JPS61181909A - Distance detector - Google Patents

Distance detector

Info

Publication number
JPS61181909A
JPS61181909A JP2157685A JP2157685A JPS61181909A JP S61181909 A JPS61181909 A JP S61181909A JP 2157685 A JP2157685 A JP 2157685A JP 2157685 A JP2157685 A JP 2157685A JP S61181909 A JPS61181909 A JP S61181909A
Authority
JP
Japan
Prior art keywords
observation
lens
distance
observing
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2157685A
Other languages
Japanese (ja)
Other versions
JPH0665965B2 (en
Inventor
Masanori Idesawa
正徳 出澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP2157685A priority Critical patent/JPH0665965B2/en
Publication of JPS61181909A publication Critical patent/JPS61181909A/en
Publication of JPH0665965B2 publication Critical patent/JPH0665965B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To enable a highly accurate detection of distance in a wide measuring range, by locating part of an observing surface corresponding to the mark closer to an observation lens far from the lens to allow the formation of a good image evenly over the entire observing surface. CONSTITUTION:The positions (marked points T0-T2) of an object on an observing line 2 deviated from the optical axis 1 of an observing lens L are measured so that the distance to the object may be detected as distance from the optical axis 1 of the observing lens L. Here, since the observing surface is located at the position closer to a theoretical image formation field 4 as a whole, a distinct image can be always obtained on the observing surface regardless of the distance to the marked points.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光学的に対象物までの距離を高精度に検出する
距離検出器に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a distance detector that optically detects the distance to an object with high precision.

(従来の技術) 3次元空間内で柔軟に作業を行える機械、即ちロボット
は対象物の位置、姿勢、形状、変形等の計測を必要とす
るが、この計測においては距離情報の取得が不可欠であ
る。この場合、対象物の運動を拘束するあるいは対象物
に変形を起すなどの影響を最少限として距離情報を取得
できることが肝要である。このため、非接触で離れた場
所から計測できる光学的距離検出法が考えられている。
(Prior art) Machines that can flexibly work in three-dimensional space, that is, robots, need to measure the position, posture, shape, deformation, etc. of objects, and in this measurement, it is essential to acquire distance information. be. In this case, it is important to be able to obtain distance information while minimizing the effects of restricting the movement of the object or causing deformation of the object. For this reason, optical distance detection methods that can measure distance from a distance without contact are being considered.

この光学的距離検出法は対象物面上にマークを描くこと
により、対象物面上に光ビームを投影することによりあ
るいは対象物面上に発光素子を埋込むこと等により形成
される標識(点および線像を含む)を観測面上へ観測レ
ンズにより投影し、この投影された像の位置を観測面上
に配置されたCCD等の位置検出光感素子によって検出
し対象物までの距離情報を取得する。
This optical distance detection method uses marks (points) that are formed by drawing marks on the object surface, by projecting a light beam onto the object surface, or by embedding light emitting elements on the object surface. and line images) onto the observation surface using an observation lens, and the position of this projected image is detected by a position detection photosensitive element such as a CCD placed on the observation surface to obtain distance information to the object. get.

(発明が解決しようとする問題点) レンズを使用した撮像光学系においてはレンズと対象物
間の距離により、観測面上に対象物の明瞭な像が取得で
きる観測面の位置は、一般的には次のレンズの結像公式
によって定められる位置となる。即ち、対象物とレンズ
との間の距離をbルンズの焦点距離をfルンズと観測面
との間の距離をaとすると、明瞭な像が得られる条件は
次式となる。
(Problem to be Solved by the Invention) In an imaging optical system using a lens, the position of the observation surface where a clear image of the object can be obtained on the observation surface is generally determined by the distance between the lens and the object. is the position determined by the following lens imaging formula. That is, when the distance between the object and the lens is b, the focal length of the lens is f, and the distance between the lens and the observation surface is a, the conditions for obtaining a clear image are as follows.

例えば、カメラなどではレンズと観測面との間の距離a
を可変とすることにより、対象物が最も明瞭に撮像でき
るように構成されている。しかしながら、距離検出器に
おいて明瞭な像を得て検出精度を向上せしめようとして
機械的な移動により焦点調節を行おうとすると計測速度
を向上する上で不利であり、通常は固定焦点方式が採用
されている。しかしながら固定焦点方式だと観測面上に
得られる像にボケが生じ、高精度な測定を行なうことは
できない。
For example, in a camera, the distance a between the lens and the observation surface is
is made variable so that the object can be imaged most clearly. However, in order to obtain a clear image and improve detection accuracy with a distance detector, attempting to adjust the focus by mechanical movement is disadvantageous in improving measurement speed, and a fixed focus method is usually adopted. There is. However, if the fixed focus method is used, the image obtained on the observation surface will be blurred, making it impossible to perform highly accurate measurements.

