される
柱鉄筋の中に、複数基の秩務を結束した1組のたばね鉄
筋のプレースを、柱中央高さで交わるよう番ご上下階梁
の内法高さ間を斜めに、かつ柱断面に対して対角線方向
に立体トラス状に配役する。このたばね鉄筋プレースが
有効に働いて優れた耐震性能を発揮する。
Means to solve the problem: Multiple main reinforcements are installed in the column reinforcing bars, which are connected by the four corner main reinforcements, the intermediate main reinforcements placed in the necessary amount between them, and the hoops wrapped around the outer cylinder of the main reinforcements. A set of spring reinforcing bars tied together are arranged diagonally between the internal heights of the upper and lower floor beams so that they intersect at the center height of the pillars, and diagonally to the cross section of the pillars in a three-dimensional truss shape. This spring reinforcing bar placement works effectively and provides excellent seismic performance.

作用 上下階梁の内法高ざHoの中央で交わるように図の如く
組んだ1組のたばね鉄筋/は、その交点を頂点とする上
下対称の2つの四角錐を連結した立体トラスと見做すこ
とができる。従ってこの柱に地震水平力がかかれば第5
図のように、X方向の地震に対してはコ組のたばね鉄筋
/atζ引張力が生じ他の2組のたばね鉄筋/hlこ庄
傭力がかかつて水手せん断力QSと釣合い、また対角り
方向の地ltIこ対してはそれぞれ7組のたばね鉄筋/
1の引張力と/bの圧縮力で抵抗する。この何れの場合
にもたばね鉄筋/の引張り、圧愉輛力のみで水手せん断
力QSをすべて吸収してしまい、たばね鉄筋とそれを包
むコンクリートには、せん断1曲げ1寸前応力などが生
じることなくまた伝わらない。この場合鉄筋を太くする
かまたはたばね数を増してその総断面積を増せば、それ
だけこのたばね鉄筋Cどよる立体トラスの負担せん断力
QSを増大することができる。
A set of spring reinforcing bars / set as shown in the figure so that they intersect at the center of the internal height Ho of the upper and lower floor beams is regarded as a three-dimensional truss connecting two vertically symmetrical square pyramids with the intersection point as the apex. can be done. Therefore, if an earthquake horizontal force is applied to this column, the fifth
As shown in the figure, in response to an earthquake in the 7 sets of spring reinforcing bars for each direction
It resists with a tensile force of 1 and a compressive force of /b. In both of these cases, the tension and compression forces of the spring reinforcing bars absorb all of the shearing force QS, and the spring reinforcing bars and the concrete surrounding them do not experience any shear, bending, or near-stress stress. I can't convey it again. In this case, by increasing the total cross-sectional area by thickening the reinforcing bars or increasing the number of springs, the shearing force QS borne by the space truss due to the reinforcing bars C can be increased accordingly.

そうして柱にかかる全せん断力QからこのQSを差し引
いた残りの q艮−Q−QSが、四隅主筋Jと中間主筋
J(以′F総称して“本行主筋〃という)およびフープ
4並びにそれ等を包むコンクリート、すなわち鉄筋コン
クリート(以下“ILC”という)部にかかることにな
るが、このRC部の受は待つ負担せん断力は一般の#C
筋コンクリート柱lご比べ等ヨQ−QS で   −、−倍だけ小さくなるので、コンクリートの
せん断応力が小さくなってひび割れが生じな(なり、ま
たせん断補強のための7−プも少なくて済むことになる
After subtracting this QS from the total shear force Q applied to the column, the remaining q-Q-QS is the four corner main reinforcements J, intermediate main reinforcements J (hereinafter collectively referred to as "main main reinforcements") and hoop 4. The shear force applied to the reinforced concrete (hereinafter referred to as "ILC") section is the same as that of general #C.
Compared to a reinforced concrete column, Q-QS is -, - times smaller, so the shear stress in the concrete is smaller and cracks do not occur (and the need for shear reinforcement is also reduced). become.

またせん断力に柱内法高さを乗じたものが柱頭、柱脚モ
ーメントの和になるが、曲げモーメントについてもと記
のせん断力と全く同じ比率で、RC部の平行主筋および
コンクリートに生ずる応力はトラスの受は持つ分だけ軽
減されて小さくなる。
In addition, the shear force multiplied by the normal height of the column is the sum of the column head and column base moments, but the bending moment is the same ratio as the shear force mentioned above, and the stress generated in the parallel main reinforcement of the RC section and the concrete. The support of the truss is reduced by the amount it has and becomes smaller.

