JPS6285147A - Air-fuel ratio control device - Google Patents

Air-fuel ratio control device

Info

Publication number
JPS6285147A
JPS6285147A JP13832386A JP13832386A JPS6285147A JP S6285147 A JPS6285147 A JP S6285147A JP 13832386 A JP13832386 A JP 13832386A JP 13832386 A JP13832386 A JP 13832386A JP S6285147 A JPS6285147 A JP S6285147A
Authority
JP
Japan
Prior art keywords
signal
air
circuit
control
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13832386A
Other languages
Japanese (ja)
Other versions
JPS633137B2 (en
Inventor
Masaharu Asano
浅野 正春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP13832386A priority Critical patent/JPS6285147A/en
Publication of JPS6285147A publication Critical patent/JPS6285147A/en
Publication of JPS633137B2 publication Critical patent/JPS633137B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent the weakening of the intake mixed gas density and avoid an engine stop, by detecting the starting condition of a car, and adding a compensating signal to a control signal from integrating the difference between the measured value of the exhaust gas density and a set value in a car starting condition. CONSTITUTION:When an engine 1 is operated, first a difference signal responding to the difference between the output of an exhaust sensor 3 and a set value is output from a difference detecting circuit 10 in a control circuit 4, and, a ratio value signal proportional to the variation of the difference signal is output from a ratio circuit 11, while an integral value signal through integrating the difference signal is output from an integral circuit 12. The output signals of the circuits 11 and 12 are added in an adder circuit 13 to make into a signal a. The signal a is input to a comparator 14 in a compensating circuit 9, and when the signal a is less than a given value, a signal b is transmitted, and when the car starting is detected by a start detecting sensor 8, the signal b is integrated in an integral circuit 16 to get a compensating signal e. The both signals a and e are added 17 and the resultant control signal f is used to control a fuel adjusting device 5.

Description

【発明の詳細な説明】 本発明は、排気ガス濃度を検出してフィードバック制御
することにより、エンジン吸入混合気の空燃比を設定空
燃比に維持するようにした空燃比制御装置の改良に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in an air-fuel ratio control device that maintains the air-fuel ratio of an engine intake air-fuel mixture at a set air-fuel ratio by detecting exhaust gas concentration and performing feedback control. be.

最近、エンジンの排気ガス通路に排気ガス濃度を検出す
る排気センサを設け、この検出信号と設定値との差に対
応した制御信号によって燃料調量装置(気化器や燃料噴
射装置)の燃料供給量及び又は空気供給量を制御するこ
とにより、吸入混合気の空燃比を予め設定した値に収束
させる空燃比制御装置が提案されている。
Recently, an exhaust sensor that detects the concentration of exhaust gas has been installed in the exhaust gas passage of the engine, and a control signal corresponding to the difference between this detection signal and a set value is used to control the fuel supply amount to the fuel metering device (carburizer or fuel injection device). An air-fuel ratio control device has been proposed that converges the air-fuel ratio of an intake air-fuel mixture to a preset value by controlling the amount of air supplied.

上記のごとき空燃比制御装置においては、燃料調量装置
側の空燃比の状態を排気系で検出するため制御系に時間
おくれが生ずる。そのため実際の空燃比は設定空燃比を
中心として上下に変動し。
In the air-fuel ratio control device as described above, a time lag occurs in the control system because the state of the air-fuel ratio on the fuel metering device side is detected by the exhaust system. Therefore, the actual air-fuel ratio fluctuates up and down around the set air-fuel ratio.

その平均値が設定空燃比になるように制御される。Control is performed so that the average value becomes the set air-fuel ratio.

定常運転時においては、上記のように平均値が設定空燃
比になるように制御すれば空燃比制御の目的を達成する
ことが出来るが、特殊な運転状態例えば自動車の発進時
においては、クラッチのつながる時にエンジンにかかる
負荷が急増するので、この時の吸入混合気が薄い(空燃
比が大きい)と必要なエンジン出力が得られず、エンジ
ン停止(いわゆるエンスト)を起こしやすくなるという
欠点があった。
During steady operation, the purpose of air-fuel ratio control can be achieved by controlling the average value to the set air-fuel ratio as described above, but in special driving conditions, such as when starting a car, the clutch When the engine is connected, the load on the engine increases rapidly, so if the intake air-fuel mixture is lean (high air-fuel ratio), the necessary engine output cannot be obtained and the engine may stop (so-called engine stalling). .

