JPS6285792A - Construction of ship sailing on water with hull submerging half in constant depth - Google Patents

Construction of ship sailing on water with hull submerging half in constant depth

Info

Publication number
JPS6285792A
JPS6285792A JP22381285A JP22381285A JPS6285792A JP S6285792 A JPS6285792 A JP S6285792A JP 22381285 A JP22381285 A JP 22381285A JP 22381285 A JP22381285 A JP 22381285A JP S6285792 A JPS6285792 A JP S6285792A
Authority
JP
Japan
Prior art keywords
water
ship
buoyancy
hull
submersible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22381285A
Other languages
Japanese (ja)
Other versions
JPH0764305B2 (en
Inventor
Toshio Yoshida
俊夫 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP60223812A priority Critical patent/JPH0764305B2/en
Priority to US06/917,369 priority patent/US4763596A/en
Publication of JPS6285792A publication Critical patent/JPS6285792A/en
Publication of JPH0764305B2 publication Critical patent/JPH0764305B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Revetment (AREA)

Abstract

PURPOSE:To enable a stable sail in all weathers by placing a ship body above the waterline, submerging a submarine hull under the water and coupling both with each other through entrance bodies to adjust the buoyancy by lateral steers provided in the front and rear of said submarine hull. CONSTITUTION:When a submarine hull 1 submerges and sails under the water surface WL-2 and waves W-1 approach said hull 1, the buoyancy of +B in the front of an entrance body 3 is increased, whereas a lateral steer 5' is inclined forward downward to form descending buoyancy -F and maintain constant the depth of the front of the entrance body 3 to the water surface WL-2. Also, when the waves W-2 approach relatively the rear of the entrance body 3, the buoyancy of the rear of entrance body 3 is reduced by -B, whereas the depth of the rear of entrance body 3 to the water surface WL-2 is maintained constant by the action of the floating force +F of lateral steer 5''. Thus, the longitudinal horizontality of a ship 2 is stabilized. In the case of rolling, the lateral steers 5''', 5'''' are operated to set the ship 2 to the horizontal state.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 開示技術は、沿岸近海は勿論のこと、外洋をも航行し得
る超々、大型船を含む船舶の構造技術分野に屈する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The disclosed technology is applicable to the field of structural technology for ships, including extremely large ships that can sail not only near coastal waters but also on the open ocean.

〈要旨の概要〉 而して、この発明は、船体の上下方向、前傾斜、後傾斜
の運動を水面に対し、潜没状態は勿論のこと、浮上状態
においても可能にする横舵を装備するテアドロップタイ
プ等の少なくとも2つの可潜航船体が水面下にてセット
されるようにし、該可潜航船体と水面の上部に設けられ
た船舶本体とが水面にて水流抵抗の少ない形状に形成さ
れた水切体を介して一体的に連結され、航行方向を変換
する縦舵とスクリュー等の推進装置を有している水面航
行船舶構造に関する発明でおり、特に、該水切体の構造
について該水切体の浮力航(1中の波浪風、或いは、航
行中の旋回による遠心力等によって変化する場合、その
変化量か可潜航船体の水面下の少なくとも前後に設けら
れた横舵の浮揚能力や沈降能力以下であるように形成さ
れている定深度半潜水式の水面航行船舶構造に係る発明
でおる。
<Summary of the gist> Therefore, the present invention is equipped with a side rudder that enables the vertical movement of the ship, forward heeling, and backward heeling movement with respect to the water surface, not only in the submerged state but also in the floating state. At least two submersible hulls, such as teardrop type hulls, are set below the water surface, and the submersible hulls and the ship body provided above the water surface are formed in a shape that reduces water flow resistance on the water surface. This invention relates to the structure of a surface-navigating ship that is integrally connected via a water cutter and has a longitudinal rudder for changing the navigation direction and a propulsion device such as a screw. Buoyancy (if it changes due to waves and winds during navigation, centrifugal force due to turning during navigation, etc., the amount of change is less than the flotation or sinking ability of the side rudders installed at least at the front and rear of the submersible hull below the water surface) This invention relates to a constant depth semi-submersible surface navigation vessel structure formed as follows.

〈従来技術〉 周知の如く、普通の活動エリアとしては、陸上、水中、
空中の3つがおり、陸上は、走行等の陸上動物の活動の
場所であり、空中は鳥の飛翔の場で、水中は魚類の淫欲
の場でおり、水中から陸上へ、或いは、陸上から水中へ
の活動は両種類が行い、又、鳥は空中、及び、地上にま
たがって活動し、一部の魚類は水中、及び、空中の両者
にまたがって活動する場合かあり、哺乳類として発達し
た人間は水中と空中との間の水面に対して船という技術
手段を介して活動するようになっていた。
<Prior art> As is well known, common activity areas include land, water, and
There are three types of air: land is the place for activities of land animals such as running, air is the place for birds to fly, and underwater is the place for the lust of fish. In addition, birds are active both in the air and on the ground, and some fish are active both in the water and in the air.Humans have developed as mammals. began to operate on the surface of the water between the water and the air through the technical means of ships.

而して、船は歴史上古代のおわん船から近代の巨大な船
舶に至るまで基本的態様としては水流抵抗を少なくする
おわん形に形成されて水を排除し、排除した水の浮力に
よって水面状に浮上し、水面上に残された舷の高さによ
り、予備浮力を残存させて船が傾斜しても復元する能力
を保持し、推進装置としては櫂とか竿や風力を利用し、
近代ではプロペラ等の殿械力によって前進するようにさ
れていたが、原理的には現代に至るまでも本質的な変化
は無いものである。
Throughout history, from ancient bowl ships to modern giant ships, ships are basically shaped like a bowl to reduce water flow resistance, and the buoyancy of the removed water changes the water surface. The ship floats up to the surface, and the height of the ship's side left above the water surface allows it to retain reserve buoyancy and maintain the ability to recover even if the ship tilts, and the propulsion device uses paddles, rods, and wind power.
In modern times, it was made to move forward using mechanical force such as a propeller, but the principle remains essentially unchanged even up to the present day.

而して、近世に至って出現した深海艇や潜水艦等の潜没
状態で水中を航行し得る船舶は水面のみを航行する船舶
にとって革命的な技術開発でめった。
In the early modern period, ships such as deep-sea boats and submarines that could travel submerged underwater were a revolutionary technological development for ships that could only travel on the surface of the water.

ざりながら、該種潜没船舶にとっては長い潜没時間を8
東とし、旧来、蓄電池等によるエネルギーは経時的に有
限であり、所謂シュノーケル装備等の潜水艦においても
長時間の潜没運転は有限であったが、近時原子力利用に
よる経時的な無限な長期運転が可能にはなったが、原子
炉やその周辺機器にとって危険な条件下での運転を行う
制約があるために取扱いがし難く経済的にも見合わない
という不利点があった。
However, for a submerged vessel of this type, the submergence time is long.
In the past, energy from storage batteries, etc. was limited over time, and long-term submerged operation was limited even in submarines equipped with so-called snorkel equipment, but recently, the use of nuclear power has made it possible to operate indefinitely over time. However, it has the disadvantage that it is difficult to handle and is not economically viable due to the restriction that it must be operated under conditions that are dangerous to the reactor and its peripheral equipment.

したがって、コマーシャルベースを無視することの出来
ない商業船舶では、水面航行を行う船舶が結果的に長く
用いられていた。
Therefore, among commercial ships whose commercial base cannot be ignored, ships that navigate on water have been used for a long time.

そして、当然のことながら、水面航行船舶は、大気中の
酸素を必要とする推進機関が設けられており、次の様な
問題点があった。
Naturally, surface-going vessels are equipped with propulsion engines that require oxygen from the atmosphere, which poses the following problems.

即ち、水面を浮トして航行する船舶においては、縦揺れ
と横揺れは極めて不愉快な現象であり、縦揺れ、横揺れ
か船舶の復元力を保証するものとしてはわかっていても
精神的に、又、感情的に航行中は不安定にかられるもの
で必り、中型、小型船にシタビライザー等を設けてこれ
に対処することが可能でおるが、大型船には効果が薄く
、又、船舶の安定性能を犠牲にlノ、復元性を故意に減
少さじて操作を行うようにして揺れを少なくすることも
理論上は可能であっても、現実には極めて危険を伴うも
のであり、この点前述潜没状態で水中を航行する船舶に
比し、不可避的なマイナス点であることはIIIJ論、
理屈のうえは水面を航行する船舶を航行中には潜没状態
にして航行するとしても浮力を失い、一旦、不測にして
沈降を始めると、海底に鎮座するのでまでは沈降が続く
という不具合がある。
In other words, pitching and rolling are extremely unpleasant phenomena for ships that float on the surface of the water, and even though we know that pitching and rolling are the things that guarantee the ship's resilience, we are not mentally aware of them. In addition, it is inevitable that ships will experience emotional instability while sailing, and while it is possible to deal with this by installing stabilizers on medium-sized and small ships, it is less effective on large ships, and Although it would be theoretically possible to reduce the shaking by intentionally reducing the ship's stability at the expense of its stability, in reality this would be extremely dangerous. According to IIIJ, this is an unavoidable negative point compared to the aforementioned ships that navigate underwater.
In theory, even if a ship sailing on the surface of the water were to be submerged while sailing, it would lose its buoyancy, and once it unexpectedly began to sink, it would continue to sink until it settled on the ocean floor. be.