以上は静力学的な応力分担について述べたが、特に括目
すべき点は大地震に対するじん性の差である。すなわち
一般のRC柱は硬くて1峨いので、大地實によりコンク
リートにせん断亀裂が入ってしまうと、その柱が鉛直荷
重を受けながら次に地震による繰り返し荷重がかかれば
その電装が拡大して急激に耐力が低下してしまうので、
いわゆる粘り強さに欠けることとなる。それ1こ対して
本発明Cζよる柱は、たとえ大地震によってコンクリー
トに微袖なりラックが発生し、或いは平行主務の引張力
が降伏点を超えて艮C詔が塑性域Iζ入っても、なおこ
のたばね鉄筋トラスが弾性域で抵抗するので、変形の増
大を抑制してコンクリートの破損を防止する。ざらに変
形が大きくなってトラスを精成するたばね鉄筋/の軸力
がたとえ降伏荷重を超えて塑性域多ζ入ったとしても、
なおその最大耐力を保持し続けλτ霧常に大きな変形量
まで耐力が妻えないので、粘り強いじん性に富んだ架構
を構成することができる。このことは模型実験によって
@逼することができた。
The above has been described about static stress sharing, but what is particularly important to note is the difference in toughness against large earthquakes. In other words, a typical RC column is hard and has a certain height, so if a shear crack develops in the concrete due to the earth, if the column receives a vertical load and is then subjected to repeated loads due to an earthquake, the electrical equipment will expand and cause sudden damage. As the strength decreases,
This results in a lack of so-called tenacity. On the other hand, in the case of the column according to the present invention Cζ, even if a slight rack is generated in the concrete due to a large earthquake, or even if the tensile force of the parallel main body exceeds the yield point and the column C ζ enters the plastic region Iζ, Since this spring reinforcing bar truss provides resistance in the elastic range, it suppresses the increase in deformation and prevents concrete damage. Even if the deformation becomes large and the axial force of the spring reinforcing bars that refine the truss exceeds the yield load and enters the plastic region,
In addition, since the maximum yield strength is maintained and the yield strength cannot be increased to a large amount of deformation at all times, it is possible to construct a frame rich in tenacity and toughness. This was confirmed through model experiments.

実施例 @/図ζこ示すように、四隅主筋コぷよび必要量ζ応じ
て必要量の中間主筋Jと7−プ4によって構成される柱
鉄筋の中に、所要の形状1ζ曲げ加工して複数基の鉄筋
を結束した4組のたばね鉄筋/を、柱中央高さで交わる
ように上階梁の下面と下階梁の上面すなわち床fとの間
の柱の内法高ざHOIBffを斜めに、かっ柱断可に対
して対角線方向に、四角堆型の立体トラス伏多ζ組み込
む。
Example @/Figure ζAs shown, the required shape 1ζ is bent into a column reinforcing bar made up of the four corner main reinforcements and the required amount of intermediate main reinforcements J and 7-4 according to the required amount ζ. Four sets of spring reinforcing bars/, which are made up of multiple reinforcing bars, are connected diagonally to the inner vertical height HOIBff of the column between the lower surface of the upper floor beam and the upper surface of the lower floor beam, that is, the floor f, so that they intersect at the center height of the column. In addition, a rectangular truss type vertical truss ζ is installed in a diagonal direction with respect to the beam section.

第2図は柱上下端におけるA−A横断面図、2XJ図は
柱中央高さのB−B横断面図であって、たばね鉄筋/は
図にセいて矢印(−−−)で示すように、柱中央での贋
なり代だけ柱の対角線より若干ずらせて組むようにする
。なセ図ではJ木の鉄筋を結束したものを描いであるが
、たばねの置数は自由であってJ*でもよく4木以上も
可能であり、極端な場合には数本乃至は数十本の細い鉄
筋または@線をPCストランドや鋼索のように結束また
は懲り合わせたものでもよい、かつ結束する鉄筋は必ず
しも同径のものでなくてもよく、例えばコ太のDコよと
/木のDノコを合わせるなど総断面積を必要量に調整す
ることも可能である。
Figure 2 is an A-A cross-sectional view at the top and bottom ends of the column, and Figure 2XJ is a B-B cross-sectional view at the center height of the column. Then, assemble the pillars so that the center of the pillar is slightly offset from the diagonal of the pillar. The diagram shows J-tree reinforcing bars tied together, but the number of tabs you can place is up to you, and J* can also be used, and four or more bars are possible, and in extreme cases, several to several tens of bars can be used. Thin reinforcing bars or @ wires may be tied or tied together like PC strands or steel cables, and the reinforcing bars to be tied do not necessarily have to be of the same diameter. For example, It is also possible to adjust the total cross-sectional area to the required amount by adding a D-saw.

