JPS6233092Y2 - - Google Patents

Info

Publication number
JPS6233092Y2
JPS6233092Y2 JP1979017868U JP1786879U JPS6233092Y2 JP S6233092 Y2 JPS6233092 Y2 JP S6233092Y2 JP 1979017868 U JP1979017868 U JP 1979017868U JP 1786879 U JP1786879 U JP 1786879U JP S6233092 Y2 JPS6233092 Y2 JP S6233092Y2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
exhaust gas
signal
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1979017868U
Other languages
Japanese (ja)
Other versions
JPS55119332U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1979017868U priority Critical patent/JPS6233092Y2/ja
Publication of JPS55119332U publication Critical patent/JPS55119332U/ja
Application granted granted Critical
Publication of JPS6233092Y2 publication Critical patent/JPS6233092Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は、空燃比制御系における高度補償装置
に関する。 一般に、3元触媒を使用している内燃機関は、
触媒の浄化効率を高めるために理論空燃比で運転
される必要がある。この要件を満たすために、従
来から、排ガスセンサーを用いて内燃機関の排ガ
ス中の酸素濃度を検出し、この検出値を設定値と
比較して制御信号を得、これに基づいてフイード
バツク制御を行い、供給する混合気の空燃比を理
論空燃比に制御することが行われていた。しかし
ながら、システムの安定性ならびにアクチユエー
タの能力などを勘案すると、フイードバツク制御
系におけるフイードバツク制御幅を充分大きく取
れないという傾向がある。そしてまた、このフイ
ードバツク制御系の応答性あるいはフイードバツ
ク制御幅は、平地での運転を想定して調整されて
いることが多く、このような調整状態のままで高
度が高いところで運転が行われた場合には、空気
が希薄になつているので必要フイードバツク量が
制御幅をはずれ、理論空燃比での好適な運転が行
えないという現象を呈することがある。さらに、
内燃機関を始動する際のように排ガスセンサーが
暖機された状態に至るまではフイードバツク信号
が発生しないので、当然、平地状態における基本
空燃比で内燃機関の運転が行なわれることとな
り、実際に供給される混合気の空燃比と理論空燃
比とのずれは大きなものとなり、運転高度が高く
なるにしたがつてそのずれは著しく大きなものに
なる。このように、従来公知のフイードバツク制
御系によつては排ガスセンサーの暖機以前あるい
は運転場所の高度変動がある場合に、供給される
混合気を理論空燃比に好適に維持できないことが
あつた。 本考案の目的は、内燃機関の運転場所の高度変
動あるいは排ガスセンサーの暖機状態に影響を受
けることなく、内燃機関に供給する混合気の空燃
比を理論空燃比に維持するために補償装置、とく
に、内燃機関の運転場所の高度変動によつて生ず
る理論空燃比からのずれをフイードバツク制御信
号の偏差量として検出し、この検出偏差量の大き
さに応じて段階的にフイードバツク制御系での制
御量を補償する装置を提供することにある。 本考案の要旨は、排ガス成分、好ましくは酸素
含有量を検出して設定値と比較し、誤差信号を得
てこれに基づいて空燃比をフイードバツク制御す
る制御系に適用される高度補償装置にあり、時間
とともに変動する前記誤差信号の平均値を設定値
と比較して偏差信号を得、この偏差信号に基づい
て空燃比フイードバツク制御を補償することにあ
る。 以下、図面を参照して、本考案を実施例に基づ
いて説明する。 第1図は、本考案の一実施例を示す概略ブロツ
ク回路図である。 図において、1は従来公知の空燃比フイードバ
ツク制御系を示している。図示しない内燃機関の
排気通路の適所には排ガス成分濃度を検知するた
めの排気センサー、好ましくは酸素センサー2が
設けられている。第1の比較器3は、排ガス中の
酸素濃度を示す前記酸素センサー2の電気出力信
号S1と、予め設定した基準酸素濃度信号S2と
を比較して偏差信号S3を出力する。この偏差信
号S3は加算器5に加えられる一方で、積分器4
に加えられる。そして、この積分器4からの信号
出力S4も同様に前記加算器5に加えられる。前
記信号S3とS4とは加算器5で加算され、誤差
信号(VF)S5として出力され、従来周知の方
法で内燃機関の空燃比フイードバツク制御を行う
ために用いられる。 なお、本実施例では、フイードバツク制御系1
において比例積分動作を行つているが、とくにこ
れに限定するものではない。 前述のとおり、本考案は、内燃機関の運転場所
の高度変動を、フイードバツク信号の所定時間内
の平均値が基準範囲外にあると云う事実から検知
し、従来公知の制御系から分岐させて構成した補
償ループを作動させ、前記高度変化による空燃比
補償フイードバツク信号を修正するものである。 次に、本考案の主要構成である補償ループを好
適実施例にしたがつて説明する。 誤差信号平均値演算器6は、内燃機関運転開始
時からの誤差信号(VF)S5の平均値(VF)を
演算し、平均値信号S6を第2の比較器7へ出力
する。定電圧源例えばバツテリー電源に接続され
た基準信号発生器70は、設置上限値(H)信号S7
および設置下限値(L)信号S8とを前記第2の比較
器7に加える。この第2の比較器7は、アツプダ
ウンカウンタ8へキヤリーイン信号とアツプダウ
ン信号を出力するものである。この第2の比較器
7の出力S9は、前記平均値信号S6と前記両設
定信号S7、S8との大きさにしたがうものであ
り、例えば下表のとおりに定める。
The present invention relates to an altitude compensation device in an air-fuel ratio control system. Generally, internal combustion engines that use a three-way catalyst are
In order to improve the purification efficiency of the catalyst, it is necessary to operate at a stoichiometric air-fuel ratio. To meet this requirement, conventionally, an exhaust gas sensor is used to detect the oxygen concentration in the exhaust gas of an internal combustion engine, and this detected value is compared with a set value to obtain a control signal, and feedback control is performed based on this. The air-fuel ratio of the supplied air-fuel mixture has been controlled to the stoichiometric air-fuel ratio. However, when considering the stability of the system and the capacity of the actuator, there is a tendency that the feedback control width in the feedback control system cannot be made sufficiently large. Furthermore, the responsiveness or feedback control width of this feedback control system is often adjusted assuming operation on flat ground, and if operation is performed at a high altitude with these adjustments in place. Since the air is becoming rarer, the necessary feedback amount may deviate from the control range, resulting in a phenomenon in which suitable operation at the stoichiometric air-fuel ratio cannot be performed. moreover,