又、左右の横揺れについては浮力の中心を重力の中心よ
り上にあるようにすることによって安定を維持すること
が出来るが、縦揺れについては前後の船体が前後方向に
半回転する等という事態が生じかねず、これに対処する
に適宜の少量の水を前後方向に注排水したり移動させた
りすることが考えられるが、水の慣性によってこれを即
応的には出来ず、コスト高になる不利点があった。
In addition, stability can be maintained with respect to side-to-side rolling by placing the center of buoyancy above the center of gravity, but with pitching, the front and rear hulls may turn half a turn in the longitudinal direction. To deal with this, it is possible to pour or move a small amount of water in the front and rear directions, but due to the inertia of the water, this cannot be done immediately and the cost will be high. There were disadvantages.

そして、水面上の動揺を避けるために水中翼8を設けて
いる船舶もおるが、水面が嵐等によって荒れるような場
合には安定した航行が不可能でおり、特に、船舶が大型
になる場合には大重量の船体を浮上する能力に欠ける等
の欠点がおった。
Some ships are equipped with hydrofoils 8 to avoid movement on the water surface, but stable navigation is impossible when the water surface becomes rough due to storms, etc., especially when the ship is large. had drawbacks such as a lack of ability to float heavy ships.

一方、近代の船舶においては高速航行が要求され、高速
になる程推進抵抗が大きくなり装備している大馬力の機
関による発生エネルギーはこの推進抵抗に消費されるの
である。
On the other hand, modern ships are required to sail at high speeds, and the higher the speed, the greater the propulsion resistance, and the energy generated by the high-horsepower engines they are equipped with is consumed by this propulsion resistance.

而して、この推進抵抗の内の大部分は水に対する抵抗で
おる。
Most of this propulsion resistance is due to resistance to water.

水に対する抵抗の中の1つは摩擦抵抗で、1つは造波抵
抗である。
One of the resistances against water is frictional resistance, and the other is wave resistance.

航行速度が低い場合には、造波抵抗が小さく、摩擦抵抗
が大部分であるが、航行速度が大になると造波抵抗が加
速度的に増えていくものであり、使用するエネルギーの
大部分は造波抵抗に費されるのである。
When the sailing speed is low, the wave-making resistance is small and frictional resistance accounts for most of it, but as the sailing speed increases, the wave-making resistance increases at an accelerating rate, and most of the energy used is It is spent on wave-making resistance.

この発明の目的は上述従来技術に基づく水面航行する利
点と不利点、及び、潜没航行の利点、不利点、及び、両
者の利点のみを相入れることが出来なかった船舶の問題
点を解決すべき技術的課題とし、合理的、且つ、簡易な
構造によって両者の利点のみを結合することが出来るよ
うにして交通産業にあける洋上航行利用分野に益する優
れた定深度半潜水式の水面航行船舶構造を提供せんとす
るものである。
The purpose of this invention is to solve the advantages and disadvantages of surface navigation, the advantages and disadvantages of submerged navigation, and the problems of ships that could not combine the advantages of both based on the above-mentioned prior art. An excellent constant-depth semi-submersible surface-navigating vessel that combines the advantages of the two through a rational and simple structure, and which benefits the field of ocean navigation application in the transportation industry. It is intended to provide structure.

く問題点を解決するための手段・作用〉上述目的に沿い
先述特許請求の範囲を要旨とするこの発明の構成は、水
面を航行する船舶の船舶本体を水面の吃水線の上方にお
るようにして水面下に可潜前船体を造波抵抗の少ない潜
没状態にして両者を船舶本体を介して水流抵抗の小さい
水切体で結合し、該水切体に最小限の予備浮力を保持さ
U、該予備浮力が波浪や風や船体の旋回力等の外力によ
って変化するのに応じて可潜前船体の前後に設けた横舵
をコンピュータ制御等による動作によって抑えるように
し、一定の船の深度を維持して航行することが出来るよ
うにし、船舶本体上の広さを可及的に大きくして客室を
大にし、又、効率的に荷物を積載することが出来るよう
にし、而も推進装置の機関を蒸気機関や内燃機関のよう
な酸素を使用し得る機関として人気中の酸素を充分に消
費出来るようにし、又、排気もスムースに行なわれるよ
うにし、水面船舶としての機能は一般在来の船舶と全く
同様にし、可潜前船体のの横舵による浮力調節によって
全天候下に安定した航行が行われるようにした技術的手
段を講じたものである。
Means and operation for solving the problems> In accordance with the above-mentioned object, the structure of the present invention, which is summarized in the claims of the above-mentioned patents, is such that the main body of a ship sailing on the water surface is located above the water line of the water surface. The submersible front hull is submerged under the water surface with low wave-forming resistance, and the two are connected through the ship body by a water cutter with low water flow resistance, and the water cutter maintains a minimum preliminary buoyancy. As the reserve buoyancy changes due to external forces such as waves, wind, and the turning force of the ship, horizontal rudders installed at the front and rear of the submersible front hull are controlled by computer-controlled operations, etc., so that the ship can maintain a constant depth. The space on the main body of the ship should be increased as much as possible to make the passenger cabin large, and cargo could be loaded efficiently, and the propulsion system should be The engine is popular as an engine that can use oxygen, such as a steam engine or an internal combustion engine.The engine is designed to be able to consume enough oxygen, and to be able to exhaust air smoothly, so that its function as a surface vessel is different from that of conventional engines. It is exactly the same as a ship, and uses technical measures to ensure stable navigation in all weather conditions by adjusting the buoyancy of the submersible front hull using the horizontal rudder.

〈実施例−構成〉 次に、この発明の実施例を図面に基づいて説明すれば以
下の通りである。
<Embodiment - Configuration> Next, an embodiment of the present invention will be described below based on the drawings.

第1.2図に示す基本的実施例において1は可潜前船体
であり、当該実施例においては、デアドロップタイプに
形成されており、その前後部の両側下側には横舵5.5
・・・が各々上下方向前傾斜、後傾斜の運動を自在にさ
れてあり、コンピュータ制御による適宜駆動装置により
動作可能にされている。
In the basic embodiment shown in Fig. 1.2, 1 is a submersible front hull, and in this embodiment, it is formed in a dare drop type, and side rudders 5.
. . . are capable of freely tilting forward and backward in the vertical direction, and are made operable by an appropriate drive device controlled by a computer.

尚、当該実施例を含めてWL−1、WL−2は各々可潜
前船体1が水面に対して浮−ヒ状態と潜没状態のレベル
を示しているが、図示の都合上、可潜前船体5に対して
相対的に示しておる。
In addition, WL-1 and WL-2, including this embodiment, respectively show the levels of the submersible front hull 1 in a floating state and a submerged state with respect to the water surface. It is shown relative to the front hull 5.

そして、第3.4図に示す実施例においては、船舶本体
2が水面より上方にあるようにして水面に対する水流抵
抗を小さくして形成された一対の水切体3.3を介して
上述可潜航船体1.1を一対一体的状態で下段しておる
In the embodiment shown in Fig. 3.4, the above-mentioned submersible navigation is carried out via a pair of water cutters 3.3 formed so that the ship body 2 is located above the water surface to reduce water flow resistance to the water surface. The hull 1.1 is mounted on the lower stage in a one-to-one unit.

第3図に示す様に水切体3は連結の強度を大きくする場
合には点線で示す様に各々V型の水切体3’ 、3’ 
として設(ブるようにすることも可能である。
As shown in FIG. 3, when increasing the strength of the connection, the water cutters 3 are V-shaped cutters 3' and 3', respectively, as shown by dotted lines.
It is also possible to set it as

又、第4図に示す様に船舶本体2の内部には水タンク、
(海水タンク)等の注水部4が形成されている態様も採
用可能である。
In addition, as shown in Fig. 4, inside the vessel body 2 there are water tanks,
It is also possible to adopt an embodiment in which the water injection part 4 is formed in a seawater tank or the like.

又、第5.6図に示す実施例は船舶本体2の後部であっ
て水切体3.3の間に別設して懸垂体9を設(プて縦舵
6を設けると共に推進装置としてのプロペラ7が装備さ
れている実施例で必る。
Further, in the embodiment shown in Fig. 5.6, a suspension body 9 is separately provided between the water cutter body 3.3 at the rear of the ship body 2 (a vertical rudder 6 is provided, and the suspension body 9 is installed separately and serves as a propulsion device). Necessary in embodiments equipped with propeller 7.