組み立ての方法は、あらかじめ複数基の鉄筋を結束した
ものを組み込んでもよく、また−木一木の鉄筋を現場に
運びながら組み立てて行くこともできる。鉄筋の継手は
、噌ね継手、ガス圧接、突き合わせ溶接、@ね溶接など
通常の鉄筋継手工法が使用可能である。
As for the assembly method, it is possible to incorporate a plurality of reinforcing bars tied together in advance, or it is also possible to assemble the reinforcing bars made of a single piece of wood while transporting them to the site. For reinforcing bar joints, normal reinforcing bar joint methods such as spring joints, gas pressure welding, butt welding, and @knee welding can be used.

柱)−”F端の柱、@接合部における定着lどついても
、たばね鉄筋は同じ断面清の/木の大径@棒に比べてそ
のを効周長が大であって、それだけ定着部にセけるコン
クリートとの付着耐力が大きくとれるので有利となる。
Column)-"Even if the column at the F end is anchored at the joint, the effective circumference of the spring reinforcing bar is larger than that of a large-diameter wooden bar with the same cross-sectional area, and the anchorage is correspondingly large. This is advantageous because it has a large adhesion strength with concrete.

それでもな諺たばね鉄筋の付着耐力だけでは所要定着力
に足りないときは、例えば定着板をたばね鉄筋に溶接し
て定着力を増すなり、或いは柱、梁接合部いわゆるパネ
ルゾーンの拘束力を増して付着耐力を大きくするなどの
工夫をすればよい。@4図はその一例であって、柱、梁
接合部ではたばね鉄筋の結束を解除して鉄筋/木をばら
ばらIこ縛したものであつて、鉄筋の加工1組立ては若
干複′a1こなるが、総直漬が泪当増すので、それた“
1す定W@力が゛大きくなる。かつこれに大梁主筋が加
わってパネルゾーンにおいても鉄筋がトラス状に配役さ
れることlこなるので、力の流れに対する力学的効果が
増して構造上一層剛強となる。
However, if the adhesion strength of the spring reinforcing bars alone is not enough to meet the required anchoring force, for example, the anchoring plate can be welded to the spring reinforcing bars to increase the anchoring force, or the restraining force of the so-called panel zone at the column-beam joint can be increased. It is advisable to take measures such as increasing the adhesion strength. Figure @4 is an example of this, in which the spring reinforcing bars are unbound at the column and beam joints and the reinforcing bars/trees are tied apart, and the processing and assembly of the reinforcing bars is a bit complicated. However, the total direct pickle made me cry, so I deviated from it.
1 Constant W @ force increases. Additionally, with the addition of the girder main reinforcing bars, the reinforcing bars are arranged in a truss shape in the panel zone, which increases the mechanical effect on the flow of force and makes the structure even stronger.

以上のたばね鉄筋プレースを内蔵した柱侠筋を組み立て
て後、そのパネルゾーンに大梁主筋を1してパネルゾー
ンの7−プを巻き、大梁のスターラップや小梁、床スラ
ブ、壁体などの配筋と所要の型枠の施工を行い、コンク
リートを打設してFvr望の帽体の築造を完了する。こ
の場合大梁にも柱と同様にX形のたばね鉄筋プレースを
併用すれば耐力とじん性を増すことができて有効である
After assembling the column reinforcement with the above-mentioned spring reinforcing bar place built in, place the girder main reinforcement 1 in the panel zone and wrap the 7-pipe of the panel zone to create the girder stirrups, small beams, floor slabs, walls, etc. After arranging reinforcement and constructing the necessary formwork, concrete was poured to complete the construction of the Fvr's cap body. In this case, it is effective to use X-shaped spring reinforcing bar places for the girders as well as for the columns, as this can increase the strength and toughness.

なお木発明は、主として高層建物ないしは超高層寝藁ま
たは長スパン構築物の柱など大きな荷重を受ける鉄筋コ
ンクリート柱を対欧とするものであるが、−投の鉄筋コ
ンクリート建物の柱に利用しても耐震上存効な構法であ
る。
The wooden invention was mainly used in Europe for reinforced concrete columns that receive large loads such as columns of high-rise buildings, ultra-high-rise bedding, or long-span structures, but even when used for columns of reinforced concrete buildings with low earthquake resistance, it has no earthquake resistance. This is an effective construction method.

