JPS6285813A - Distance measuring instrument - Google Patents

Distance measuring instrument

Info

Publication number
JPS6285813A
JPS6285813A JP22626385A JP22626385A JPS6285813A JP S6285813 A JPS6285813 A JP S6285813A JP 22626385 A JP22626385 A JP 22626385A JP 22626385 A JP22626385 A JP 22626385A JP S6285813 A JPS6285813 A JP S6285813A
Authority
JP
Japan
Prior art keywords
reference line
lens
distance
light
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22626385A
Other languages
Japanese (ja)
Inventor
Kimihiko Satake
佐竹 公彦
Kazumitsu Nakajima
中島 一光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHOWA KOKI SEIZO KK
NEC Corp
Original Assignee
SHOWA KOKI SEIZO KK
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHOWA KOKI SEIZO KK, NEC Corp filed Critical SHOWA KOKI SEIZO KK
Priority to JP22626385A priority Critical patent/JPS6285813A/en
Publication of JPS6285813A publication Critical patent/JPS6285813A/en
Pending legal-status Critical Current

Links

Landscapes

  • Automatic Focus Adjustment (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To measure the distance from a reference line to an object of measurement with high precision by converging light which is irradiated at right angles to the reference line and reflected by the object of measurement by a lens whose optical axis is slanted by a specific angle to the reference line. CONSTITUTION:This instrument consists of the reference line 1, a light emitting element 2, a reflecting mirror 3 which is placed at one end of the reference line 1, the lens 4 arranged at the other end of the reference line 1, a CCD element 5, and a signal processing circuit 6. The reference line 1 is the reference for distance measurement. Then, the reflecting mirror 3 reflects light 11 at right angles to the reference line 1 and this light 11 forms a bright point 10 on the wall surface 12 of a tunnel. Then, the lens 4 installed at a constant angle to the reference line 1 converges the light from the bright point 10 to form an image of the bright point 10 on the element 5. The output signal of the element 5 is processed by the circuit 6 to calculate the position of the center of gravity of the image. Then, this position of the center of gravity is used to determine which direction of the optical axis of the lens 4 the bright point 10 is in. The distance between the reference line 1 and wall surface 12, i.e. height of the wall surface is calculated from the direction, the length of the reference line 1, and the tilt angle theta of the optical axis of the lens 4 to the reference line 1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、距離測定装置に関し、V#にトンネル等の断
面形状を測定するために用いられる距離測定装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a distance measuring device, and more particularly, to a distance measuring device used for measuring the cross-sectional shape of a tunnel or the like in V#.

〔従来の技術〕[Conventional technology]

従来、この種のトンネルの断面形状を測定するための距
離測定装置は、第2囚に示すように、一定の長さからな
るフレーム等からなる基準線1のらして行き、基準線1
の他端VC置かれた光検出部9の直上ic輝点10が来
を瞬間に信号処理回路6により反射鏡7の回転角をロー
タリエンコーダ8等の回転角を検出する機器によって読
取り、H=LXtanθの公式により基準線1の長さL
と、反射鏡7の回転角から算出した元の反射方向〇とか
ら、基準線1とトンネルの壁面12との距離Hを算出し
ている。
Conventionally, a distance measuring device for measuring the cross-sectional shape of a tunnel of this kind has been used, as shown in Figure 2, to draw a reference line 1 made of a frame or the like having a certain length.
At the moment when the IC bright spot 10 directly above the photodetector 9 placed on the other end VC comes, the signal processing circuit 6 reads the rotation angle of the reflecting mirror 7 using a device such as a rotary encoder 8 that detects the rotation angle, and H= According to the formula LXtanθ, the length L of reference line 1
The distance H between the reference line 1 and the tunnel wall 12 is calculated from the original reflection direction 〇 calculated from the rotation angle of the reflecting mirror 7.

〔発明が解決しよりとする問題点〕[Problems that the invention is supposed to solve]

上述した従来の距離測定装置は、原理的には。 In principle, the conventional distance measuring device described above.