〈実施例−作用〉 而して、上)ホ第3.4図に示す実施例の構造について
その作用を第7.8図に基づいて説明すると、まず、第
7図に示す可潜前船体1が水面に対し潜没してその水面
がWl −2に示されるレベルで航行している状態にお
いて縦波、即ち、波浪W−1か相対近接すると、水切体
3の前部に+Bの浮力が増加し、当該増加分の浮力十B
に対抗して可潜前船体1の全部の横舵5′を前方下向き
傾斜して加工力−「を形成させ、それによって水切体3
の前部での水面WL−2に対する深度を変らないように
し、又、水切体3の後部にて船舶の前進に伴い波浪W−
2が相対的に後方に来て船舶の前進に伴い、W−2とな
ると、水切体3の後部では−8だけの浮力の減少が生じ
、当該低下浮カー已に対向して後側の横舵5″の浮揚力
を十Fだけ作用させ、これによって水切体3の後部の水
面W−2に対する深度を変らないように維持する。
<Embodiment - Effect> Then, the effect of the structure of the embodiment shown in Fig. 3.4 will be explained based on Fig. 7.8. First, the submersible front hull shown in Fig. 7 will be explained. 1 is submerged below the water surface and is sailing at a level indicated by Wl -2, and when a longitudinal wave, that is, a wave W-1, approaches relatively, a buoyant force of +B is applied to the front part of the cutter body 3. increases, and the buoyancy of the increase is 10B
In response to this, all transverse rudders 5' of the submersible front hull 1 are tilted forward and downward to form a working force -', thereby
The depth to the water surface WL-2 at the front part of the cutter body 3 is kept unchanged, and waves W-
2 comes relatively to the rear and becomes W-2 as the ship moves forward, the buoyancy decreases by -8 at the rear of the water cutter 3, and the buoyancy on the rear side opposite to the lowered buoyancy is reduced. The buoyancy force of the rudder 5'' is applied by 10F, thereby maintaining the depth of the rear part of the water cutter 3 relative to the water surface W-2 unchanged.

この場合の水切体3に印加される風力の増1ノ目減少分
に対する横舵5’、5’の上下方向制御については船舶
に搭載する波浪検知の適宜装置により横舵5′、5″の
旋回動を正?iT[に波浪W−LW−2の近接にりVル
タイムで制御操作することが出来、このことは単に波浪
による水切体3の浮揚力の増減に対辺するばかりでなく
、風力や船舶の旋回力等の外ノJに対しても同様にff
1lJ Utlすることが出来る。
In this case, the vertical direction control of the side rudders 5', 5' in response to the increase in the wind force applied to the channel body 3 is controlled by an appropriate wave detection device installed on the ship. The turning movement can be controlled in real time as the wave W-LW-2 approaches the wave W-LW-2. Similarly, ff
1lJ Utl can be done.

したがって、船舶の前後方向、即ら、縦方向のピッチン
グは全く消去され、水面WL−2に対する深度は一定に
保たれ、前後方向の水平度は安定状態にされて航行され
る。
Therefore, the pitching of the ship in the longitudinal direction, that is, the longitudinal direction, is completely eliminated, the depth with respect to the water surface WL-2 is kept constant, and the ship sails with the horizontality in the longitudinal direction kept stable.

而して、第8図に示すロー1ソング対象については当該
第8図左側から、即ち、左舷り側に波が高まり、右舷R
側には谷が形成されると、左舷り側に+B′の浮力が又
、右舷R側には−B′の浮力低減が行われ、更に、図示
するように右舷R側から風Wが加わった場合、及び、舵
体が右旋回場合には、左舷り側に+B′の浮力増加が、
又、右舷R側には−B’の浮力低減が印加されることに
なるか、左舷り側の横舵51を下向にし、浮力十B’ 
+3′に相当する沈降カーF’、−F’を作用ざぜ、又
、左限Rの横舵51に対しては減少する浮ノJ−8’ 
、−B’に相当する浮揚力士F’+F“を形成するよう
に作用させ、したがって、左右方向に於いても各溝舵5
′、5″は常に水面W+−−2に対する設定深度を維持
し、そのため、ローリングすることなく、水平状態を保
って安定した姿勢で航行することが出来る。
Therefore, for the low 1 song target shown in Figure 8, waves rise from the left side of Figure 8, that is, from the port side, and the waves rise from the starboard R side.
When a valley is formed on the side, a buoyancy of +B' is applied to the port side, a buoyancy of -B' is reduced to the starboard R side, and furthermore, as shown in the figure, wind W is applied from the starboard R side. and when the rudder body turns to the right, an increase in buoyancy of +B' on the port side,
Also, a buoyancy reduction of -B' is applied to the starboard R side, or the transverse rudder 51 on the port side is turned downward and the buoyancy is reduced to 10 B'.
The sinking cars F' and -F' corresponding to
, -B', so as to form a floating force F'+F'' corresponding to -B', so that each groove rudder 5 is
', 5'' always maintains the set depth with respect to the water surface W+--2, so it is possible to maintain a horizontal state and navigate in a stable attitude without rolling.

又、第9.10図に示す実施例は貨物運搬用船舶の態様
であり、船舶本体2の上部には所定の貨物8.8・・・
が載置され、上述実施例同様に左右一対の水切体3.3
の各々には一基づつの可潜前船体1.1が連結され、各
々前後方向に注水部4.4が設けられて前後に横舵5.
5′が設Cブられ、推進装置としてのプロペラ7が設け
られると共に縦舵6が設けられている態様であり、又、
第11図に示す実施例は船舶本体2の左右側に各々一対
の水切体3.3が下延されてその下端に各々−基の可潜
前船体1.1が設けられ、合計4個の可潜前船体1.1
・・・が設けられていることになり、各々横舵5′、5
″を有して後方の可潜前船体4には推進装置のプロペラ
7、及び、縦舵6が設けられているq5Q l、!であ
るが、いずれも上述各実施例とその作用効果に何等変り
はなく、前後方向の波浪、横方向の波浪、風力、旋回力
等の外力に対してはコンピュータ検出制御による各横舵
の旋回動作用により増減する浮力に対する昇降力を印加
することにより、船舶本体2を常にその水面に対し、一
定高さに又、各可潜前船体1は一定深度に保って船舶を
常に水平状にて航行さけることが出来るものである。
The embodiment shown in FIG. 9.10 is a ship for transporting cargo, and the upper part of the ship body 2 carries predetermined cargo 8.8...
is placed, and a pair of left and right draining bodies 3.3 are placed as in the above-mentioned embodiment.
One submersible front hull 1.1 is connected to each of the submersible front hulls 1.1, each of which is provided with a water injection part 4.4 in the longitudinal direction and has a side rudder 5.4 in the longitudinal direction.
5' is provided, a propeller 7 is provided as a propulsion device, and a longitudinal rudder 6 is provided, and
In the embodiment shown in FIG. 11, a pair of water cutters 3.3 are extended downwardly on the left and right sides of the ship body 2, and two submersible front hulls 1.1 are provided at the lower ends of the two, and a total of four Submersible front hull 1.1
... are provided, and the side rudders 5' and 5 are respectively provided.
'', and the rear submersible front hull 4 is provided with a propeller 7 as a propulsion device and a vertical rudder 6.However, none of these have any effect on the above-mentioned embodiments and their effects. There is no change, but against external forces such as waves in the longitudinal direction, waves in the lateral direction, wind power, and turning force, the ship is controlled by computer detection and control. The main body 2 is always kept at a constant height with respect to the water surface, and each submersible front hull 1 is kept at a constant depth so that the vessel can always sail horizontally.

尚、この発明の実施態様は上述各実施例に限るものでな
いことは勿論であり、水切体、及び、その下端に連結さ
れる可潜前船体については3つ以上設けることも出来、
又、各可潜前船体について横舵は3つ以上設けることが
出来る等種々の態様か採用可能である。
It should be noted that the embodiments of this invention are of course not limited to the above-mentioned embodiments, and three or more can be provided for the water cutter and the submersible front hull connected to the lower end thereof.
Moreover, various aspects can be employed, such as the ability to provide three or more side rudders for each submersible front hull.

又、その構造は外洋航行の大型船舶のみならず、近海を
航行する中小形船舶にも適用出来ることも勿論のことで
ある。
Moreover, it goes without saying that the structure can be applied not only to large ships sailing on the open sea, but also to small and medium-sized ships sailing in coastal waters.

〈発明の効果〉 以上、この発明によれば、基本的に、外洋ヤ近海を航行
する船舶において波浪、風力、船舶の旋回等による外力
に対してその浮力が変化しノても、その変化量は可潜前
船体に設けた横舵の昇降力以下であるように水切体を形
成していることにより、上述の条件の範囲内では船舶は
常にに水平に安定した状態で航行することが出来るとい
う侵れた効果が奏されるものであり、したがって、ロー
リングは勿論のこと、ピッチングも防止され、安定した
状態で貨物や乗客を搬送することが出来るという効果が
奏され、又、水切体に相対近接して昇降変化する波浪や
水切体の昇降を自動的に適宜のセンサーによって検出し
てコンピュータにより処理し、可潜前船体の前後方向に
設けた横舵を上向き、或いは、下向に傾斜させて昇降力
を付与することが出来るために船体に対して波浪等の浮
揚力が印加されないうちにリャルタイム裡に昇降力を印
加して常に船舶を安定に水平状態にすることが出来ると
いう優れた効果が奏される。
<Effects of the Invention> As described above, according to the present invention, basically, even if the buoyancy of a ship navigating in the open ocean or near sea changes in response to external forces such as waves, wind force, and turning of the ship, the amount of change is By forming the ditch body so that the lifting force is less than that of the side rudder installed on the submersible front hull, the vessel can always sail horizontally and stably within the above conditions. Therefore, not only rolling but also pitching is prevented, and cargo and passengers can be transported in a stable state. Waves that rise and fall in relative proximity and the rise and fall of the ditch body are automatically detected by appropriate sensors and processed by a computer, and the transverse rudder installed in the fore-and-aft direction of the submersible front hull is tilted upward or downward. It has the advantage of being able to apply lifting force in real time to keep the ship in a stable horizontal state at all times, even before buoyant forces such as waves are applied to the ship's hull. The effect is produced.