Since the feedback signal is not generated until the exhaust gas sensor is warmed up, such as when starting an internal combustion engine, the internal combustion engine will naturally operate at the basic air-fuel ratio in flat ground conditions, and the actual supply The deviation between the air-fuel ratio of the air-fuel mixture and the stoichiometric air-fuel ratio becomes large, and the deviation becomes significantly larger as the operating altitude increases. As described above, with the conventionally known feedback control system, it has been impossible to properly maintain the supplied air-fuel mixture at the stoichiometric air-fuel ratio before the exhaust gas sensor is warmed up or when there is a change in altitude at the operating location. The purpose of the present invention is to provide a compensator and a compensator to maintain the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine at the stoichiometric air-fuel ratio without being affected by altitude fluctuations in the operating location of the internal combustion engine or the warm-up state of the exhaust gas sensor. In particular, deviations from the stoichiometric air-fuel ratio caused by altitude fluctuations in the operating location of the internal combustion engine are detected as deviations in the feedback control signal, and the feedback control system controls the air-fuel ratio in stages according to the magnitude of the detected deviations. The object of the present invention is to provide a device for compensating the amount. The gist of the present invention is an altitude compensation device applied to a control system that detects an exhaust gas component, preferably oxygen content, compares it with a set value, obtains an error signal, and performs feedback control of the air-fuel ratio based on the error signal. The purpose of the present invention is to obtain a deviation signal by comparing the average value of the error signal, which varies with time, with a set value, and to compensate for air-fuel ratio feedback control based on this deviation signal. Hereinafter, the present invention will be described based on embodiments with reference to the drawings. FIG. 1 is a schematic block circuit diagram showing one embodiment of the present invention. In the figure, numeral 1 indicates a conventionally known air-fuel ratio feedback control system. An exhaust sensor, preferably an oxygen sensor 2, for detecting the concentration of exhaust gas components is provided at a suitable location in an exhaust passage of an internal combustion engine (not shown). The first comparator 3 compares the electrical output signal S1 of the oxygen sensor 2 indicating the oxygen concentration in the exhaust gas with a preset reference oxygen concentration signal S2 and outputs a deviation signal S3. This deviation signal S3 is added to the adder 5, while the integrator 4
added to. The signal output S4 from this integrator 4 is also added to the adder 5 in the same way. The signals S3 and S4 are added by an adder 5 and outputted as an error signal (V F ) S5, which is used to perform air-fuel ratio feedback control of the internal combustion engine in a conventionally known manner. In addition, in this embodiment, the feedback control system 1
Although proportional-integral operation is performed in , the present invention is not particularly limited to this. As mentioned above, the present invention detects altitude fluctuations at the operating location of the internal combustion engine based on the fact that the average value of the feedback signal within a predetermined time is outside the reference range, and is configured by branching out from the conventionally known control system. The compensation loop is operated to correct the air-fuel ratio compensation feedback signal due to the altitude change. Next, a compensation loop, which is the main component of the present invention, will be explained according to a preferred embodiment. The error signal average value calculator 6 calculates the average value (V F ) of the error signal (V F ) S5 since the start of the internal combustion engine operation, and outputs the average value signal S6 to the second comparator 7 . A reference signal generator 70 connected to a constant voltage source, for example, a battery power supply, generates an installation upper limit value (H) signal S7.
and installation lower limit value (L) signal S8 are applied to the second comparator 7. This second comparator 7 outputs a carry-in signal and an up-down signal to an up-down counter 8. The output S9 of the second comparator 7 depends on the magnitude of the average value signal S6 and both setting signals S7 and S8, and is determined, for example, as shown in the table below.