特に問題はないが、トンネルの壁面12までの距離Hが
基準線1の侵さLの数倍となると、距@Hの一定の変化
に対する反射鏡7の傾きの変化量が小さくなる。このこ
とは逆にロータリエンコーダ8の分解能に起因する角度
θの読取誤差が生じt場合、算出され定距離Hは、大き
な誤差を有することになる。
Although there is no particular problem, when the distance H to the tunnel wall 12 becomes several times the depth L of the reference line 1, the amount of change in the inclination of the reflecting mirror 7 with respect to a constant change in the distance @H becomes small. Conversely, if a reading error of the angle θ occurs due to the resolution of the rotary encoder 8, the calculated constant distance H will have a large error.

従って、距離Hの検出誤差をある一定値以下に抑えるた
めには、高い分解能を有するロータリエンコーダ8が必
要となる。ロータリエンコーダ8は、分解能を高くする
につれて大型かつ高価となり、かつ取扱いも注意が必要
となるので実用上は、大きな障害となっている7 本発明の目的は上記従来の欠点を除去し、ロータリエン
コーダ等の角度検出装置を使用せずに、距M、金高精度
vc測定できる距離測定装置を提供することにある。
Therefore, in order to suppress the detection error of the distance H to below a certain value, the rotary encoder 8 with high resolution is required. As the resolution increases, the rotary encoder 8 becomes larger and more expensive, and requires careful handling, which poses a major obstacle in practical use.7 The purpose of the present invention is to eliminate the above-mentioned conventional drawbacks, and It is an object of the present invention to provide a distance measuring device capable of measuring distance M and distance VC with high accuracy without using an angle detecting device such as the above.

口問題点を解決する定めの手段〕 本発明の距離測定装置は、基準線の一端を通りこの基準
線と垂圓な方向vc元全照射する光源と、前記基準線の
他端ic元軸が前記基基準線の角度をなすよりに設けら
れ定レンズと、測定対象VC前記元が当った輝点の前記
レンズによる像が受光面上に結ばれるようVC前記レン
ズに対して傾けられて前記基準線の他端に設けられt光
電素子と、この元1!素子からの信号を処理して前記基
準線と前記測定対象との間の距離を求める信号処理回路
と金含んで構成される。
Determined Means for Solving the Problem] The distance measuring device of the present invention includes a light source that passes through one end of a reference line and irradiates the entire direction VC in a direction perpendicular to the reference line, and the other end of the reference line has an IC original axis. A constant lens is provided to form an angle with the base reference line, and the reference lens is tilted with respect to the VC lens so that an image of a bright spot hit by the source of the measurement target VC is formed by the lens on the light receiving surface. A photoelectric element is provided at the other end of the line, and this element 1! The device includes a signal processing circuit that processes signals from the elements to determine the distance between the reference line and the measurement target.

〔実施例〕〔Example〕

次に本発明の実施例について図面を参照して説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例の模式的な側面図である。本
実施す1は、基準線1と、発光源2と基準線1の一端v
装置かれた反射鏡3と基準線1の他端Vcはかれたレン
ズ4とCCD素子5と信号処理回路6とから成り、基準
線lは距離測定の基準となる0反射鏡3は発光源2から
出之光11を基準線1と直角に曲げ、光11はトンネル
の壁面12を照射して、輝点10を作る。基準線1iC
対し一定の角度傾けて設置し之レンズ4は、トンネル壁
面12vc当り輝点10で乱反射され次発光源2からの
元を集光して、CCD素子5上に輝点10の像を結ぶ機
能を有し、CCD素子5はレンズ41Cよって結像され
t元を元が当っ九場所と強さ!’(応じ定電気信号に変
換する機能を有し、信号処理回路6ばCCD素子5から
の信号1もとにレンズ4Vcより結像され次元の重心位
置を求め、測定する距離すなわちトンネル壁面11まで
の高さを算出する機能を有している。以下順を追ってこ
の装置の機能を説明する。
FIG. 1 is a schematic side view of an embodiment of the present invention. This embodiment 1 includes a reference line 1, a light emitting source 2, and one end v of the reference line 1.
The device consists of a reflecting mirror 3, a lens 4 with the other end Vc of the reference line 1 measured, a CCD element 5, and a signal processing circuit 6. The reference line l serves as a reference for distance measurement. The light 11 coming from the tunnel is bent at right angles to the reference line 1, and the light 11 illuminates the wall surface 12 of the tunnel to form a bright spot 10. Reference line 1iC
On the other hand, the lens 4 installed at a certain angle has the function of condensing the light emitted from the light emitting source 2 that is diffusely reflected by the bright spot 10 per tunnel wall surface 12vc and forming an image of the bright spot 10 on the CCD element 5. The CCD element 5 is imaged by the lens 41C and the t element hits the 9th place and the intensity! '(The signal processing circuit 6 has a function of converting it into a constant electrical signal, and the signal processing circuit 6 forms an image from the lens 4Vc based on the signal 1 from the CCD element 5, determines the center of gravity position of the dimension, and calculates the distance to be measured, that is, up to the tunnel wall surface 11. The function of this device is explained below in order.