又、横舵は水中に設けられていることにより、船舶が高
速走行すればするほど、大きな浮揚力、沈降力を付与す
ることが出来るために、外洋にあける海か荒れた場合で
あっても、安定した航行を保証し得るという優れた効果
が秦される。
In addition, since the side rudder is installed underwater, the higher the speed the ship travels, the greater the buoyancy and sinking force it can provide, so even when the sea is open to the open sea or the sea is rough. , Qin has the excellent effect of guaranteeing stable navigation.

そして、横舵に対し、水切体を介して船舶本体を水面上
方に設けることが出来るために大気の酸素を用いる内燃
機関、或いは、蒸気機関等の推進力を自由に得ることが
出来ることになり水面航行船舶の通常のメリットが充分
生かすことが可能で必り、又、必要最小限の予備の復元
力も常に備えることが出来、精神的には勿論のこと、構
造上も安定した姿勢を保証することが出来るという優れ
た効果が奏される。
In addition, since the main body of the ship can be installed above the water surface via a water cutter with respect to the side rudder, it is possible to freely obtain propulsive force from an internal combustion engine that uses atmospheric oxygen, or a steam engine. It is possible to take full advantage of the usual advantages of a surface-going vessel, and it is also possible to always have the necessary minimum reserve restoring force, ensuring a stable posture not only mentally but also structurally. The excellent effect of being able to do this is achieved.

そして、船舶本体が水面の上方に設けることが出来るた
めに高速艦艇の如く、流線形の船体にしなくても済むこ
とにより、大ぎなスペースを確保することが出来、大量
の貨物、多数の乗客搬送することが出来、そのうえ、高
速航行時の造波抵抗も少なくてエネルギー効率も向上す
るという優れた効果が奏される。
Since the ship itself can be installed above the water surface, it does not need to have a streamlined hull like a high-speed ship, which allows for a large amount of space and the ability to carry a large amount of cargo and a large number of passengers. In addition, the excellent effect of reducing wave-making resistance during high-speed navigation and improving energy efficiency is achieved.

そのため、商船等のコストメリットも大きくすることか
出来、計経済的にも児合うという侵れだ効果か秦される
As a result, the cost benefits of merchant ships, etc. could be increased, and this would be a invasive effect in terms of cost and economy.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこのざを明の実施例の説明図であり、第1図は基
本実施例の側面図、第2図は同正面図、第3.4図は別
の実施例の正面図、第5図は他の実施例の側面図、第6
図は更に他の実施例の正面図、第7図は波浪との関係姿
勢の側面図、第8図は同正面図、第9図は別の実施例の
側面図、第10図は更に別の実施例の正面図、第11図
は更に他の実施例の側面図である。 1・・・可潜航勉体、 5.5’  5’・・・横舵 3・・・水切体、 2・・・船舶本体、  6・・・縦舵、7・・・推進装
置、  4・・・注排水部、B・・・浮力、   [・
・・昇降力、第 1 図 記号の説明 丁     可濯航船体 2     船舶1伴。 3      水切伴 4        、主排水装置 5     横舵(5′航8償舵5″後部横6    
 縦舵 7     推進器 8     貨物 WL−1可潜前着体力f浮上状態におけるWL −2可
沼航船体が潜没状態における8     浮力 +8    増加浮力 −8     A少浮力 十F    横舵の浮揚能力 −F    槓舵の沈降能力 9、      P歪構造 第 2 図 WL−2 7E線 νに線 第3 図         箆4 間 第5 図        箇6 画 情 7 図          @ 8 図@ 11 
閏 手彰”ごネrtj、il書輸発) 昭和 6詐 4月 8日 持訂庁長官  宇 買 通 部  殿 氏 名 吉田俊夫1・、I 4、補正命令の日付    自  発 5、補正により増加する発明の故  な  し6、補正
の対象 ())全IT正1」ω呂係九の酒−・)9全文訂正明細
書 1、発明の名称 定深度半潜水式の水面航行船舶構造 2、特許請求の範囲 横舵を装備する少なくとも2つの可潜航船体か水切体を
介して水面上の船舶本体に連結され縦舵と推進装置を有
する水面航行船舶構造において、上記水面航行船舶構造
が注排水部を有し、而して上記水切体の構造がその浮力
の変化量について可潜航船体の前後に設けられた横舵の
昇降能力以下で必るように形成されていることを特徴と
する定深度半潜水式の水面航行船舶構造。 3、発明の詳細な説明 〈産業上の利用分野〉 開示技術は、沿岸近海は勿論のこと、外洋をも航行し得
る超々、大型船を含む船舶の構造技術分野に属する。 く要旨の概要〉 而して、この発明は、船体の上下方向、前傾斜、後傾斜
の運動を水面に対し、潜没状態は勿論のこと、浮上状態
においても可能にする横舵を装備するテアドロップタイ
プ等の少なくとも2つの可潜航船体か水面下にてセラi
〜されるようにし、該可潜航船体と水面の上部に設けら
れた船舶本体とが水面にて水流抵抗の少ない形状に形成
された水切体を介して一体的に連結され、航行方向を変
換する縦舵とスクリュー等の推進装置を有している水面
航行船舶構造に関する発明でおり、特に、該水切体の構
造について該水切体の浮力が航行中の波浪、風、或いは
、航行中の旋回による遠心力等によって変化する場合、
その変化量が可潜航船体の水面下の少なくとも前後に設
けられた横舵の浮揚能力や沈降能力以下であるように形
成されている定深度半潜水式の水面航行船舶構造に係る
発明である。 〈従来技術〉 周知の如く、普通の活動エリアとしては、陸上、水中、
空中の3つがあり、陸上は、走行等の陸上動物の活動の
場所であり、空中は鳥の飛翔の場で、水中は魚類の淫欲
の場でおり、水中から陸上へ、或いは、陸上から水中へ
の活動は両棲項か11い、又、鳥は空中、及び、地上に
またかつて活動し、一部の魚類は水中、及び、空中の両
者にまた力冒)で活動する場合かあり、哺乳類として発
達した人間は水中と空中との間の水1mに対して船とい
う技術手段を介して活動するようになっていた。 而して、船は歴史上古代のおわん船から近代の巨大な船
舶に至るまで阜本的悪様としては水流抵抗を少なくする
おわん形に形成されて水を排除し、排除した水の浮力に
よって水面状に浮上し、水1m上に残された舷の高さに
より、予備浮力を残存させて船が傾斜しても復元する能
力を保持し、推進装置としては擢とか竿や風力を利用し
、近代ではプロペラ等の機械力によって曲進するように
されていたが、原理的には現代に至るまでも本質的な変
化は無いものである。 而し−C1近世に至って出現した深海Pj1や潜水艦等
の潜没状態で水中を航行し得る船舶は水面のみを航行す
る船舶にとって革命的な技術開発であった。 ざりながら、核種潜没船舶にとっては長い潜没時間を必
要とし、旧来、蓄電池等によるエネルギーは経時的に有
限であり、所謂シュノーケル装備等の潜水艦においても
長時間の潜没運転は有限であったが、近時原子力利用に
よる経時的な無限な長期運転が可能にはなったか、原子
炉やその周辺機器にとって危険な条件下での運転を行う
制約が必るために取扱いがし難く経済的にも見合わない
という不利点があった。 したがって、コマーシャルベースを無視することの出来
ない商業船舶では、水面航行を行う船舶が結果的に長く
用いられていた。 そして、当然のことながら、水面航行船舶は、大気中の
酸素を必要とする推進機関が設けられており、次の様な
問題点があった。 即ち、水面を浮上して航行する船舶においては、縦揺れ
と横揺れは極めて不愉快な現象であり、縦揺れ、横揺れ
が船舶の復元力を保証するものとしてはわかっていても
精神的に、又、感情的に航行中は不安定にかられるもの
であり、中型、小型船にシタビライザー等を設けてこれ
に対処することが可能で必るか、大型船には効果か薄く
、又、船舶の安定性能を犠牲にし、復元性を故意に減少
させて操作を行うようにして揺れを少なくすることも理
論上は可能でおっても、現実には極めて危険を伴うもの
であり、この点前述潜没状態で水中を航行する船舶に比
し、不可避的なマイナス点て必ることは勿論、理屈のう
えは水面を航行する船舶を潜没状態にして航行するとし
ても浮力を失い、一旦、不測にして沈降を始めると、海
底に鎮座するのでまでは沈降か続くという不具合かおる
。 又、左右の横揺れについては浮力の中心を小力の中心よ
り上におるようにすることによって安定を維持すること
か出来るか、縦揺れについては前後の船体か前後力向に
半回転する等という事態が生じかねず、これに対処する
に適宜の少量の水を前後方向に注排水したり移動ざVた
ゆすることが考えられるか、水の゛門性によってこれを
閉窓的(こけ出来ず、ロス1〜高になる不利点かめった
。 そして、水面上の動揺を避けるために水中穴を設(プて
いる船舶もあるが、水面か嵐等によって荒れるような場
合には安定した航行が不可能であり、特に、船舶が大型
になる場合には大重量の船体を浮−トする能力に欠ける
等の欠点かおった。 一方、近代の船舶においては高速航行が要求され、高速
になる程推進抵抗が大ぎくなり装備している大馬力の機
関による発生エネルギーはこの推進抵抗に消費されるの
である。 而して、この推進抵抗の内の大部分は水に対する抵抗で
おる。 水に対する抵抗の中の1つは摩擦抵抗で、1つは造波抵
抗である。 航行速度が低い場合には、造波抵抗が小さく、摩1寮抵
抗か大部分でおるが、航行速度が大になると造波抵抗が
加速度的に増えていくものでおり、使用するエネルギー
の大部分は造波抵抗に費されるのて必る。 この発明の目的は上述従来技術に基づく水面航行する利
点と不利点、及び、潜没航行の利点、不利点、及び、両
者の利点のみを組入れることが出来なかった船舶の問題
点を解決すべき技トドi的課題とし、合理的、且つ、簡
易な構造によって両者の利点のみを結合することが出来
るようにして交通産業における洋上航行利用分野に益す
る優れた定深度半潜水式の水面航行船舶構造を提供せん
とするものでおる。 〈問題点を解決するための手段・作用〉上述目的に沿い
先述特許請求の範囲を要旨とするこの発明の構成は、水
面を航行する船舶の船舶本体を水面の吃水線の上方にあ
るようにして水面下に可潜前船体を造波抵抗の少ない潜
没状態にして両者を船舶本体を介して水流抵抗の小さい
水切体で結合し、該水切体に最小限の予備浮力を保持さ
せ、該予備浮力が波浪や風や船体の旋回力等の外力によ
って変化するのに応じて可潜前船体の前後に設けた横舵
をコンピュータ制御等による動作によって抑えるように
し、一定の船の深度を維持して航行することが出来るよ
うにし、船舶本体上の広さを可及的に大きくして冬至を
大にし、又、効率的に荷物を積載することが出来るよう
にし、而も推進装置の機関を蒸気機関や内燃機関のよう
な酸素を使用し得る機関として大気中の酸素を光分に消
費出来るようにし、又、排気もスムースに行なわれるよ
うにし、水面船舶としての機能は一般在来の船舶と全く
同様にし、可潜前船体のの横舵による浮力調節によって
全天候下に安定した航行が行われるようにした技術的手
段を講じたもので必る。 〈実施例−構成〉 次に、この発明の実施例を図面に基づいて説明すれば以
下の通りである。 第1.2図に示す基本的実施例において1は可潜前船体
でおり、当該実施例においては、デアドロップタイプに
形成されており、その前後部の両側下側には横舵5.5
・・・が各々上下方向前傾斜、後傾斜の運動を自在にさ
れており、コンピュータ制御による適宜駆動装首により
動作可能にされている。 尚、当該実施例を含めてWL−1、WL−2は各々可潜
前船体1が水面に対して浮上状態と潜没状態のレベルを
示しているが、図示の都合上、可潜前船体5に対して相
対的に示しである。 そして、第3.4図に示す実施例においては、船舶本体
2が水面より上方におるようにして水面に対する水流抵
抗を小ざくしで形成された一対の水切体3.3を介して
上述可潜航船体1.1を一対一体的状態で下段しである
。 第3図に示す様に水切体3は連結の強度を大きくする場
合には点線で示す様に各々V型の水切体3’ 、3’ 
として設けるようにすることも可能でおる。 又、第4図に示す様に船舶本体2の内部には水タンク、
(海水タンク)等の注水部4が形成されている態様も採
用可能である。 又、第5.6図に示す実施例は船舶本体2の後部で必っ
て水切体3.3の間に別設して懸垂体9を設けて縦舵6
を設けると共に推進装置としてのプロペラ7が装備され
ている実施例である。 〈実施例−作用〉 而して、上jホ第3.4図に示す実施例の構造について
その作用を第7.8図に基づいて説明すると、まず、第
7図に示す可潜前船体1が水面に対し潜没してその水面
がWL−2に示されるレベルで航行している状態におい
て縦波、叩ら、波浪W−1が相対近接すると、水切体3
の前部に十Bの浮力が増加し、当該増加分の浮力十Bに
対抗して可潜前船体1の前部の横舵5′を前方下向き傾
斜して下降カーFを形成させ、それによって水切体3の
前部での水面WL−2に対する深度を変らないようにし
、又、水切体3の後部にて船舶の前進に伴い波浪W−2
が相対的に後方に来て船舶の前進に伴い、W−2となる
と、水切体3の後部では−Bだけの浮力の減少が生じ、
当該低下浮力−Bに対抗して後側の横舵5″の浮揚力を
十Fだけ作用させ、これによって水切体3の後部の水面
W「−2に対する深度を変らないように維持する。 この場合の水切体3に印加される風力の増加減少分に対
する横舵5’ 、5’の上下方向制御については船舶に
搭載する波浪検知の適宜装置により溝舵5’ 、5’の
旋回動を正確に波浪W−LW−2の近接にリャルタイム
てrtl++御操作することか出来、このことは単に波
浪による水切体3のj? iQ力の1t、2減に対辺す
るばかりでなく、風力や船舶の旋回力等の外力に対して
も同作に制御することか出来る。 したがって、船舶の前後方向、即ら、縦方向のピッチン
グは全く消去され、水面WL−2に対する深度は一定に
保たれ、前後方向の水平度は安定状態にされて航行され
る。 而して、第8図に示すローリング対像については当該第
8図左側から、即ち、左舷し側に波か高まり、右舷R側
には谷が形成されると、左舷り側に+B′の浮力が又、
右舷R側には−B′の浮力低減が行われ、更に、図示す
るように右舷R側から風Wが加わった場合、及び、舵体
が右旋回場合には、左舷り側に+B′の浮力増加が、又
、右舷R側には−B′の浮力低減が印加されることにな
るが、左舷り側の横舵51を下向にし、浮力十B’ +
3’に相当する沈降カーF’ 、−F“を作用させ、又
、左限Rの横舵5″′に対しては減少する浮力−B’ 
、−B″に相当する浮揚力士F’十F′を形成するよう
に作用させ、したがって、左右方向に於いても各横舵5
’ 、5 ”は常に水面WL−2に対する設定深度を維
持し、そのため、ロー1ノングすることなく、水平状態
を保って安定した姿勢で航行することが出来る。 又、第9.10図に示す実施例は貨物運搬用船舶の態様
であり、船舶本体2の上部には所定の貨物8.8・・・
が載置され、上述実施例同様に左右一対の水切体3.3
の各々には一基づつの可潜前船体1.1が連結され、各
々前後方向に注水部4.4か設けられて前後に横舵5′
、5′が設けられ、推進装置としてのプロペラ7が設け
られると共に縦舵6か設けられている態様であり、又、
第11図に示す実施例は船舶本体2の左右側に各々一対
の水切体3.3が下延されてその下端に各々−基の可潜
前船体1.1が設けられ、合計4個の可潜前船体1.1
・・・が設けられていることになり、各々横舵5′、5
″を有して後方の可潜前船体4には推進装置のプロペラ
7、及び、縦舵6が設けられでいる態様でおるが、いず
れも上述各実施例とその作用効果に何等変りはなく、前
後方向の波浪、横方向の波浪、風力、旋回力等の外力に
対してはコンピュータ検出制御による各横舵の旋回動作
用により増減する浮力に対する昇降力を印7j!1する
ことにより、船舶本体2を常にその水面に対し、一定高
さに又、各可潜前船体1は一定深度に保って船舶を常に
水平状態で航行させることが出来るものでおる。 尚、この発明の実施態様は上述各実施例に限るものでな
いことは勿論で必り、水切体、及び、その下端に連結さ
れる可潜前船体については3つ以上設c′Jることも出
来、又、各可潜前船体について横舵は3つ以上設けるこ
とか出来る前柱々の態様が採用可能である。 又、その間造は外洋航行の大型船舶のみならず、近海を
航行する中小形船舶にも適用出来ることも勿論のことで
おる。 〈発明の効果〉 以上、この発明によれば、基本的に、外洋ヤ近海を航行
する船舶においで波浪、風力、船舶の旋回等による外力
に対してその浮力か変化しても、その変化量は可潜航船
体に設けた横舵の昇降力以下であるように水切体を形成
していることにより、上述の条件の範囲内では船舶は常
にに水平に安定した状態で航行することが出来るという
優れた効果が秦されるものでおり、したがって、ローリ
ングは勿論のこと、ピッチングも防止され、安定した状
態で貨物や乗客を搬送することが出来るという効果か奏
され、又、水切体に相対近接して昇降変化する波浪や水
切体の昇降を自動的に適宜のセンサーによって検出して
コンピュータにより処理し、可潜航船体の前後方向に設
けた横舵を上向き、或いは、下向に傾斜させて昇降力を
付与することが出来るために船体に対して波浪等の浮揚
力が印り目されないうちにリャルタイム裡に昇降力を印
加して常に船舶を安定に水平状態にすることが出来ると
いう優れた効果が秦される。 又、横舵は水中に設けられていることにより、船舶が高
速走行すればするほど、大きな浮揚力、沈降ツノを付与
することか出来るために、外洋における海が荒れた場合
でおっても、安定した航行を保証し得るという優れた効
果か奏される。 そして、横舵に対し、水切体を介して船舶本体を水面上
方に設けることが出来るために大気の酸素を用いる内燃
機関、或いは、蒸気機関等の推進力を自由に得ることが
出来ることになり水面航行船舶の通常のメリットが充分
生かすことが可能であり、又、必要最小限の予備の復元
力も常に備えることか出来、精神的には勿論のこと、構
造上も安定した姿勢を保証することが出来るという優れ
た効果が秦される。 そして、船舶本体が水面の上方に設けることが出来るた
めに高速艦艇の如く、流線形の船体にしなくても済むこ
とにより、大きなスペースを確保することが出来、大量
の貨物、多数の乗客搬送することが出来、そのうえ、高
速航行時の造波抵抗も少なくてエネルギー効率も向上す
るという優れた効果が秦される。 そのため、商船等のコストメリッ1〜も大きくすること
か出来、計経済的にも児合うという優れた効果が秦され
る。 4、図面の簡単な説明 図面はこの発明の詳細な説明図でおり、第1図は基本実
施例の側面図、第2図は同正面図、第3.4図は別の実
施例の正面図、第5図は他の実施例の側面図、第6図は
更に他の実施例の正面図、第7図は波浪との関係姿勢の
側面図、第8図は同正面図、第9図は別の実施例の側面
図、第10図は更に別の実施例の正面図、第11図は更
に他の実施例の側面図でおる。 1・・・可潜航舵体、 5.5′5″・・・横舵 3・・・水切体、 2・・・船舶本体、  6・・・縦舵、7・・・推進装
置、  4・・・注排水部、B・・・浮力、   F・
・・昇降力、第 1 図         博 2 図
!と号の説明 1     可1前着体 2     上B構造 3     水切横這 4        、主排水錯p 5     横舵(5′前部横舵5″後部積舵5″左舷
積舵5″′右舷横舵)6     N舵 7     准H a     貨物 WL−1可、11航船体が浮上状聾における木線WL 
−2可1前着体が暦没状1にbける水線8     浮
力 +B    増加浮力 −B    減少浮力 +F     IN舵の浮揚能力 −F     ill舵の沈降能力 9    懸重体 留 3 図 笛 4 図 第5 図 第 7 図       第8 図 第 9 図       第10 図 第11 図 手 続 ネ市 正 榎ゴ (自 発) 昭和  qえ  7月 14日 持訂庁長官 宇 買 通 部  殿 1、事件の表示 昭和60年 特許願 第223812号2、発明の名称 定深度半潜水式の水面航行船舶構造 3、補正をする者 事件との関係   特許出願人 住  所  兵庫県神戸市須磨区離宮前町1の2の23
氏 名 吉田俊夫・S参 4、補正命令の日付      自  発5、補正によ
り増加する発明の数  な  し−6,補正の対象 1、明細書第16頁12行目の「1・・−可潜航舵体」
を[1・・・可潜前船体」に訂正します。 第1図 記号の説明 1、    可7i!餌船体 2、   船舶本体 3、  水切体 4、   庄排水部 5、     横舵(5′前部横舵5′後部横舵6、縦
舵 7、   推AI装置 8、      貨    物 Wし−1可潜航船体が浮上状■におけるWL−2可4M
船体が4没状態におけろs  r手刀 +B    FJI加浮カ ーB    M少l!?−力 +F    横舵の浮揚能力 −F    債舵の沈降能力 9、  懸垂体 第2図 Wし−2 = 水線 水徐
The drawings are explanatory diagrams of the present embodiment, and Fig. 1 is a side view of the basic embodiment, Fig. 2 is a front view of the same, Fig. 3.4 is a front view of another embodiment, and Fig. 5 is a side view of the basic embodiment. The figure is a side view of another embodiment.
The figures are a front view of another embodiment, FIG. 7 is a side view of the attitude in relation to waves, FIG. 8 is a front view of the same, FIG. 9 is a side view of another embodiment, and FIG. 10 is a further FIG. 11 is a front view of this embodiment, and FIG. 11 is a side view of still another embodiment. 1...Submersible navigation study, 5.5'5'...Horizontal rudder 3...Water cutting body, 2...Vessel body, 6...Longitudinal rudder, 7...Propulsion device, 4. ... Pour water section, B... Buoyancy, [-
... Lifting force, Figure 1 Explanation of symbols 2 Watercraft hull 1 Vessel 1 companion. 3 Water steering 4, main drainage device 5, side rudder (5' navigation 8 compensation rudder 5'' rear side 6
Longitudinal rudder 7 Propulsion device 8 Cargo WL-1 Submersible foreshore body power f WL in floating state -2 Canuma hull in submerged state 8 Buoyancy +8 Increased buoyancy -8 A low buoyancy 10F Horizontal rudder flotation capacity -F Rudder sinking capacity 9, P strain structure Figure 2 WL-2 7E line ν to line Figure 3
April 8, 1939, Chief of the Bureau of Corrections, Department of Public Relations, Name: Toshio Yoshida 1, I 4, Date of amendment order: Voluntary order 5, Increased due to amendment 6. Subject of amendment ()) All IT correct 1" ωro-kaku no sake -・) 9 Full text correction specification 1, Name of invention Fixed-depth semi-submersible surface-navigating ship structure 2, Claims: A surface-navigating vessel structure having a vertical rudder and a propulsion device connected to at least two submersible vessels equipped with side rudders or a water-cutting body via a water-cutting body, wherein the surface-navigating vessel structure has a water-filling vessel and wherein the structure of the water cutter body is formed such that the amount of change in buoyancy thereof is necessarily equal to or less than the lifting ability of the transverse rudders provided at the front and rear of the submersible hull. A deep semi-submersible surface-going vessel structure. 3. Detailed Description of the Invention (Field of Industrial Application) The disclosed technology belongs to the field of structural technology for ships, including extremely large ships that can sail not only near the coast but also on the open ocean. Summary of the gist> Therefore, the present invention is equipped with a side rudder that enables vertical, forward, and backward tilting movements of the hull with respect to the water surface, not only in the submerged state but also in the floating state. At least two submersible hulls such as teardrop type or underwater
- The submersible hull and the ship body provided above the water surface are integrally connected via a water cutter formed in a shape with little water flow resistance on the water surface, and the navigation direction is changed. This invention relates to the structure of a water-navigating ship having a propulsion device such as a longitudinal rudder and a screw, and particularly relates to the structure of the water cutter, in which the buoyancy of the water cutter is caused by waves, wind, or turning during sailing. If it changes due to centrifugal force, etc.
This invention relates to a constant-depth semi-submersible surface-navigating vessel structure formed such that the amount of change is less than the flotation capacity or sinking capacity of side rudders provided below the water surface at least at the front and rear of the submersible vessel. <Prior art> As is well known, common activity areas include land, water, and
There are three types of air: land is the place for activities of land animals such as running, air is the place for birds to fly, and underwater is the place for the lust of fish. Birds are active both in the air and on the ground, some fish are active both in the water and in the air, and mammals are active both in the air and in the air. Humans, who developed as humans, began to operate through the technical means of ships in the 1 meter of water between underwater and air. Historically, from ancient bowl ships to modern giant ships, ships have been formed into a bowl shape to reduce resistance to water flow, and the buoyancy of the water that has been removed has been used to eliminate water. The ship floats on the surface of the water and remains 1 meter above the water, allowing it to retain reserve buoyancy and maintain the ability to recover even if the ship is tilted.As a propulsion device, a gourd, a pole, or wind power is used. In modern times, they were propelled by mechanical forces such as propellers, but the principle remains essentially unchanged to this day. However, the appearance of deep-sea Pj1 and submarines in the early modern period, which were capable of navigating submerged underwater, was a revolutionary technological development for vessels that navigated only on the surface of the water. However, a nuclear-submerged vessel requires a long submersion time, and conventionally, the energy provided by storage batteries, etc. is limited over time, and even submarines equipped with so-called snorkels have a limited ability to operate submerged for long periods of time. However, with the recent use of nuclear power, it has become possible to operate for an infinitely long time over time, or it has become difficult to handle and economical due to the constraints of operating under conditions that are dangerous to the reactor and its peripheral equipment. The disadvantage was that it was not worth it. Therefore, among commercial ships whose commercial base cannot be ignored, ships that navigate on water have been used for a long time. Naturally, surface-going vessels are equipped with propulsion engines that require oxygen from the atmosphere, which poses the following problems. In other words, pitching and rolling are extremely unpleasant phenomena for ships that navigate while floating on the surface of the water, and even though we know that pitching and rolling guarantee the ship's resilience, we are mentally unable to do so. In addition, it is emotionally unstable while sailing, and it is not possible to deal with this by installing stabilizers on medium-sized and small ships, but it is unlikely to be effective on large ships. Although it is theoretically possible to reduce the shaking by sacrificing the stability performance and intentionally reducing the restorability of the vehicle, in reality it is extremely dangerous, and this point is explained above. Of course, there are unavoidable disadvantages compared to a ship that navigates underwater in a submerged state, but theoretically even if a ship that sails on the surface of the water were to sail in a submerged state, it loses buoyancy and once If it starts to sink unexpectedly, it will sit on the ocean floor and continue to sink. Also, for side-to-side rolling, is it possible to maintain stability by placing the center of buoyancy above the center of small force? For pitching, for example, the ship's front and rear hulls rotate half a turn in the direction of the longitudinal force. In order to deal with this situation, it is possible to consider pouring a small amount of water in the front and rear directions or slowing the movement, or to prevent this from happening due to the phylogenetic nature of water. However, some ships have built underwater holes to avoid turbulence on the water surface, but if the water surface is rough due to storms, it will be difficult to maintain stability. It was impossible to navigate, and especially when ships became large, there were drawbacks such as a lack of ability to float heavy ships.On the other hand, modern ships are required to sail at high speeds, and It is true that the propulsion resistance becomes so large that the energy generated by the equipped high-horsepower engine is consumed by this propulsion resistance.Most of this propulsion resistance is due to resistance to water.Water One of the resistances to water is frictional resistance, and the other is wave-making resistance.When the sailing speed is low, the wave-making resistance is small and is mostly just the friction resistance, but when the sailing speed is high, the wave-making resistance is small. When this happens, the wave-making resistance increases at an accelerating rate, and most of the energy used is inevitably spent on the wave-making resistance. Disadvantages, and the advantages and disadvantages of submerged navigation, as well as the problems of ships that could not incorporate only the advantages of both, are considered technical issues to be solved, and a rational and simple structure is developed. By combining only the advantages of both, we aim to provide an excellent constant-depth semi-submersible surface-navigating vessel structure that is beneficial to offshore navigation application fields in the transportation industry. In accordance with the above-mentioned object, the structure of the present invention, which is summarized in the scope of the above-mentioned claims, is such that the main body of a ship sailing on the water surface is positioned above the water line of the water surface so that it can be lowered below the water surface. The submersible hull is placed in a submerged state with low wave-making resistance, and the two are connected through the ship body by a water cutter with low water flow resistance, and the water cutter maintains a minimum reserve buoyancy, and the reserve buoyancy is The horizontal rudders installed at the front and rear of the submersible front hull are controlled by computer-controlled operations in response to changes in external forces such as the wind and the turning force of the hull, and the ship maintains a constant depth while navigating. The space on the ship body is made as large as possible to increase the winter solstice, and cargo can be loaded efficiently, and the propulsion engine is replaced by a steam engine or an internal combustion engine. As an engine that can use oxygen, it will be able to consume oxygen in the atmosphere into light, and exhaust will be carried out smoothly, and its functions as a water surface vessel will be exactly the same as a general conventional vessel. This is due to the technical measures taken to ensure stable navigation in all weather conditions by adjusting the buoyancy of the submersible front hull using the horizontal rudder. <Embodiment - Configuration> Next, an embodiment of the present invention will be described below based on the drawings. In the basic embodiment shown in Fig. 1.2, 1 is a submersible front hull, and in this embodiment, it is formed in a dare drop type, and side rudders 5.
. . . are each capable of vertically tilting forward and backward movements, and are made movable by appropriate computer-controlled drive necks. Incidentally, WL-1 and WL-2, including this example, respectively indicate the levels of the floating state and submerged state of the submersible front hull 1 with respect to the water surface, but for convenience of illustration, the submersible front hull 1 The figures are relative to 5. In the embodiment shown in Fig. 3.4, the vessel main body 2 is placed above the water surface, and the water flow resistance against the water surface is reduced through a pair of water cutters 3.3 formed of small pieces. The submersible hull 1.1 is mounted on the lower deck in a one-to-one unit. As shown in FIG. 3, when increasing the strength of the connection, the water cutters 3 are V-shaped cutters 3' and 3', respectively, as shown by dotted lines.
It is also possible to provide it as In addition, as shown in Fig. 4, inside the vessel body 2 there are water tanks,
It is also possible to adopt an embodiment in which the water injection part 4 is formed in a seawater tank or the like. In addition, in the embodiment shown in FIG. 5.6, a suspension body 9 is provided separately between the cutter body 3.3 at the rear of the ship body 2, and the vertical rudder 6 is
This embodiment is equipped with a propeller 7 as a propulsion device. <Embodiment - Operation> The operation of the structure of the embodiment shown in Figure 3.4 will be explained based on Figure 7.8. First, the submersible front hull shown in Figure 7 will be explained. 1 is submerged in the water surface and the water surface is at the level indicated by WL-2, and when longitudinal waves, waves, and waves W-1 come relatively close to each other, the water cutting body 3
A buoyant force of 10 B increases at the front of the submersible front hull 1, and in response to the increased buoyancy of 10 B, the transverse rudder 5' at the front of the submersible front hull 1 is tilted forward and downward to form a descending car F. The depth to the water surface WL-2 at the front part of the water cutter 3 is kept unchanged, and the wave W-2 is prevented from changing at the rear of the water cutter 3 as the ship moves forward.
When the ship becomes relatively rearward and becomes W-2 as the ship moves forward, the buoyancy decreases by -B at the rear of the water cutter 3,
The buoyancy force of the rear transverse rudder 5'' is applied by 10F against the reduced buoyancy force -B, thereby maintaining the depth of the rear part of the water cutter 3 relative to the water surface W''-2 unchanged. In order to control the vertical direction of the side rudders 5' and 5' in response to increases and decreases in the wind force applied to the channel body 3, the turning movement of the groove rudders 5' and 5' is accurately controlled by an appropriate wave detection device mounted on the ship. It is possible to operate RTL++ in real time in the vicinity of waves W-LW-2, and this not only counters the 1t or 2 reduction in the j?iQ force of the water cutting body 3 due to waves, but also the External forces such as turning forces can be controlled in the same way. Therefore, the pitching of the ship in the longitudinal direction, that is, the longitudinal direction, is completely eliminated, the depth to the water surface WL-2 is kept constant, and the longitudinal Navigation is carried out with the levelness of the direction stable. Therefore, regarding the rolling image shown in Figure 8, waves are rising from the left side of Figure 8, that is, waves are rising on the port side, and waves are rising on the starboard R side. When the valley is formed, a buoyant force of +B' on the port side also increases.
A buoyancy reduction of -B' is performed on the starboard R side, and furthermore, when wind W is applied from the starboard R side as shown in the figure, and when the rudder body turns to the right, a +B' buoyancy reduction is performed on the port side. The buoyancy increase will be applied to the starboard R side, and the buoyancy reduction of -B' will be applied to the starboard R side.
The sinking car F', -F" corresponding to 3' is applied, and the buoyant force -B' is reduced for the side rudder 5"' at the left limit R.
, -B'' to form a levitation force F'10F', and therefore each side rudder 5
``, 5'' always maintains the set depth with respect to the water surface WL-2, so it is possible to maintain a horizontal state and navigate in a stable attitude without rowing. Also, as shown in Figure 9.10. The embodiment is a ship for transporting cargo, and a predetermined cargo 8.8...
is placed, and a pair of left and right draining bodies 3.3 are placed as in the above-mentioned embodiment.
A submersible front hull 1.1 is connected to each of the submersible front hulls 1.1, each of which is provided with a water injection part 4.4 in the longitudinal direction and has a transverse rudder 5' in the longitudinal direction.
, 5' are provided, a propeller 7 as a propulsion device is provided, and a vertical rudder 6 is also provided.
In the embodiment shown in FIG. 11, a pair of water cutters 3.3 are extended downwardly on the left and right sides of the ship body 2, and two submersible front hulls 1.1 are provided at the lower ends of the two, and a total of four Submersible front hull 1.1
... are provided, and the side rudders 5' and 5 are respectively provided.
'', and the rear submersible front hull 4 is provided with a propeller 7 as a propulsion device and a longitudinal rudder 6, but there is no difference in operation and effect from each of the above-mentioned embodiments. In response to external forces such as longitudinal waves, lateral waves, wind force, and turning force, the ship is controlled by computer detection and control by marking the lifting force against the buoyancy that increases and decreases due to the turning operation of each side rudder. The main body 2 is always kept at a constant height with respect to the water surface, and each submersible front hull 1 is kept at a constant depth, so that the vessel can always sail in a horizontal state. Of course, this is not limited to the above-mentioned embodiments, and it is possible to provide three or more submersible front hulls connected to the water cutter and its lower end, and each submersible front hull For the hull, it is possible to adopt a forepost configuration in which three or more side rudders can be installed.Also, this structure can be applied not only to large ships sailing on the ocean, but also to small and medium-sized ships sailing in nearby waters. <Effects of the Invention> As described above, according to the present invention, basically, the buoyancy of a ship sailing in the open sea or near sea changes in response to external forces such as waves, wind power, and turning of the ship. However, the amount of change is less than the lifting force of the transverse rudder installed on the submersible hull, so the cutter is formed so that within the range of the above conditions, the ship will always remain horizontal and stable. It has the excellent effect of being able to navigate, thus preventing not only rolling but also pitching, and being able to transport cargo and passengers in a stable condition. Waves moving up and down in relative proximity to the ditch body and the elevation of the ditch body are automatically detected by appropriate sensors and processed by a computer, and the transverse rudder installed in the fore-and-aft direction of the submersible hull is turned upward or downward. Since it is possible to apply a lifting force by tilting the ship in the opposite direction, the lifting force can be applied in real time before the buoyancy force of waves etc. is noticed on the ship, and the ship can always be kept in a stable horizontal state. In addition, since the horizontal rudder is installed underwater, the faster the ship travels, the greater the buoyancy force and sinking horns can be applied to it. This has the excellent effect of ensuring stable navigation even when the sea is rough.Also, since the main body of the ship can be installed above the water surface with respect to the side rudder via the water cutter. Propulsion from an internal combustion engine using atmospheric oxygen or a steam engine can be freely obtained, making it possible to take full advantage of the usual advantages of a surface-going vessel, and with the minimum necessary reserve. It has the excellent effect of ensuring a stable posture, not only mentally, but also structurally. Furthermore, since the ship body can be installed above the water surface, it does not need to have a streamlined hull like high-speed ships, which allows a large space to be secured and allows for the transportation of large amounts of cargo and large numbers of passengers. In addition, it has the excellent effect of reducing wave-making resistance during high-speed navigation and improving energy efficiency. Therefore, it is possible to increase the cost advantage of commercial ships, etc., and the excellent effect of being financially compatible is achieved. 4. Brief description of the drawings The drawings are detailed explanatory drawings of the present invention. Fig. 1 is a side view of a basic embodiment, Fig. 2 is a front view of the same, and Fig. 3.4 is a front view of another embodiment. 5 is a side view of another embodiment, FIG. 6 is a front view of still another embodiment, FIG. 7 is a side view of the attitude in relation to waves, FIG. 8 is a front view of the same, and FIG. The drawings are a side view of another embodiment, FIG. 10 is a front view of still another embodiment, and FIG. 11 is a side view of still another embodiment. DESCRIPTION OF SYMBOLS 1... Submersible rudder body, 5.5'5''... Horizontal rudder 3... Water cutting body, 2... Vessel main body, 6... Longitudinal rudder, 7... Propulsion device, 4. ... Pour water section, B ... Buoyancy, F.
...Lifting force, Figure 1 Figure 2! Explanation of and No. 1 Possible 1 Front landing body 2 Upper B structure 3 Water cutting sideways 4, Main drainage confusion p 5 Side rudder (5' Front side rudder 5'' Rear stack rudder 5'' Port stack rudder 5'' Starboard side rudder ) 6 N rudder 7 Associate H a Cargo WL-1 possible, 11 Wooden line WL with hull in floating state
-2 Possible 1Water line when the forerunner is in the sunken condition 1B 8 Buoyancy +B Increased buoyancy -B Decrease buoyancy +F IN rudder's buoyancy - Fill Rudder's sinking capacity 9 Suspended weight 3 Figure whistle 4 Figure 5 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Procedure Neichi Tadashi Enoki (self-motivated) Showa qe July 14th, Chief of the Office of Corrections Department 1, Indication of the incident 1986 Year Patent Application No. 223812 2 Title of invention Fixed depth semi-submersible surface navigation vessel structure 3 Relationship to the case of the person making the amendment Patent applicant address 1-2-23 Rikyumae-cho, Suma-ku, Kobe-shi, Hyogo Prefecture
Name: Toshio Yoshida, S 4, Date of amendment order: Voluntary issue 5, Number of inventions increased by the amendment: None - 6, Subject of amendment 1, "1... - submersible and navigable" on page 16, line 12 of the specification "Rudder body"
will be corrected to [1... pre-submersible hull]. Figure 1 Explanation of symbols 1, OK 7i! Bait hull 2, ship main body 3, ditch body 4, sho drainage section 5, side rudder (5' front side rudder 5' rear side rudder 6, longitudinal rudder 7, thrust AI device 8, cargo W-1 submersible navigation WL-2 Possible 4M when the hull is floating ■
When the hull is in a 4-sunk state, s r hand sword + B FJI Kabu car B M small l! ? −Force + F Floating capacity of side rudder − F Sinking ability of fixed rudder 9, Suspension body diagram 2 W −2 = Water line water speed