本発明の目的は対象物までの距離を高精度に検出する距
離検出器を提供することにある。
An object of the present invention is to provide a distance detector that detects the distance to an object with high accuracy.

(問題点を解決するための手段) 上記目的は観測レンズにより近い標識に対応する観測面
の部分を観測レンズからより遠い位置に位置せしめるこ
とにより達成される。
(Means for Solving the Problems) The above object is achieved by positioning the part of the observation surface corresponding to the marker closer to the observation lens at a position farther from the observation lens.

(作 用) 第1図を用いて本発明の作用原理を説明する。(for production) The principle of operation of the present invention will be explained using FIG.

対象物までの距離が観測レンズLの光軸1からの距離と
して検出されるように、観測レンズLの光軸1からずれ
た観測線2上の対象物の位置(標点To、 T+、 ’
r2. )が測定される。位置検出用光感素子が配置さ
れる観測面が従来のように観測レンズLの光軸1に垂直
に配されている(図中3)と、(1)式の条件を満たす
標点T0以外の標点T8.T2に対応する観測面3上の
像1.,1.はボケてしまい検出精度が低下してしまう
。これに対し、本発明においては従来と比して観測面が
(1)式を満足する理論結像面4に全体としてより近接
した位置に設けられるので、標点までの距離にかかわら
ず観測面上には常に鮮明な像が得られる。
In order that the distance to the object is detected as the distance from the optical axis 1 of the observation lens L, the position of the object on the observation line 2 that is offset from the optical axis 1 of the observation lens L (gauges To, T+, '
r2. ) is measured. If the observation surface on which the photosensitive element for position detection is arranged is arranged perpendicular to the optical axis 1 of the observation lens L as in the conventional case (3 in the figure), the observation surface other than the gauge point T0 that satisfies the condition of equation (1) Marking point T8. Image 1 on observation plane 3 corresponding to T2. ,1. The image becomes blurred and the detection accuracy decreases. On the other hand, in the present invention, the observation plane is provided at a position closer to the theoretical imaging plane 4 that satisfies formula (1) as a whole compared to the conventional one, so the observation plane A clear image is always obtained at the top.

(実施例) 以下、第1図とは異なる本発明の詳細な説明する。第2
図は本発明の第2実施例の概略側面図である。観測レン
ズLの位置で光軸1からR6離れた部分を通り、光軸1
に対して角度α方向(反時計回りを正とする。)に線状
光ビーム5を投射して、これによって対象物面0上に輝
点Tを生成し、この輝点Tを観測レンズLによって観測
面3上に投影し、この観測面3上に投影した像Iの位置
を観測面3上に配置された位置検出光感素子Pによって
検出することによって対象物までの距離が測定される。
(Example) Hereinafter, the present invention, which is different from that shown in FIG. 1, will be explained in detail. Second
The figure is a schematic side view of a second embodiment of the invention. At the position of observation lens L, it passes through a part R6 away from optical axis 1, and optical axis 1
A linear light beam 5 is projected in the direction of angle α (counterclockwise is positive) to generate a bright spot T on the object plane 0, and this bright spot T is focused on the observation lens L. The distance to the object is measured by projecting the image I onto the observation surface 3 and detecting the position of the image I projected onto the observation surface 3 by the position detection photosensitive element P arranged on the observation surface 3. .

観測面3上の像Iの光軸1からの距離をXとすると、理
論結像面は次式で表わされることになる。
When the distance of the image I on the observation surface 3 from the optical axis 1 is set to X, the theoretical imaging surface is expressed by the following equation.

R6 x = a(−−tanα)’ −Ro   (2)従
って、(1)式から当然のことではあるが、観測レンズ
により近い標点く標識)に対応する観測面の部分を観測
レンズから遠ざけることによって、対象物上の標識が観
測面上によりボケが少く結像される。
R6 x = a(--tanα)' -Ro (2) Therefore, it is obvious from equation (1) that the part of the observation surface corresponding to the landmark (marker) closer to the observation lens is moved away from the observation lens. As a result, the mark on the object is imaged on the observation surface with less blur.

第3図は本発明の第3実施例の概略図である。FIG. 3 is a schematic diagram of a third embodiment of the present invention.