発光源2から出た元11は基準線1の一端に置かれt反
射鏡3により基準線1vc対して直角に曲げられる。こ
の光11がトンネル壁面121/C当り乱反射して輝点
10全生ずる。レンズ4により輝点10の像を結ばせる
場合、トンネル壁12の高さが変化しt際に異なる位置
に結像させることにより、高さを識別するために、レン
ズ4は光11と離れ定場所すなわち基準線1の他端に置
き、かつ元軸を基準線lに対して傾けて、所要の高さ範
囲の輝点10を元軸全中心とした適当な角度範囲内に見
るように配置している。トンネル壁12の高さが異なれ
ば、レンズ4から輝点10を見る角度が異なり、それに
応じて輝点10の結像位置が異なるので、結像点附近1
CCCD素子5全喧いた場合、CCD素子51Cより検
出した結像位置から、トンネル壁12の高さ全算出する
ことが可能となる。
The element 11 emitted from the light emitting source 2 is placed at one end of the reference line 1 and is bent by the t-reflector 3 at right angles to the reference line 1vc. This light 11 is diffusely reflected by the tunnel wall surface 121/C and all bright spots 10 are generated. When the image of the bright spot 10 is formed by the lens 4, the lens 4 is set apart from the light 11 in order to identify the height by focusing the image at a different position when the height of the tunnel wall 12 changes. Place it at the other end of the reference line 1 and tilt the original axis with respect to the reference line l so that the bright spot 10 in the required height range can be seen within an appropriate angular range around the entire center of the original axis. are doing. If the height of the tunnel wall 12 is different, the angle at which the bright spot 10 is viewed from the lens 4 will be different, and the imaging position of the bright spot 10 will be different accordingly.
When the CCCD element 5 is completely closed, the entire height of the tunnel wall 12 can be calculated from the imaging position detected by the CCD element 51C.

しかし一方、トンネル壁12の高さが異なると、レンズ
4と輝点10との距離が異なることになり、CCD素子
5をレンズ4vc対レ一定の距離の所に+Sいたのでは
ピントがボケる場所が生じ、像の位置を正確に求めるこ
とが出来なくなる。
However, if the height of the tunnel wall 12 is different, the distance between the lens 4 and the bright spot 10 will be different, and if the CCD element 5 is placed at a constant distance from the lens 4vc, the focus will be blurred. Due to this problem, the position of the image cannot be determined accurately.

本発明の王眼は、CCD素子5をレンズ4の元軸と垂直
の方向に対し、一定角度だけ傾けて配置することic↓
す、トンネル壁面12の高さが変化することにより、輝
点10とレンズ4との距離が変化しても、CCD素子5
の面上では、輝点10に対するピントが必ず合うように
した点にある。
The king eye of the present invention is arranged so that the CCD element 5 is tilted at a certain angle with respect to the direction perpendicular to the original axis of the lens 4 ic↓
Even if the distance between the bright spot 10 and the lens 4 changes due to a change in the height of the tunnel wall surface 12, the CCD element 5
The bright spot 10 is located at a point on the surface where the bright spot 10 is always in focus.

以下、第1図に示す実施例に訃けるCCD素子50面上
でのピント合せに関する計算例を示す。
An example of calculation regarding focusing on the surface of the CCD element 50 in the embodiment shown in FIG. 1 will be shown below.