Claims (1)

【特許請求の範囲】[Claims] 横舵とを装備する少なくとも2つの可潜航船体が水切体
を介して水面上の船舶本体に連結され縦舵と推進装置を
有する水面航行船舶構造において、上記水面航行船舶構
造が注排水部を有し、而して上記水切体の構造がその浮
力の変化量について可潜航船体の前後に設けられた横舵
の昇降能力以下であるように形成されていることを特徴
とする定深度半潜水式の水面航行船舶構造。
A surface-navigating vessel structure in which at least two submersible vessels equipped with transverse rudders are connected to a vessel body on the water surface via a water cutter body, and the surface-navigating vessel structure has a longitudinal rudder and a propulsion device, wherein the surface-navigating vessel structure has a water injection part. and a constant depth semi-submersible type, characterized in that the structure of the ditch body is formed such that the amount of change in buoyancy is less than the lifting ability of horizontal rudders provided at the front and rear of the submersible hull. surface-navigating vessel structure.
JP60223812A 1985-10-09 1985-10-09 Constant depth semi-submersible ship Expired - Lifetime JPH0764305B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60223812A JPH0764305B2 (en) 1985-10-09 1985-10-09 Constant depth semi-submersible ship
US06/917,369 US4763596A (en) 1985-10-09 1986-10-09 Semisubmerged water surface navigation ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60223812A JPH0764305B2 (en) 1985-10-09 1985-10-09 Constant depth semi-submersible ship