この距離検知装置は近年極めて広く用いられているもの
であり、光ビーム5を対象物面0上に投射し、対象物0
上に生成された輝点Tの観測面3上における保工の位置
を検出して光ビーム投射方向の距離を検出する。この距
離検出装置においても位置検出用光感素子は従来やはり
観測光学系の光軸1に対して垂直に配置されている。光
ビーム投射光学系の光軸6と観測光学系の光軸1のなす
角度をαとし、観測レンズLの焦点距離をf1観測レン
ズLの位置において観測レンズLの光軸1から光ビーム
投射光学系の光軸6までの距離をR8とすると、理論結
像面は同様にして(2)式で表わされる。従って、より
近い標点に対応する観測面を観測レンズLから遠ざける
ことによって、より測定精度が向上される。
This distance detection device has been extremely widely used in recent years, and it projects a light beam 5 onto the object plane 0 and detects the object 0.
The position of the bright spot T generated above on the observation surface 3 is detected, and the distance in the light beam projection direction is detected. In this distance detection device as well, the position detection photosensitive element is conventionally arranged perpendicular to the optical axis 1 of the observation optical system. The angle between the optical axis 6 of the light beam projection optical system and the optical axis 1 of the observation optical system is α, and the focal length of the observation lens L is f1.The light beam projection optical system starts from the optical axis 1 of the observation lens L when the focal length of the observation lens L is f1. If the distance to the optical axis 6 of the system is R8, the theoretical imaging plane is similarly expressed by equation (2). Therefore, by moving the observation plane corresponding to a closer gauge point away from the observation lens L, measurement accuracy can be further improved.

第4図は本発明の第4実施例を示す概略側面図である。FIG. 4 is a schematic side view showing a fourth embodiment of the present invention.

本実施例は特願昭58−161088号明細書に開示さ
れる発明に基づくものである。観測レンズL前方に反射
鏡7が配置され、光ビーム5が対象物面0上に投射され
ることにより形成される輝点Tは、一旦反射鏡7で反射
されたのちに観測面3上に投射され、この観測面3上に
投射された像Iの位置から観測レンズLの光軸1方向距
離が検知される。本実施例の場合においても、光軸1に
対する反射鏡7の傾斜角がφであり、観測レンズLの焦
点距離がfであるとし、反射鏡7に関して観測レンズL
と対称な位置に仮想観測レンズをL′を想定して観測レ
ンズLの位置において観測レンズの光軸1から仮想観測
レンズの光軸1′までの距離d (1+sec α)を
Ro とすると、基本的には第3図の場合と同様になり
(2)式を満足する面が理論結像面となる。従って、よ
り近い標点に対する観測面の部分が観測レンズからより
遠くなるよう図示するように位置検出感光素子Pを配置
することによって対象物までの距離がいかようであって
もより鮮明に輝点Tを結像することができる。
This embodiment is based on the invention disclosed in Japanese Patent Application No. 58-161088. A reflecting mirror 7 is arranged in front of the observation lens L, and a bright spot T formed by projecting the light beam 5 onto the object surface 0 is reflected by the reflecting mirror 7 and then onto the observation surface 3. The distance of the observation lens L in one direction of the optical axis is detected from the position of the image I projected onto the observation surface 3. In the case of this embodiment as well, it is assumed that the inclination angle of the reflecting mirror 7 with respect to the optical axis 1 is φ, the focal length of the observation lens L is f, and the observation lens L with respect to the reflecting mirror 7 is
Assuming that the virtual observation lens is placed at a position symmetrical to L', and the distance d (1+sec α) from the optical axis 1 of the observation lens to the optical axis 1' of the virtual observation lens at the position of the observation lens L is Ro, then basically Generally speaking, it is the same as in the case of FIG. 3, and the surface that satisfies equation (2) becomes the theoretical imaging surface. Therefore, by arranging the position detection photosensitive element P as shown in the figure so that the part of the observation surface corresponding to the nearer gauge point is further away from the observation lens, a bright spot can be seen more clearly regardless of the distance to the object. T can be imaged.

以上は、光軸に対する断面図を用いて2次元的に説明し
たが、光軸1に対して装置が回転対称である場合なども
含め、3次元的な配置についても全く同様であることは
言うまでもない。
The above has been explained two-dimensionally using a cross-sectional view with respect to the optical axis, but it goes without saying that the same applies to three-dimensional arrangements, including cases where the device is rotationally symmetrical with respect to the optical axis 1. stomach.

なお、本発明において観測面即ち位置検出光感素子は平
面でなく、曲率を有していてもよい。また、上記各実施
例に係る各図面に示された観測レンズは集光性レンズで
あることを概念的に表示したものにすぎず、単玉複玉の
ものを含むことは言うまでもない。
In the present invention, the observation surface, ie, the position detection photosensitive element, is not a flat surface but may have a curvature. Further, the observation lenses shown in the drawings according to the above embodiments are merely conceptual representations of condensing lenses, and needless to say, they include single-lens and double-lens lenses.