この計算例は、基準線1の長ざが1mで2惧〜55惰の
範囲内のトンネル壁面の高さを測定する場合である。
This calculation example is a case where the length of the reference line 1 is 1 m and the height of the tunnel wall surface is measured within the range of 2 cm to 55 cm.

jan  (2/1) =63.435°、tan  
(5,5/1)=79.695゜ レンズの元IIII會θ;69°fCIiけるとトンネ
ル壁面まT゛の高ざが21の場合の輝点10とレンズ4
t−結ぶ直線と基準線1のなす角度αlは、α1=63
.435−69=−5,565’すなわち輝度10はレ
ンズ4の光軸に対し−5,565゜の方向に見える。
jan (2/1) = 63.435°, tan
(5, 5/1) = 79.695° Lens original III θ; 69° fCIi, bright spot 10 and lens 4 when the height of T from the tunnel wall is 21
The angle αl between the straight line connecting t and reference line 1 is α1=63
.. 435-69=-5,565', that is, the brightness of 10 appears in the direction of -5,565° with respect to the optical axis of the lens 4.

その時のレンズ4と輝点10間の距6’AL l tは
11 ヨXアマF=I了= 2.2361 mレンズの
元軸方向の成分は Z1*CO8i α11 ””2.2361 X co
s(5,565°)=2.2256■焦点距離F=50
mg のレンズで結像させると像位置b1はレンズの公
式より 1/bt=1150−1/2225.6中0.0195
5.b1=51.1491譚 一方トンネル璧までの高さが5.5惜の場合の輝点lO
とレンズ4全結ぶ直線と基準線1のなす角度α2は。
At that time, the distance 6'AL t between lens 4 and bright spot 10 is 11 Y
s (5,565°) = 2.2256 ■ Focal length F = 50
When an image is formed with a lens of mg, the image position b1 is 0.0195 out of 1/bt=1150-1/2225.6 from the lens formula.
5. b1 = 51.1491 tan On the other hand, bright spot lO when the height to the tunnel wall is 5.5 inches
The angle α2 between the straight line connecting all the lenses 4 and the reference line 1 is.

α2 = 79.695−69 = 10.695゜そ
の時のレンズ4と輝点10間の距l#!!t2は12 
= k =7”3〒25 = 5.5902 mレンズ
4の元軸方向の氏分け 12*coslα21=5.5902XCO5(10,
695°)=5.4931m 熱点距離F = 50wmのレンズで結像させると1/
b2=1150−115493.1 =0.01982
. bz −50,4593■ トンネル壁面の高さが2mの場合と55濯の場合では像
位1fltlC51,1491−50,4593=0.
6898mの差が出る。すなわちどちらかにピントラ合
せると他方で約0.7mmのピントのボケが生スる。(
中央にピントを合せても各々約0.35mのボケとなる
)、この量は、結像点の中心位m−を求めて、トンネル
壁面12までの高さを検出しようとする場合、無視し得
ない量である、 コノヒントボケ全補正するためvCCCD素子5を傾け
て使用することが考えられるが、21nおよび5.5惰
に相当する像位置でピントを合せt場合、他の位置での
ピントはどうなるかについて、工3図を用いて説明する
α2 = 79.695-69 = 10.695° Distance l# between lens 4 and bright spot 10 at that time! ! t2 is 12
= k = 7”3〒25 = 5.5902 m Lens 4 division in the original axis direction 12*coslα21=5.5902XCO5 (10,
695°) = 5.4931m When the image is formed using a lens with a hot spot distance F = 50wm, 1/
b2=1150-115493.1 =0.01982
.. bz -50,4593■ In the case where the height of the tunnel wall surface is 2m and in the case of 55cm, the image position is 1fltlC51,1491-50,4593=0.
There is a difference of 6898m. In other words, if you focus on either one, the other will be out of focus by about 0.7 mm. (
Even if you focus on the center, each will be blurred by about 0.35 m), and this amount can be ignored when trying to find the center position m- of the imaging point and detect the height to the tunnel wall 12. It is conceivable to use the vCCCD element 5 at an angle in order to fully correct the cono-tip blur, which is an amount that cannot be obtained. What will happen will be explained using Figure 3.

第3図は理解を助けるために、レンズ4およびCCD5
の位置関係を示す部分を拡大して書いている。レンズ4
vcより、A点の像がA′の位置、B点の像がB′の位
置、レンズの元軸上1/C,iる0点の像がC′の位置
ICある場合、A’、B’、C’の位置とCOD素子の
面が一致すればピントのボケが生じない。
Figure 3 shows lens 4 and CCD 5 to aid understanding.
The parts showing the positional relationship are enlarged. lens 4
From vc, if the image of point A is at position A', the image of point B is at position B', and the image of point 0 on the original axis of the lens is 1/C, i at position IC, then A', If the positions of B' and C' match the surface of the COD element, no blurring will occur.

前述のピントのボケのmtKrc使用したFi<M’x
使用すると、 (JA”=bt=51.1491m  OB”=b:、
+=50.4593a+A’ A’ =OA’ Xta
rlclll=51.491 X tan(5,555
°)=4.9837sam B’ B’ =OB’ Xtanl(Ezl=50.4
593X tan(10,695°)=9.5298目 ここにA、点は、A′  点全逸るレンズ4の元軸の垂
線とこの元軸との交点、同様vc B“点は、B′点?
通るレンズ4の光軸の垂線とこの元軸との交点である。
Fi<M'x using mtKrc of the above-mentioned out-of-focus
When used, (JA”=bt=51.1491m OB”=b:,
+=50.4593a+A'A'=OA' Xta
rlcllll=51.491 X tan(5,555
°)=4.9837sam B'B'=OB' Xtanl(Ezl=50.4
593 ?
This is the intersection of the perpendicular to the optical axis of the lens 4 passing through and this original axis.

また直線A’B’とレンズ4の元軸と垂直な面とがなす
角度は次の大きさとなる。
Further, the angle between the straight line A'B' and a plane perpendicular to the original axis of the lens 4 is as follows.

tan−1((OA″−(JB″)/(A’ A” +
B’ I=1>)= tan−1((51・149]−
50,4593)/、983□+9.5298))= 
tan Q O,6898/ 14.5135 )= 
tan−’(0,04753)=2.7210 すなわちCCD素子5がレンズ4vc対しZ7210傾
いt状態でA′点およびB′点でCCD素子5とA点お
よびB点の像を一致させることが出来る。
tan-1((OA"-(JB")/(A'A"+
B'I=1>)=tan-1((51・149]-
50,4593)/, 983□+9.5298))=
tan Q O, 6898/ 14.5135 ) =
tan-' (0,04753) = 2.7210 In other words, when the CCD element 5 is tilted Z7210 with respect to the lens 4vc in the t state, the images of the CCD element 5 and points A and B can be made to coincide at points A' and B'. .

CCD素子5とレンズ4の元軸の交点をC“とすると OC“==OA’ −A’ A’ X tan(2,7
21つ=51.1491−4.9837 X tan(
2,721°)=51.1491−0.2369=50
.9122 一万〇〇=Vイt”+ (1:Σ乙W乙IF璽”=2.
79041=2790.4駕 110C’ =1150
−1/2790.4=0.0196420C’=50.
9123 すなわちレンズ4の元軸とCCD5の交わる位置C#と
元軸方向にある輝点Cの像位置C′の差は 50.9122−50.9123=−0,0001醪=
−0,1μ慣この値はピントのボケに対しては全く無視
し得る鎗である。このよう[CCD素子5を傾けること
により、所要の範囲のトンネル壁面12の筋さに対し輝
点10の像のピントt−C0D素子S上に正解に合せる
ことが出来る。
If the intersection of the original axes of the CCD element 5 and the lens 4 is C", then OC"==OA'-A'A' X tan(2,7
21 = 51.1491-4.9837 X tan (
2,721°)=51.1491-0.2369=50
.. 9122 10,000=Vit"+ (1:ΣW IF"=2.
79041=2790.4 pallets 110C'=1150
-1/2790.4=0.0196420C'=50.
9123 That is, the difference between the position C# where the original axis of the lens 4 and the CCD 5 intersect and the image position C' of the bright spot C in the original axis direction is 50.9122-50.9123=-0,0001=
The value -0.1μ is completely negligible when it comes to blurring the focus. By tilting the CCD element 5 in this manner, it is possible to accurately focus the image of the bright spot 10 on the t-C0D element S with respect to the striations of the tunnel wall surface 12 within a required range.