本発明は上記の欠点を解消するため、自動車の発進状態
を検出し、発進時には空燃比制御の制御信号を変化させ
て混合気が必ず薄くならないように制御することにより
、エンジンの運転性、安定性を向上させた空燃比制御装
置を提供するととに目的とする。
In order to solve the above-mentioned drawbacks, the present invention detects the starting state of the automobile and changes the control signal for air-fuel ratio control at the time of starting to control the air-fuel mixture so that it does not become lean, thereby improving engine drivability and stability. The purpose of the present invention is to provide an air-fuel ratio control device with improved performance.

以下図面に基づいて本発明の詳細な説明する。The present invention will be described in detail below based on the drawings.

第1図は本発明の一実施例のブロック図である。FIG. 1 is a block diagram of one embodiment of the present invention.

第1図において、エンジン1の排気管2に設けられた排
気センサ3(例えば排気ガス中の02゜CO、CO21
HC、N Ox等の濃度に対応した信号を出力するセン
サ)の出力は制御回路4へ送られる。
In FIG. 1, an exhaust sensor 3 installed in an exhaust pipe 2 of an engine 1 (e.g. 02° CO, CO21 in exhaust gas)
The output of a sensor that outputs a signal corresponding to the concentration of HC, NOx, etc. is sent to the control circuit 4.

制御回路4は、排気センサ3の出力と設定値(設定空燃
比に対応した電圧)との偏差を検出し、その偏差信号の
比例分信号や積分分信号または比例分信号と積分分信号
を加算した信号等の制御信号を出力する。この制御信号
に、よって燃料調量装置5の燃料供給量及び又は空気供
給量を調節するアクチュエータを制御すれば、空燃比を
設定空燃比に維持するように制御することが出来る。そ
してこの設定空燃比を、例えば排気浄化装置6(触媒や
りアクタ等)の最適動作点に一致すように設定すれば、
排気ガス中の有害成分を効率よく減少させることが出来
る。
The control circuit 4 detects the deviation between the output of the exhaust sensor 3 and the set value (voltage corresponding to the set air-fuel ratio), and adds a proportional signal, an integral signal, or a proportional signal and an integral signal of the deviation signal. Outputs control signals such as By controlling the actuator that adjusts the fuel supply amount and/or air supply amount of the fuel metering device 5 in accordance with this control signal, the air-fuel ratio can be controlled to be maintained at the set air-fuel ratio. If this set air-fuel ratio is set to match, for example, the optimum operating point of the exhaust purification device 6 (catalyst, actuator, etc.),
Harmful components in exhaust gas can be efficiently reduced.

平常運転時においては上記のごとき動作によって空燃比
制御が行なわれる。
During normal operation, air-fuel ratio control is performed through the operations described above.

しかし前記のごとく、第1図の装置においては制御信号
が設定値を中心として上下に変動し、平均値が設定値に
一致するように制御される。
However, as described above, in the apparatus shown in FIG. 1, the control signal fluctuates up and down around the set value, and is controlled so that the average value matches the set value.

したがって混合気の空燃比も設定空燃比を中心として上
下に変動し、混合気は過濃と希薄の状態を交互に繰返す
。そして自動車の発進時に混合気が希薄な状態であった
とすると、必要な出力が得られないためエンストを生ず
るおそれがある。
Therefore, the air-fuel ratio of the air-fuel mixture also fluctuates up and down around the set air-fuel ratio, and the air-fuel mixture alternates between rich and lean states. If the air-fuel mixture is lean when the vehicle starts, the engine may stall because the necessary output cannot be obtained.