Publications (2)

Publication Number Publication Date
JPS6285792A true JPS6285792A (en) 1987-04-20
JPH0764305B2 JPH0764305B2 (en) 1995-07-12

Family

ID=16804105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60223812A Expired - Lifetime JPH0764305B2 (en) 1985-10-09 1985-10-09 Constant depth semi-submersible ship

Country Status (1)

Country Link
JP (1) JPH0764305B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100379647C (en) * 2002-12-06 2008-04-09 韩国防 Three V suspension platform lifted and combined double-float motorboat
CN100381333C (en) * 2004-02-19 2008-04-16 袁晓纪 Super large truss type floating maine platform

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6056695A (en) * 1983-09-08 1985-04-02 Mitsubishi Heavy Ind Ltd Half-submerged catamaran

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6056695A (en) * 1983-09-08 1985-04-02 Mitsubishi Heavy Ind Ltd Half-submerged catamaran

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100379647C (en) * 2002-12-06 2008-04-09 韩国防 Three V suspension platform lifted and combined double-float motorboat
CN100381333C (en) * 2004-02-19 2008-04-16 袁晓纪 Super large truss type floating maine platform

Also Published As

Publication number Publication date
JPH0764305B2 (en) 1995-07-12

Similar Documents

Publication Publication Date Title
US4763596A (en) Semisubmerged water surface navigation ship
US3063397A (en) Sub-surface craft
JP3660683B2 (en) Watercraft
US6588352B2 (en) WAY as acronym for wave avoidance yacht
AU2016374621B2 (en) Stabilized hull for a keeled monohull sailboat or sail and motor boat
CN111572720A (en) High-speed high-sea-condition submersible multi-body unmanned aircraft and control method thereof
CN102935874A (en) Double submerged body small water plane composite water surface unmanned surface vehicle
US3898946A (en) Sea-going high-commercial-speed displacement vessel
US4986204A (en) Oscillationless semisubmerged high-speed vessel
RU2124451C1 (en) Sea-going vessel
CN212556696U (en) High-speed high-sea-condition submersible multi-body unmanned aircraft
CN2228055Y (en) Flying-fish-type sailing implement on water
US20150144049A1 (en) Buoyant, Variably Buoyant and Non-Buoyant Foil Structures for Marine Vessels and Watercraft
Conolly Paper 26. Stability and Control in Waves: A Survey of the Problem
JPS6285792A (en) Construction of ship sailing on water with hull submerging half in constant depth
CN1158314A (en) Hydrofoil crafts
Grainge The Roman Channel crossing of AD 43: the constraints on Claudius's naval strategy
US20020096098A1 (en) Boat hull design
US5549066A (en) Triangular boat hull apparatus
RU107759U1 (en) HULL SHIP
JPH0195991A (en) Tank installed to keel for ship in longitudinal direction
Khramushin Features architecture of mean ship to navigation in heavy, stormy and ice conditions on the northern seas
AU781474B2 (en) Wave avoidance yacht (way)
Matsuda et al. Capsizing due to bow-diving in following waves
Lang S3—New Type of High-Performance Semisubmerged Ship