CCL)素子5によシ、輝点1oの像に対応する信号が
送出されるが、この信号を信号処理回路6により処理し
て、像の重心位置を算出する。この重心位置から、輝点
10がレンズ4の光軸に対して、どの方向にあるかを決
定できる。この方向と基準線1の長さ、レンズ4の元軸
の基準線1vc対する傾き角とから、基準線1とトンネ
ル壁面12の距離すなわちトンネル壁面の高ざが算出で
きる。
A signal corresponding to the image of the bright spot 1o is sent to the CCL element 5, and this signal is processed by the signal processing circuit 6 to calculate the position of the center of gravity of the image. From this position of the center of gravity, it can be determined in which direction the bright spot 10 is located with respect to the optical axis of the lens 4. From this direction, the length of the reference line 1, and the angle of inclination of the original axis of the lens 4 with respect to the reference line 1vc, the distance between the reference line 1 and the tunnel wall surface 12, that is, the height of the tunnel wall surface can be calculated.

算出法は下記による。The calculation method is as follows.

1)@の重心位置と輝点10のし/ズ4の元軸に対する
角度を事前に較正しておく。重心位置から駆1図に示す
角度α全算出する。
1) The position of the center of gravity of @ and the angle of the bright spot 10 with respect to the original axis of the lens 4 are calibrated in advance. The angle α shown in Figure 1 is calculated from the center of gravity position.

2)基準線1の長さftL、レンズ40元軸の傾き角を
θとすると、トンネル壁面までの高さHは H=LXtan(θ十α) すなわちαが決ればHが算出される。
2) When the length of the reference line 1 is ftL and the angle of inclination of the lens 40 element axis is θ, the height H to the tunnel wall surface is H=LXtan(θ+α), that is, if α is determined, H is calculated.

なお、本発明は、第1図に示す反射鏡3を使用せず発光
源2から直接に元11t−基準線lと垂直な方向に照射
するようにしてもよい、 ま;7CCD素子5の代わ〕にホトトランジスタアレー
のような充電素子を用いてもよい。
In the present invention, the light emitting source 2 may emit light directly in a direction perpendicular to the source 11t-reference line l without using the reflecting mirror 3 shown in FIG. ] A charging element such as a phototransistor array may be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、基準線と垂直な方向に照
射した元が測定対象に当っ友輝点からの元金基準線と元
軸を一定角度傾は九レンズによシ果尤して、元軸と垂直
な方向に対し一定角度傾は九ftl!素子の面上に結像
させ、その重心位置を信号処理回路によシ算出し、更に
その位tILをもとに基準線から測定対象までの高さを
算出することにより、高分解能のロータリエンコーダを
用いることなく、高精度に基準線から測定対象管での距
離を測定できるという効果を有する。
As explained above, the present invention uses nine lenses to tilt the source reference line and the source axis at a constant angle from the luminous point when the source irradiated in the direction perpendicular to the reference line hits the measurement target. The constant angle tilt with respect to the direction perpendicular to the original axis is 9 ftl! A high-resolution rotary encoder is created by forming an image on the surface of the element, calculating the center of gravity position using a signal processing circuit, and then calculating the height from the reference line to the measurement target based on the tIL. This method has the effect that the distance from the reference line to the pipe to be measured can be measured with high accuracy without using.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の模式的な側面図、厚2図は
従来の距離側足装置の模式的な側面図、第3図は第1図
に示すレンズ4による果尤の部分を拡大して示し之光路
因である。 1・・・・・・基準線、2・・・・・・発光源、3・・
・・・・反射鏡、4・・・・・・レンズ、5・旧・・C
CD素子、6・・・・・・信号処理回路、7・・・・・
・回転反射鏡、8・・・・・・ロータリエンコーダ、9
・・・・・・元検出部、10・・・・・・輝点、11・
・・・・・光、12・・・・・・トンネル壁面。 /・二′二゛−゛
FIG. 1 is a schematic side view of an embodiment of the present invention, FIG. 2 is a schematic side view of a conventional distance foot device, and FIG. 3 is a portion of the lens 4 shown in FIG. 1. This is an enlarged view of the light path. 1...Reference line, 2...Light source, 3...
...Reflector, 4...Lens, 5.Old...C
CD element, 6... Signal processing circuit, 7...
・Rotating reflector, 8...Rotary encoder, 9
...Original detection part, 10 ... Bright spot, 11.
...Light, 12...Tunnel wall. /・2′2゛−゛