【表】 ただし、上表の入出力関係は、後述のフイード
バツクON/OFF切替回路にしたがつてフイード
バツク制御がONの場合のものであり、フイード
バツク制御がOFFの場合には、前記第2の比較
器7への入力条件のいかんにかかわらず、比較器
7からはキヤリーイン信号は1、アツプダウン信
号は任意のものが出力される。 前記アツプダウンカウンタ8は、前記第2の比
較器7から出力S9を受けると共に、パルス発生
器9から出力される所定間隔かつ所定パルス幅の
パルス信号S10を受ける。そして、次に示す真
理値表に従つてこのパルス信号S10をカウント
する。
[Table] However, the input/output relationship in the above table is for when feedback control is ON according to the feedback ON/OFF switching circuit described later, and when feedback control is OFF, the above-mentioned second comparison Regardless of the input conditions to the comparator 7, the carry-in signal is 1 and any up-down signal is output from the comparator 7. The up-down counter 8 receives an output S9 from the second comparator 7, and also receives a pulse signal S10 output from the pulse generator 9 at a predetermined interval and a predetermined pulse width. Then, this pulse signal S10 is counted according to the truth table shown below.

【表】 このようにアツプダウンカウンタ8は、計数時
に入力されるパルス信号S10をカウントアツプ
あるいはカウントダウンして行き、カウント数を
ラツチしてデジタル出力信号S11として出力す
るものである。パルス入力がない場合には、ラツ
チされているカウント数が出力される。こうして
内燃機関の運転状況の変化がある程度以上大きく
なると基本パラメータを変更して行く。またこの
一方で図示のとおりアツプダウンカウンタ8の駆
動電源90のみは、キーOFF時を含めて常時ON
にしておき、内燃機関停止時にもメモリーを保持
するように設けてある。この結果、コールドスタ
ート時等のまだ排ガスセンサ非活性時にも最適状
態にて運転開始することができ、11モードあるい
はLA#4モード等のコールド状態(フイードバ
ツクOFF時)の制御も有効に行なえる。 なお、前述のとおり、酸素センサー2の暖機状
態によつては有効な信号を得ることができず、評
価を誤まるおそれがあるので本実施例ではその対
策として次の構成をとるものである。酸素センサ
ー2の暖機状態を表わす暖機状態チエツク信号S
20を第1の比較器3からフイードバツクON/
OFF切替回路を有する監視装置80に加え、フ
イードバツク制御をONあるいはOFFするもので
ある。すなわち、酸素センサー2の暖機が不良の
場合にはフイードバツク制御OFFとし、アツプ
ダウンカウンタ8での計数を行わないようにす
る。フイードバツクOFF信号としては、図示の
ように積分器4の作動を停止させる積分停止信号
S21を加えたり、第2の比較器7の出力信号S
9をノーカウントコードにするための信号S22
を加えたりすることが好ましい。あるいはアツプ
ダウンカウンタ8を非作動状態にしたり、クロツ
クパルスの発生を停止させてこれを行なつても良
い。このようにしてフイードバツク制御ONの場
合にのみアツプダウンカウンタ8での計数を行な
うようにする。 前記アツプダウンカウンタ8のラツチされたデ
ジタル出力信号S11は、デコーダ10で解読さ
れて予め定めた対応関係にしたがつて、増幅器2
1,22,……,2nのうちの任意数の所定の増
幅器への入力信号となる。残り増幅器には信号は
与えられない。 参照符号30は、内燃機関のキヤブレターエアブ
リードの一部を示している。本考案によれば、前
記デジタル出力信号S11を用いて、燃料供給お
よび/または空気供給量を制御可能であるが、本
実施例ではキヤブレターエアブリード量を制御し
ている。符号31はエアークリーナ(図示せず)
側を示しており、32はキヤブレータ(図示せ
ず)側を示している。このキヤブレターエアブリ
ード系30は、適宜数の分岐経路41,42,…
…,4nを有しており、それぞれに分岐経路開閉
用の電磁弁51,52,……,5nが設けられて
いる。この電磁弁51,52,……,5nはそれ
ぞれ前記増幅器21,22,……,2nに電気的
に接続されている。 前記デジタル出力信号S11と電磁弁51,5
2,……,5nの開閉状況との対応関係を例えば
次のとおりに定めるのが好ましい。
[Table] As described above, the up-down counter 8 counts up or counts down the pulse signal S10 input during counting, latches the count number, and outputs it as a digital output signal S11. If there is no pulse input, the latched count number is output. In this way, when the change in the operating condition of the internal combustion engine increases beyond a certain level, the basic parameters are changed. On the other hand, as shown in the figure, only the drive power supply 90 of the up-down counter 8 is always ON, including when the key is OFF.
The memory is maintained even when the internal combustion engine is stopped. As a result, operation can be started in the optimum state even when the exhaust gas sensor is still inactive, such as during a cold start, and control can be effectively performed in a cold state (when feedback is OFF), such as 11 mode or LA#4 mode. As mentioned above, depending on the warm-up state of the oxygen sensor 2, it may not be possible to obtain an effective signal and there is a risk of erroneous evaluation, so this embodiment adopts the following configuration as a countermeasure. . Warm-up state check signal S indicating the warm-up state of oxygen sensor 2
20 from the first comparator 3.
In addition to the monitoring device 80 having an OFF switching circuit, the feedback control is turned ON or OFF. That is, if the oxygen sensor 2 is not warmed up properly, the feedback control is turned off and the up-down counter 8 is not counted. As the feedback OFF signal, an integration stop signal S21 that stops the operation of the integrator 4 as shown in the figure may be added, or the output signal S of the second comparator 7 may be added.
Signal S22 for making 9 a no-count code
It is preferable to add Alternatively, this may be done by making the up-down counter 8 inactive or stopping the generation of clock pulses. In this way, the up-down counter 8 performs counting only when the feedback control is ON. The latched digital output signal S11 of the up-down counter 8 is decoded by a decoder 10 and sent to the amplifier 2 according to a predetermined correspondence relationship.
It becomes an input signal to an arbitrary number of predetermined amplifiers among 1, 22, . . . , 2n. No signal is provided to the remaining amplifiers. Reference numeral 30 designates part of the carburetor air bleed of the internal combustion engine. According to the present invention, the amount of fuel supply and/or air supply can be controlled using the digital output signal S11, but in this embodiment, the amount of carburetor air bleed is controlled. Reference numeral 31 is an air cleaner (not shown)
32 indicates the carburetor (not shown) side. This carburetor air bleed system 30 has an appropriate number of branch paths 41, 42,...
..., 4n, each of which is provided with a solenoid valve 51, 52, ..., 5n for opening and closing the branch path. The solenoid valves 51, 52, . . . , 5n are electrically connected to the amplifiers 21, 22, . . . , 2n, respectively. The digital output signal S11 and the solenoid valves 51, 5
2, .

【表】 なお、本実施例の、誤差信号平均値演算器6は
実用新案登録請求の範囲に記載の空燃比対応値演
算手段に対応し、第2の比較器7および基準信号
発生器70は比較手段に対応し、アツプダウンカ
ウンタ8、パルス発生器および駆動電源90は記
憶手段に対応する。 以上のとおり、本考案によれば、従来の空燃比
フイードバツク制御系よりも広範囲にわたりフイ
ードバツクが可能となり、またアツプダウンカウ
ンタのメモリーにカウント数をラツチしておくた
め、コールドスタート時すなわち酸素センサー不
活性時にも適正状態で運転されるものであり、い
かなる高度においても基本空燃比が大きくずれる
ことがなく、加えて、燃料性状の差あるいはシス
テム経時変化等をフイードバツクON、OFFにか
かわらず補償すると云う機能を果たすことにな
り、極めて有用である。
[Table] In this embodiment, the error signal average value calculation unit 6 corresponds to the air-fuel ratio corresponding value calculation means described in the claims of the utility model registration, and the second comparator 7 and the reference signal generator 70 correspond to The up-down counter 8, the pulse generator and the drive power supply 90 correspond to the storage means. As described above, according to the present invention, feedback is possible over a wider range than the conventional air-fuel ratio feedback control system, and since the count number is latched in the memory of the up-down counter, it is possible to control the air-fuel ratio during a cold start, that is, when the oxygen sensor is inactive. It is operated under proper conditions at all times, and the basic air-fuel ratio does not deviate significantly at any altitude.In addition, it has a function that compensates for differences in fuel properties or changes over time in the system, regardless of whether feedback is ON or OFF. This is extremely useful.

【図面の簡単な説明】[Brief explanation of drawings]

図は、本考案の実施例を示す概略ブロツク図で
ある。 1……空燃比フイードバツク制御系、2……酸
素センサー、6……誤差信号平均値演算器、7…
…第2の比較器、8……アツプダウンカウンタ、
9……パルス発生器、10……デコーダ、30…
…キヤブレターエアブリード系、41,42,…
…,4n……分岐経路、51,52,……,5n
……電磁弁。
The figure is a schematic block diagram showing an embodiment of the invention. 1... Air-fuel ratio feedback control system, 2... Oxygen sensor, 6... Error signal average value calculator, 7...
...Second comparator, 8...Up-down counter,
9...Pulse generator, 10...Decoder, 30...
...Carburetor air bleed system, 41, 42,...
..., 4n...branch route, 51, 52,..., 5n
……solenoid valve.

Claims (1)

【実用新案登録請求の範囲】 1 内燃機関の排ガス成分濃度を検知する排ガス
センサと、該排ガスセンサの出力値と基準値とを
比較して誤差信号を発生する誤差信号発生手段
と、少なくとも前記排ガスセンサの暖機状態に感
応し前記排ガスセンサ出力値に基づく第1の空燃
比制御が可能か否かを判断する監視手段と、前記
誤差信号に基づいたフイードバツク値で内燃機関
の空燃比をフイードバツク制御する第1の空燃比
制御装置を設けた空燃比制御系における高度補償
装置において、 前記排ガスセンサ出力値に基づく前記フイード
バツク制御値の平均値から内燃機関の空燃比対応
値を算出する空燃比対応演算手段と、該空燃比対
応値演算手段により得られた結果が所定の範囲内
にあるか否かを判定する比較手段と、該比較手段
の比較結果に応じて空燃比を調節する第2の空燃
比制御装置の制御量を更新記憶する記憶手段とを
備え、該記憶手段の制御量の更新は前記監視手段
により第1の空燃比制御装置によるフイードバツ
ク制御中である場合のみ実行可能に構成するとと
もに、該記憶手段の記憶は機関停止中も保持され
るよう構成し、前記第1および第2の空燃比制御
手段により空燃比を制御する空燃比制御系におけ
る高度補償装置。
[Claims for Utility Model Registration] 1. An exhaust gas sensor that detects the concentration of exhaust gas components of an internal combustion engine, an error signal generating means that generates an error signal by comparing the output value of the exhaust gas sensor with a reference value, and at least the exhaust gas a monitoring means that responds to the warm-up state of the sensor and determines whether or not the first air-fuel ratio control is possible based on the output value of the exhaust gas sensor; and feedback control of the air-fuel ratio of the internal combustion engine using a feedback value based on the error signal. an altitude compensator in an air-fuel ratio control system including a first air-fuel ratio control device, the air-fuel ratio corresponding calculation calculating an air-fuel ratio corresponding value of the internal combustion engine from an average value of the feedback control value based on the output value of the exhaust gas sensor; a comparison means for determining whether the result obtained by the air-fuel ratio corresponding value calculation means is within a predetermined range; and a second air-fuel ratio for adjusting the air-fuel ratio according to the comparison result of the comparison means. a storage means for updating and storing the control amount of the fuel ratio control device, and configured such that updating of the control amount in the storage means can be executed by the monitoring means only when feedback control is being performed by the first air-fuel ratio control device; . An altitude compensating device in an air-fuel ratio control system, wherein the memory in the storage means is retained even when the engine is stopped, and the air-fuel ratio is controlled by the first and second air-fuel ratio control means.
JP1979017868U 1979-02-16 1979-02-16 Expired JPS6233092Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1979017868U JPS6233092Y2 (en) 1979-02-16 1979-02-16

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1979017868U JPS6233092Y2 (en) 1979-02-16 1979-02-16

Publications (2)

Publication Number Publication Date
JPS55119332U JPS55119332U (en) 1980-08-23
JPS6233092Y2 true JPS6233092Y2 (en) 1987-08-24

Family

ID=28844053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1979017868U Expired JPS6233092Y2 (en) 1979-02-16 1979-02-16

Country Status (1)

Country Link
JP (1) JPS6233092Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58185957A (en) * 1982-04-23 1983-10-29 Nippon Soken Inc Method of controlling engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51106829A (en) * 1975-03-18 1976-09-22 Nissan Motor KUNENPISEIGYOSOCHI
JPS5420227A (en) * 1977-07-15 1979-02-15 Hitachi Ltd Air-fuel ratio closed loop control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51106829A (en) * 1975-03-18 1976-09-22 Nissan Motor KUNENPISEIGYOSOCHI
JPS5420227A (en) * 1977-07-15 1979-02-15 Hitachi Ltd Air-fuel ratio closed loop control device

Also Published As

Publication number Publication date
JPS55119332U (en) 1980-08-23

Similar Documents

Publication Publication Date Title
US4365299A (en) Method and apparatus for controlling air/fuel ratio in internal combustion engines
US4430976A (en) Method for controlling air/fuel ratio in internal combustion engines
JPH0363654B2 (en)
JPS58150038A (en) Fuel injection method of electronically controlled engine
US4693076A (en) Double air-fuel ratio sensor system having improved response characteristics
US4625699A (en) Method and apparatus for controlling air-fuel ratio in internal combustion engine
KR960016085B1 (en) Air-fuel ratio controller of internal combustion engine
JP2570265B2 (en) Air-fuel ratio control device for internal combustion engine
US6576118B2 (en) Correction device of air-fuel ratio detection apparatus
US4526148A (en) Air-fuel ratio control system for an internal combustion engine
JPS6233092Y2 (en)
US4391256A (en) Air-fuel ratio control apparatus
JPS63285239A (en) Transient air-fuel ratio learning control device in internal combustion engine
US4703619A (en) Double air-fuel ratio sensor system having improved response characteristics
JPH0480653A (en) Correction of output of air/fuel ratio sensor
JPH07113343B2 (en) Air-fuel ratio controller for internal combustion engine
JPS5898637A (en) Air-fuel ratio controlling device for internal combustion engine
JPS62174543A (en) Exhaust gas recirculation controller
JPS58217745A (en) Air-fuel ratio control method for internal-combustion engine
JPS61232346A (en) Air-fuel ratio controller for internal-combustion engine
JPS6050246A (en) Device for controlling learning upon idling in internal- combustion engine
JPS6045749A (en) Air-fuel ratio learning controller of electronic fuel injection type internal-combustion engine
JPS6011645A (en) Air-fuel ratio control device for engine
JPS5913317Y2 (en) Air-fuel ratio feedback control device
JP3334453B2 (en) Catalyst deterioration detection device for internal combustion engine