発明の効果 木発明によるときは次のように数々の利点がある。Effect of the invention When wood is invented, there are many advantages as follows.

(イ) 一般の鉄筋コンクリート柱1こ比べて、遥かに
耐力の高い柱が得られる。
(b) Compared to a single general reinforced concrete column, a column with much higher strength can be obtained.

仲)PFに地震による激しい繰り返し動荷重に対してコ
ンクリートのひび割れ破壊と変形の増大が抑制され、ま
たたとえ変形が増しても耐力の低下が少なく、じん性に
富んだ粘り強い建物またはwj構築物なる。
Naka) PF suppresses the cracking and deformation of concrete under intense repeated dynamic loads caused by earthquakes, and even if deformation increases, there is little decrease in strength, resulting in a strong and durable building or wj structure.

l/→ この柱を鉄骨鉄筋コンクリート柱に比べれば所
要1材lが少ない上に加工手間は比較にならない程少な
く、遥かに安価に短工期で施工できる。
l/→ Compared to steel-framed reinforced concrete columns, this column requires less material per liter and requires far less processing time, making it much cheaper and faster to construct.

に)普通の鉄筋を使って一般の#筋工事並今の施工で実
施可能であるので、半径に安く施工できる。
2) Since it can be carried out using ordinary reinforcing bars and with the same level of construction as general steel reinforcement work, construction can be done cheaply in a radius.

継手や定着部も一般秩筋と同様に処理できる。Joints and anchorage parts can also be treated in the same way as general Chichisuji.

ホ) たばね秩j可の直径、たばね数、温材材質を自由
に選べるので、プレースの引張り。
e) You can freely choose the diameter of the tabane, the number of tabs, and the material of the heating material, so you can easily tighten the place.

王縮強窒を所望の値に合わせ易く経済役計が可能である
It is easy to match the desired value to the desired value, and it is possible to use it for economic purposes.

またプレースの総断面清を大きくし易く、負担水簾附力
を容易に増すことができる。
In addition, it is easy to increase the total cross-sectional area of the place, and the load-bearing force can be easily increased.

(へ)立体トラス状のたばね鉄筋プレースがぜん断力の
過半を負担してしまうので、柱のコンクリートにがかる
せん断力が減ってコンクリートにひび割れが生じにくく
なり、またせん断補強のための7−プも少なくて済む。
(f) Since the three-dimensional truss-shaped spring reinforcing bar place bears the majority of the shear force, the shear force applied to the concrete of the column is reduced, making it difficult for cracks to occur in the concrete, and the 7-pipe for shear reinforcement is also Less is enough.

(ト)  鉄骨鉄筋コンクリート造のように鉄骨と鉄筋
の借、綜がなく、また棉の広い鉄骨が入らないのでコン
クリートの充填性がよく、バイブレーダーの使用も容易
である。従って屯位水9の少ない硬練りの良質なコンク
リートが打設できるので、高層1ンコンクリートを使用
して耐力の高い経済役計がし易い。また乾燥収縮などに
よる割れ発生も防止でき、コンクリートの耐久性も向上
して高品質の躯体を安価に築造できる。
(g) Unlike steel-framed reinforced concrete construction, there are no steel frames and reinforcing bars, and there are no wide steel frames, so the concrete fills easily and it is easy to use a vibrader. Therefore, it is possible to cast high-quality, hard-mixed concrete with less tonne water, making it easy to use high-rise concrete with high strength and economic utility. It also prevents cracks from occurring due to drying shrinkage, improves the durability of concrete, and allows high-quality structures to be constructed at low cost.

なおこのたばね秩務プレースを、往の中に入っていない
一役の鉄骨プレースや1捧(#筋を含む)プレースと比
べると、注:ζ内蔵することによって次の利点が得られ
る。
Note: When comparing this Tabane Chichitsumu place with a steel frame place that does not have a built-in part or a place with a single part (including #), the following advantages can be obtained by incorporating ζ.

チ)壁面または柱と柱の間に設ける一役のプレースのよ
うに平面的に耶鷹にならない。
H) It does not look like a wall or a place that plays a role between pillars.

また柱の中にかくれてしまって目障りにならずデザイン
上の制約にならない。
Also, since it is hidden behind the pillars, it does not become an eyesore and does not become a design constraint.

(引 柱の数だけの多数のプレースを、建物の平面に対
して釣合いよ(均等に配役でき、建物の重心と重心が一
敗して重心による襄れが防げる。また一般の管面プレー
スや耐1壁に生じか” ’5 ’Jその個所への外カセ
よび応力の過変の集中が起こらない。
(A large number of places equal to the number of columns are balanced against the plane of the building (they can be distributed evenly, and the center of gravity of the building and the center of gravity are defeated, preventing the center of gravity from collapsing. If it occurs on the wall, there will be no external bending or stress concentration at that location.

(ス) 一般のプレースは建物の東西方向または南北方
向の何れか一方向にだけしか効かないが、このプレース
は柱断面の対角線方向に入れるので、東西セよび南北何
れの方向の地震に対しても有効で、2倍の効果がある。
(S) General places are only effective in one direction, either the east-west direction or the north-south direction of a building, but this place is inserted in the diagonal direction of the column cross section, so it is effective against earthquakes in either the east-west direction or the north-south direction. is also effective and twice as effective.

(複 コンクリートで包まれていない一般の円欅プレー
スや、アングル等比較的小型の鉄骨プレースでは、圧縮
力がかかれば僅かの力で奄屈してしまうので圧縮耐力は
無視し引張りに対してだけ存効として設計するのが通常
であり、圧縮ICももたせる場合は半常に大きな断面の
H形1や鋼管などが必要である。これに対してこのプレ
ースは、杜の秩務コンクリートで存効Cζコン7アイン
されて座屈せず、細くても圧縮にも引張りと同様に効く
ことが実験で確認された。
(For general rounded places that are not covered with concrete, and relatively small steel places such as angles, if a compressive force is applied, they will sag with a small amount of force, so the compressive strength can be ignored and they only exist under tension.) Normally, this place is designed with a compression IC, and if a compression IC is also included, a large cross-section H-shape 1 or steel pipe is required.On the other hand, this place is designed with a compression IC made of Mori-no-Chichimu Concrete. It has been confirmed through experiments that it does not buckle when it is 7-inched, and that it is as effective in compression as in tension, even though it is thin.

従って柱に内蔵されない露出した鉄筋プレースのコ倍の
効果があり、またど負操り返し荷重lど対し圧縮側の弾
塑性域まで存効に抵抗して応力と変形の関係を表わす履
歴曲線が防備型を描き、地震エネルギーをを効1ご吸収
するので粘り強い建物となる。
Therefore, it is twice as effective as the exposed reinforcing bar place that is not built into the column, and the hysteresis curve that represents the relationship between stress and deformation protects against negative cyclic loads up to the elastoplastic region on the compression side. It creates a strong structure and absorbs earthquake energy, making it a durable building.

(ヲ)鉄骨プレースは一定規模以上の偉物では耐火w1
1を必要とし、また切端塗装しなければならず、これ等
に可成りの手間と工費を要するが、艮C柱に内蔵されて
いるこのプレースはそれ等の必要がない。
(w) Steel frame places are fire resistant w1 for large buildings over a certain scale.
1, and the cut ends must be painted, which requires considerable effort and construction costs, but this place, which is built into the C pillar, eliminates the need for such things.

(7)  耐久上も艮C往の奥深く内蔵され、一般のプ
レースより有利である。
(7) In terms of durability, it is built deep inside the C-type, making it more advantageous than ordinary places.

【図面の簡単な説明】[Brief explanation of drawings]

第1閉は本発明の実施例におけるヰの鉄筋の組立て情況
を示す斜視図、第2図は柱上下端の端断@問、@J図は
柱中央高さの横断面図、第4F図は柱、梁倭今邪におけ
るたばね秩妨の異った定η方法の一例の斜視図、第f図
はたばね鉄筋プレースによって形成される立体トラスC
ζ地震水平力がかかったときの力の釣合いを示す説明文
である /10.たばね鉄筋 コ01.四隅主務 Jlo、中間主務 11.Ilフープ 特許出願人   若  林    実 特許出願人   南     宏  −PF許出出願人
  株式会社 鴻 池 組代  萌  人    池 
  1)  万事 生性  7名 第1図 第4図 第3図 第5図 Xh晩 □y、1il
Figure 1 is a perspective view showing the assembly of reinforcing bars in the embodiment of the present invention, Figure 2 is an end section of the upper and lower ends of the column, Figure J is a cross-sectional view of the center height of the column, and Figure 4F. is a perspective view of an example of a different constant η method of tabular suspension in columns and beams, and Figure f is a three-dimensional truss C formed by tabular reinforcing bar placement.
ζ This is an explanatory text showing the balance of forces when an earthquake horizontal force is applied. /10. Tubular reinforcing bar 01. Four corner supervisors Jlo, middle supervisor 11. Il Hoop Patent Applicant: Wakabayashi Patent Applicant: Hiroshi Minami -PF Permit Applicant: Konoike Co., Ltd. Kumiyo Moe Hitoike
1) All things life 7 people Figure 1 Figure 4 Figure 3 Figure 5 Xh evening □y, 1il

Claims (1)

【特許請求の範囲】 四隅主筋2および必要に応じて必要量の中 間主筋3とフープ4によって構成される柱鉄筋の中に、
複数本の鉄筋を結束した4組のたばね鉄筋1を、柱中央
高さで交わるように上下階梁の内法高さH_0間を斜め
に、かつ柱断面に対して対角線方向に立体トラス状に配
した、たばね鉄筋フレーズ内蔵鉄筋コンクリート柱。
[Claims] In the column reinforcing bars constituted by the four corner main reinforcements 2 and, if necessary, the necessary amount of intermediate main reinforcements 3 and hoops 4,
Four sets of spring reinforcing bars 1, which are made by binding multiple reinforcing bars, are arranged in a three-dimensional truss shape diagonally between the internal height H_0 of the upper and lower floor beams and diagonally to the column cross section so that they intersect at the center height of the column. Reinforced concrete columns with built-in tabular reinforcing bars.
JP22733085A 1985-10-11 1985-10-11 Reinforced concrete pillar having bundled steel bar barce mounted therein Granted JPS6286240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22733085A JPS6286240A (en) 1985-10-11 1985-10-11 Reinforced concrete pillar having bundled steel bar barce mounted therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22733085A JPS6286240A (en) 1985-10-11 1985-10-11 Reinforced concrete pillar having bundled steel bar barce mounted therein

Publications (2)

Publication Number Publication Date
JPS6286240A true JPS6286240A (en) 1987-04-20
JPH0367175B2 JPH0367175B2 (en) 1991-10-22

Family

ID=16859116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22733085A Granted JPS6286240A (en) 1985-10-11 1985-10-11 Reinforced concrete pillar having bundled steel bar barce mounted therein

Country Status (1)

Country Link
JP (1) JPS6286240A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104074311A (en) * 2014-07-11 2014-10-01 北京建筑大学 Horizontal-lateral-force-resistant lattice column

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104074311A (en) * 2014-07-11 2014-10-01 北京建筑大学 Horizontal-lateral-force-resistant lattice column

Also Published As

Publication number Publication date
JPH0367175B2 (en) 1991-10-22

Similar Documents

Publication Publication Date Title
KR101767677B1 (en) Compisite column structure for steel and concrete
US5271197A (en) Earthquake resistant multi-story building
JP3832581B2 (en) RC braceless seismic reinforcement method for RC construction
CN110158768A (en) Prestressing force brace reinforced concrete frame conversion layer
CN107524251B (en) Prestress steel strip masonry faced wall
CN200975062Y (en) Section steel concrete special-shaped pillar with channel steel truss
Khorasani Feasibility study of hybrid wood steel structures
CN213709858U (en) Structural unit body with self-stress function and truss structure system
JP4128517B2 (en) Seismic strengthening frame using tendons
Kawaguchi et al. Experimental study on structural characteristics of portal frames consisting of square CFT columns
Liew et al. Limit-state analysis and design of cable-tensioned structures
JPS6286240A (en) Reinforced concrete pillar having bundled steel bar barce mounted therein
CN1970957A (en) L-shape steel concrete profiled pole with pen-web channel beam framework
CN1970959A (en) T-shape steel concrete profiled pole with pen-web channel beam framework
JP2001140343A (en) Theree-storied dwelling house
CN101024972A (en) Building with combined structure and its constructing method
CN207032582U (en) A kind of multiple constraint armored concrete pillar wall construction and its structural system
JPH10280725A (en) Damping skeleton construction
CN107237426B (en) Multiple constraint reinforced concrete column type wall structure, structure system and construction method thereof
JPH0742805B2 (en) Steel bar truss built-in rebar concrete column
JP5211258B1 (en) Buildings using steel columns with seismic prestressing
Hossen et al. Seismic performance of concrete flat slabs
JPH0350847B2 (en)
McMullin Concrete Lateral Design
Ricles et al. Behavior of composite columns under seismic conditions