Claims (1)

【特許請求の範囲】[Claims] 基準線の一端を通りこの基準線と垂直な方向に光を照射
する光源と、前記基準線の他端に光軸が前記基準線に対
して所定の角度をなすように設けられたレンズと、測定
対象に前記光が当った輝点の前記レンズによる像が受光
面上に結ばれるように前記レンズに対して傾けられて前
記基準線の他端に設けられた光電素子と、この光電素子
からの信号を処理して前記基準線と前記測定対象との間
の距離を求める信号処理回路とを含むことを特徴とする
距離測定装置。
a light source that passes through one end of a reference line and irradiates light in a direction perpendicular to the reference line; a lens provided at the other end of the reference line so that its optical axis makes a predetermined angle with respect to the reference line; a photoelectric element tilted with respect to the lens and provided at the other end of the reference line so that an image of a bright spot where the light hits the measurement object by the lens is formed on a light-receiving surface; A distance measuring device comprising: a signal processing circuit that processes a signal to determine the distance between the reference line and the measurement target.
JP22626385A 1985-10-11 1985-10-11 Distance measuring instrument Pending JPS6285813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22626385A JPS6285813A (en) 1985-10-11 1985-10-11 Distance measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22626385A JPS6285813A (en) 1985-10-11 1985-10-11 Distance measuring instrument

Publications (1)

Publication Number Publication Date
JPS6285813A true JPS6285813A (en) 1987-04-20

Family

ID=16842459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22626385A Pending JPS6285813A (en) 1985-10-11 1985-10-11 Distance measuring instrument

Country Status (1)

Country Link
JP (1) JPS6285813A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102589438A (en) * 2011-12-01 2012-07-18 中建八局大连建设工程有限公司 Method for detecting vault subsidence and clearance convergence of tunnel
RU2567185C1 (en) * 2014-07-08 2015-11-10 Открытое акционерное общество "Специальное конструкторское бюро станочных информационно-измерительных систем с опытным производством" (ОАО "СКБ ИС") Precision distance sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102589438A (en) * 2011-12-01 2012-07-18 中建八局大连建设工程有限公司 Method for detecting vault subsidence and clearance convergence of tunnel
RU2567185C1 (en) * 2014-07-08 2015-11-10 Открытое акционерное общество "Специальное конструкторское бюро станочных информационно-измерительных систем с опытным производством" (ОАО "СКБ ИС") Precision distance sensor

Similar Documents

Publication Publication Date Title
EP1091229B1 (en) Apparatus and method for autofocus
US6862097B2 (en) Three-dimensional shape measuring method, and three-dimensional shape measuring apparatus
US4534645A (en) Automatic lens meter
JP2000230807A (en) Method for distance measurement using parallel light and its instrument
JPH11257917A (en) Reflection type optical sensor
US5329358A (en) Device for optically measuring the height of a surface
JPH0563771B2 (en)
JPH0743110A (en) Two-stage detecting type non-contact positioning device
US4641961A (en) Apparatus for measuring the optical characteristics of an optical system to be examined
JPS6285813A (en) Distance measuring instrument
JP2003535319A (en) Optical sensor for distance measurement and / or surface inclination measurement
JPH04260108A (en) Optical sensor
JPH05340723A (en) Clearance size measuring method
CN105807571A (en) Focusing and leveling system used for photo-etching machine and focusing and leveling method thereof
JP3222214B2 (en) Target surface position detection device
JP2522191B2 (en) IC lead height measuring device
JPS60144606A (en) Position measuring device
JP2565274B2 (en) Height measuring device
RU2085836C1 (en) Optical device which measures distance from surface to initial point
JPH07110234A (en) Distance detection
JPS61231409A (en) Optical position measuring apparatus
KR100728334B1 (en) The tilt angle measuring device of optical parts
JPH0915489A (en) Range-finding device for camera and the like
JPS61181909A (en) Distance detector
JPH0558483B2 (en)