そのため第1図の装置においては、発進検出センサ8と
補償回路9とを設け、発進時には、制御信号に補償信号
を付加することによって、混合気を過濃側へ制御するよ
うに構成している。
For this reason, the device shown in FIG. 1 is provided with a start detection sensor 8 and a compensation circuit 9, and is configured to control the air-fuel mixture to the rich side by adding a compensation signal to the control signal when starting. .

この発進検出センサ8としては、スロットル弁7の開度
を検出するスロットルセンサ、アクセルペダル開度を検
出するアクセルセンサ、クラッチの接続状態(例えばク
ラッチペダルの位置を検出)を検出するクラッチセンサ
、エンジン又は車輪の回転数を検出する回転センサ等を
用いることが出来る。また上記の各センサの組合せや、
変速機のニュートラル位置検出センサと上記の各センサ
の組合せ等を用いてもよい。
The start detection sensor 8 includes a throttle sensor that detects the opening of the throttle valve 7, an accelerator sensor that detects the accelerator pedal opening, a clutch sensor that detects the clutch connection state (for example, detects the position of the clutch pedal), and an engine Alternatively, a rotation sensor or the like that detects the number of rotations of the wheels can be used. In addition, combinations of the above sensors,
A combination of the neutral position detection sensor of the transmission and each of the above sensors may be used.

次に、第2図は制御回路4と補償回路9の一実施例のブ
ロック図であり、第2図において第1図と同符号は同一
物を示す。また第3図は第2図の回路の信号波形図であ
り、第3図においてa ” fは第2図の同符号を付し
た個所の信号波形を示す。
Next, FIG. 2 is a block diagram of one embodiment of the control circuit 4 and the compensation circuit 9. In FIG. 2, the same reference numerals as in FIG. 1 indicate the same components. Further, FIG. 3 is a signal waveform diagram of the circuit of FIG. 2, and in FIG. 3, a '' f indicates the signal waveform of the portions with the same reference numerals in FIG. 2.

以下第3図を参考にして第2図の動作を説明する。The operation shown in FIG. 2 will be explained below with reference to FIG.

まず制御回路4において、偏差検出回路10は排気セン
サ3の出力と設定値との差に対応した偏差信号を出力す
る。比例回路11は偏差信号の変化に比例した比例分信
号を出力し、積分回路12は偏差信号を積分した積分分
信号を出力する。そして加算回路13が上記の両信号を
加算した信号aを出力する。
First, in the control circuit 4, the deviation detection circuit 10 outputs a deviation signal corresponding to the difference between the output of the exhaust sensor 3 and a set value. The proportional circuit 11 outputs a proportional signal proportional to a change in the deviation signal, and the integrating circuit 12 outputs an integral signal obtained by integrating the deviation signal. Then, the adder circuit 13 outputs a signal a obtained by adding the above two signals.

この信号aは、例えば第3図aに示すごとく、設定値v
0を中心として上下に変動し、例えば信号aがV。より
大きいときは混合気を濃くし、小さいときは混合気を薄
くするように制御するものとする。
This signal a is, for example, as shown in FIG. 3a, a set value v
It fluctuates up and down around 0, for example, signal a is V. When it is larger, the air-fuel mixture is controlled to be richer, and when it is smaller, the air-fuel mixture is controlled to be leaner.

次に、補償回路9において、比較器14は、制御回路の
信号aが一定値(例えばV。)以下のとき信号すを送出
する。また発進検出センサ8は自動車が発進状態(例え
ば変速機がニュートラル位置以外の場合においてクラッ
チが接続状態になったとき等)の場合に信号Cを出力す
る。したがってアンド回路15の出力は信号dのように
なる。
Next, in the compensation circuit 9, the comparator 14 sends out a signal S when the signal a of the control circuit is below a certain value (for example, V.). Further, the start detection sensor 8 outputs a signal C when the vehicle is in a start state (for example, when the clutch is connected when the transmission is in a position other than the neutral position). Therefore, the output of the AND circuit 15 becomes a signal d.

次に微分回路16は、信号dを微分した補償信号eを出
力し、この補償信号Cと上記の制御回路の信号aとが加
算回路17で加算され、制御信号fとして出力される。
Next, the differentiating circuit 16 outputs a compensation signal e obtained by differentiating the signal d, and this compensation signal C and the signal a of the control circuit described above are added together in an adding circuit 17 and output as a control signal f.

微分回路16の出力は、第3図aに示すごとく、アンド
回路15の出力が変化してから一定時間のみ出力され、
そのため信号aと補償信号上とを加算した制御信号fは
、第3図fに示すごとく、発進時から一定時間の間は出
力が増加し、したがってその間は混合気が薄くならない
ように制御される。
As shown in FIG. 3a, the output of the differentiating circuit 16 is output only for a certain period of time after the output of the AND circuit 15 changes.
Therefore, the control signal f, which is the sum of the signal a and the compensation signal, increases the output for a certain period of time after starting, as shown in Figure 3 f, and is controlled so that the air-fuel mixture does not become lean during that period. .

なお、第2図の回路においては、制御回路4の信号aが
■。以上の場合(混合気を濃く制御している場合)には
比較器】4が信号すを送出せず、したがって発進検出セ
ンサ8の出力が与えられても補償信9f eを出力しな
い様に構成しているが、比較器14とアンド回路15と
を省略し5発進検出センサ8の出力が与えられた場合に
は常に補償信号eを出力するように構成してもよい。た
だし、その様に構成すると、発進時には制御回路4の信
号aの値に無関係に補償信号eが加算されるから、信号
aが■。以上のときには制御信号fの値が大きくなりす
ぎて、混合気が過濃になるので、排気特性が悪化する場
合が生ずるおそれがある。
In the circuit shown in FIG. 2, the signal a of the control circuit 4 is ■. In the above case (when the air-fuel mixture is controlled to be rich), the comparator 4 does not send out the signal, and therefore the configuration is such that it does not output the compensation signal 9e even if the output of the start detection sensor 8 is given. However, the comparator 14 and the AND circuit 15 may be omitted and the configuration may be such that the compensation signal e is always output when the output of the fifth start detection sensor 8 is given. However, with such a configuration, the compensation signal e is added regardless of the value of the signal a of the control circuit 4 at the time of starting, so the signal a becomes . In this case, the value of the control signal f becomes too large and the air-fuel mixture becomes too rich, which may lead to deterioration of the exhaust characteristics.

以上説明したごとく本発明によれば、発進時を検出して
制御信号に補償信号を付加すことにJ:す、発進時には
混合気が薄くならないように制御することが出来る。そ
のため発進時にエンジンの出力が低下するおそれがなく
、エンストを生ずることもなくなるので、エンジンの運
転性、安定性が向上するという効果がある6
As described above, according to the present invention, by detecting the time of start and adding a compensation signal to the control signal, it is possible to control the air-fuel mixture so that it does not become lean at the time of start. Therefore, there is no risk of the engine output decreasing when starting, and there is no possibility of engine stalling, which has the effect of improving engine drivability and stability6.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のブロック図、第2図は制御
回路と補償回路の一実施例のブ0ツク図、第3図は第2
図の回路の信号波形図である5、く符号の説明〉 101.エンジン     2・・・排気管3・・・排
気センサ    4・・・制御回路5・・・燃料調量装
置   6・・・排気浄化装置7・・・スロットル弁 
  8・・・発進検出センサ代理人弁理士  中 村 
純之助 オ)口
FIG. 1 is a block diagram of an embodiment of the present invention, FIG. 2 is a block diagram of an embodiment of a control circuit and a compensation circuit, and FIG. 3 is a block diagram of an embodiment of the invention.
5, which is a signal waveform diagram of the circuit shown in the figure, explanation of symbols> 101. Engine 2...Exhaust pipe 3...Exhaust sensor 4...Control circuit 5...Fuel metering device 6...Exhaust purification device 7...Throttle valve
8...Start detection sensor patent attorney Nakamura
Junnosuke O) mouth

Claims (1)

【特許請求の範囲】[Claims] エンジンの排気ガス濃度を測定し、該測定値と設定値と
の偏差に対応した制御信号によって燃料調量装置を制御
することにより、エンジン吸入混合気の空燃比を設定空
燃比に維持するようにした空燃比制御装置において、上
記の偏差を少なくとも積分することによって制御信号を
求める手段と、発進状態を検出する発進検出手段と、該
発進検出手段の出力が与えられてから所定時間の間補償
信号を出力し、該補償信号を上記制御信号に加える補償
手段とを具備し、発進時には上記の偏差を積分した制御
信号に上記補償信号を加えることによって吸入混合気が
薄くならないように制御することを特徴とする空燃比制
御装置。
The air-fuel ratio of the engine intake air-fuel mixture is maintained at the set air-fuel ratio by measuring the engine exhaust gas concentration and controlling the fuel metering device using a control signal corresponding to the deviation between the measured value and the set value. In the air-fuel ratio control device, there is provided a means for obtaining a control signal by at least integrating the above deviation, a start detecting means for detecting a start state, and a compensation signal for a predetermined period of time after the output of the start detecting means is given. and a compensation means for adding the compensation signal to the control signal, and when the vehicle starts, the compensation signal is added to the control signal obtained by integrating the deviation to control the intake air-fuel mixture so that it does not become lean. Characteristic air-fuel ratio control device.
JP13832386A 1986-06-16 1986-06-16 Air-fuel ratio control device Granted JPS6285147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13832386A JPS6285147A (en) 1986-06-16 1986-06-16 Air-fuel ratio control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13832386A JPS6285147A (en) 1986-06-16 1986-06-16 Air-fuel ratio control device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP50054614A Division JPS5834657B2 (en) 1975-05-12 1975-05-12 Air fuel ratio control device

Publications (2)

Publication Number Publication Date
JPS6285147A true JPS6285147A (en) 1987-04-18
JPS633137B2 JPS633137B2 (en) 1988-01-22

Family

ID=15219218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13832386A Granted JPS6285147A (en) 1986-06-16 1986-06-16 Air-fuel ratio control device

Country Status (1)

Country Link
JP (1) JPS6285147A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3738341A (en) * 1969-03-22 1973-06-12 Philips Corp Device for controlling the air-fuel ratio {80 {11 in a combustion engine
JPS4891425A (en) * 1972-02-10 1973-11-28

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3738341A (en) * 1969-03-22 1973-06-12 Philips Corp Device for controlling the air-fuel ratio {80 {11 in a combustion engine
JPS4891425A (en) * 1972-02-10 1973-11-28

Also Published As

Publication number Publication date
JPS633137B2 (en) 1988-01-22

Similar Documents

Publication Publication Date Title
JPS5840010B2 (en) Kuunenpiseigiyosouchi
JP2002535533A (en) Method and apparatus for operating an internal combustion engine
US6836722B2 (en) Method and system for diagnosing a failure of a rear oxygen sensor of a vehicle
JP4539211B2 (en) Control device for internal combustion engine
JPS5834657B2 (en) Air fuel ratio control device
JPH03217637A (en) Device for judging activity of o2 sensor
JPH1182090A (en) Internal combustion engine control system
US5419186A (en) Method and arrangement for checking the operation of an actuator in a motor vehicle
JPS6285147A (en) Air-fuel ratio control device
JPH09209800A (en) Intake air quantity control device for internal combustion engine
JPH0689686B2 (en) Air-fuel ratio controller for engine
KR19990059819A (en) Fuel control method for acceleration and deceleration of lean combustion engine
JPH09273434A (en) Traction controller
JPS62342B2 (en)
JP2583116Y2 (en) Fuel supply stop device for vehicle engine
JP2517699B2 (en) Engine air-fuel ratio control device
JPS6233092Y2 (en)
JPS6263149A (en) Fuel controller for engine
JPH0555701B2 (en)
JPS59136537A (en) Method of controlling air-fuel ratio of internal-combustion engine
JPH10176565A (en) Air-fuel ratio switching control method
JPH0625551B2 (en) Air-fuel ratio controller for engine
JPS5823967Y2 (en) Air-fuel ratio correction control device for internal combustion engines
JPH0330601Y2 (en)
JPS63109250A (en) Air-fuel ratio control device for internal combustion engine