(効 果) 本発明は、観測レンズにより近い標識に対応する観測面
の部分を前記レンズからより遠く位置するようにしたの
で観測面全域にわたって平均して良好な結像を行うこと
ができる。従って広い測定範囲にわたって高精度に距離
検出を行うことができる。
(Effects) In the present invention, since the portion of the observation surface corresponding to the marker closer to the observation lens is located farther from the lens, it is possible to form a good image on average over the entire observation surface. Therefore, distance detection can be performed with high accuracy over a wide measurement range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第4図はそれぞれ本発明の第1実施例から第
4実施例の概略図である。 L・・・・・・観測レンズ、Lp ・・・・・・投影レ
ンズ、T、To、I3.I2・・・・・・標点く標識)
[、1,、I 、、 I2・−・・・・像、P・・・・
・・位置検出光感素子、 ○・・・・・・対象物面、 1・・・・・・観測レンズの光軸、 3・・・・・・観測面、 4・・・・・・理論結像面、
5・・・・・・光ビーム、 7・・・・・・反射鏡第1
図 第4図 (:1、
1 to 4 are schematic diagrams of first to fourth embodiments of the present invention, respectively. L... Observation lens, Lp... Projection lens, T, To, I3. I2......marker sign)
[,1,,I,,I2...image,P...
...Position detection photosensitive element, ○...Object plane, 1...Optical axis of observation lens, 3...Observation surface, 4...Theory imaging plane,
5...Light beam, 7...Reflector 1st
Figure 4 (:1,

Claims (1)

【特許請求の範囲】[Claims] 対象物上の標識を観測レンズにより観測面上へ投影し、
この観測面上に投影された標識像の位置を観測面上の位
置検出光感素子により検出して対象物までの距離情報を
取得する型の距離検知装置において、前記観測レンズに
より近い標識に対応する観測面の部分が前記観測レンズ
からより遠い位置にあることを特徴とする距離検知装置
Project the mark on the object onto the observation surface using the observation lens,
In this type of distance detection device that detects the position of the sign image projected on the observation surface using a position detection photosensitive element on the observation surface to obtain distance information to the object, the observation lens corresponds to a sign that is closer to the object. A distance detection device characterized in that a portion of the observation surface where the observation surface is located is located farther from the observation lens.
JP2157685A 1985-02-06 1985-02-06 Distance detection device Expired - Fee Related JPH0665965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2157685A JPH0665965B2 (en) 1985-02-06 1985-02-06 Distance detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2157685A JPH0665965B2 (en) 1985-02-06 1985-02-06 Distance detection device

Publications (2)

Publication Number Publication Date
JPS61181909A true JPS61181909A (en) 1986-08-14
JPH0665965B2 JPH0665965B2 (en) 1994-08-24

Family

ID=12058856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2157685A Expired - Fee Related JPH0665965B2 (en) 1985-02-06 1985-02-06 Distance detection device

Country Status (1)

Country Link
JP (1) JPH0665965B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0360011U (en) * 1989-10-16 1991-06-13
JPH03165211A (en) * 1989-11-24 1991-07-17 Stanley Electric Co Ltd Optical measuring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0360011U (en) * 1989-10-16 1991-06-13
JPH03165211A (en) * 1989-11-24 1991-07-17 Stanley Electric Co Ltd Optical measuring device

Also Published As

Publication number Publication date
JPH0665965B2 (en) 1994-08-24

Similar Documents

Publication Publication Date Title
US6067165A (en) Position calibrating method for optical measuring apparatus
EP2259010A1 (en) Reference sphere detecting device, reference sphere position detecting device, and three-dimensional coordinate measuring device
JPS60185108A (en) Method and device for measuring body in noncontacting manner
WO1986007444A1 (en) An instrument for measuring the topography of a surface
JPH11257917A (en) Reflection type optical sensor
JPH0812127B2 (en) Curvature radius measuring device and method
JP2771546B2 (en) Hole inner surface measuring device
JP3120885B2 (en) Mirror surface measuring device
JPS61181909A (en) Distance detector
JP3040845B2 (en) Alignment mark
JPH0755638A (en) Device and method for measuring focal length of optical system
CN106814547A (en) A kind of detecting and correcting device and survey calibration method
JP2005003667A (en) Reference axis setting optical system, eccentricity measuring machine and eccentricity-measuring method using the optical system
JP2698446B2 (en) Interval measuring device
JP3209189B2 (en) Exposure apparatus and method
WO2023182095A1 (en) Surface shape measurement device and surface shape measurement method
JPH02101413A (en) Light projecting system for focus detection
JP2006184091A (en) In-plane direction displacement gauge
JP2698388B2 (en) Position detection device
JPH08166209A (en) Polygon mirror evaluating device
JP2698389B2 (en) Position detection device
JPH02103404A (en) Lead inspection apparatus
JPS62235519A (en) Highly accurate measurement of distance
CN117490607A (en) Device and method for detecting cylindrical surface curvature radius
JPS63229439A (en) Automatic focusing device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees