JPS628505Y2 - - Google Patents
Info
- Publication number
- JPS628505Y2 JPS628505Y2 JP1397277U JP1397277U JPS628505Y2 JP S628505 Y2 JPS628505 Y2 JP S628505Y2 JP 1397277 U JP1397277 U JP 1397277U JP 1397277 U JP1397277 U JP 1397277U JP S628505 Y2 JPS628505 Y2 JP S628505Y2
- Authority
- JP
- Japan
- Prior art keywords
- light
- sample
- diffuser
- photoelectric conversion
- conversion element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000003287 optical effect Effects 0.000 claims description 11
- 238000006243 chemical reaction Methods 0.000 claims description 10
- 230000035945 sensitivity Effects 0.000 description 4
- 230000004907 flux Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 2
- 238000005375 photometry Methods 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000005392 opalescent glass Substances 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Landscapes
- Spectrometry And Color Measurement (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Description
【考案の詳細な説明】 本考案は測光装置に関するものである。[Detailed explanation of the idea] The present invention relates to a photometric device.
測光装置、例えば分光光度計において、ガラス
ブロツクやレンズなどのように高い屈折率をもつ
試料の透過光を測定する場合には、このような試
料は光を屈折させるので透過光が集束あるいは発
散され従つて試料によつて検出器の受光面におけ
る光束の断面形状あるいは大きさが変化し、この
ため受光面の局所的な感度むらの影響を強く受け
正確な透過光の測定が行われ難い。 When using a photometric device, such as a spectrophotometer, to measure the transmitted light of a sample with a high refractive index, such as a glass block or lens, such a sample refracts the light, causing the transmitted light to be focused or diverged. Therefore, the cross-sectional shape or size of the light beam on the light-receiving surface of the detector changes depending on the sample, and is therefore strongly affected by local sensitivity unevenness on the light-receiving surface, making it difficult to accurately measure transmitted light.
この点にかんがみ、測光部に積分球を用いこれ
を試料からの光束の光軸方向に変位させて光束に
対する積分球の位置を調整することが行われてい
る。しかしこの方式によれば積分球の入口附近の
光束の断面の大きさを等しくすることはできるけ
れども、光束が積分球の内壁に当る部分の面積
は、入口附近の光束断面が等しくても、試料によ
つて変わるので積分球内壁面の塗料の局所的なむ
らによる影響が特に400nmより短かい紫外域では
大きく、正確な測定ができない。 In view of this point, an integrating sphere is used in the photometry section and is displaced in the optical axis direction of the light beam from the sample to adjust the position of the integrating sphere with respect to the light beam. However, although this method makes it possible to equalize the size of the cross-section of the light flux near the entrance of the integrating sphere, the area of the part where the light flux hits the inner wall of the integrating sphere is Therefore, the influence of local unevenness of the paint on the inner wall of the integrating sphere is particularly large in the ultraviolet region shorter than 400 nm, making accurate measurements impossible.
本考案はこの点にかんがみ提案されたもので、
光源と、分光器と、試料保持部と、光検出器とか
らなり、この光検出器を、受光面の前面に密接ま
たは近接して光拡散体が配備された光電変換素子
と、この素子を試料からの光の光軸方向に変位自
在に保持する手段とによつて構成したことを特徴
とするものである。 This idea was proposed in consideration of this point.
It consists of a light source, a spectrometer, a sample holder, and a photodetector, and this photodetector is combined with a photoelectric conversion element in which a light diffuser is disposed closely or in close proximity to the front surface of the light-receiving surface, and this element is The present invention is characterized by comprising means for holding light from the sample so as to be freely displaceable in the optical axis direction.
以下、図示実施例に従つて詳細に説明する。 Hereinafter, a detailed explanation will be given according to the illustrated embodiment.
第1図において、1は光源、2は分光器、3は
試料保持部、4は試料、例えば光学レンズ、5は
検出器、6はデイフユーザ、7は光電変換素子、
例えば光電子増倍管である。デイフユーザ6は光
電子増倍管7の受光面の前面に近接または密接し
て配備される。 In FIG. 1, 1 is a light source, 2 is a spectrometer, 3 is a sample holder, 4 is a sample, for example, an optical lens, 5 is a detector, 6 is a diffuser, 7 is a photoelectric conversion element,
For example, a photomultiplier tube. The diffuser 6 is disposed close to or closely in front of the light receiving surface of the photomultiplier tube 7 .
光源からの光は分光器で分光され、その単色光
が試料のレンズに照射される。試料を透過した光
はデイフユーザに照射され拡散された光が光電子
増倍管7に入射される。 The light from the light source is separated by a spectrometer, and the monochromatic light is irradiated onto the lens of the sample. The light transmitted through the sample is irradiated onto a diffuser, and the diffused light is incident on the photomultiplier tube 7.
本考案の特徴はデイフユーザを備えた光電変換
素子を試料を透過した光の光軸方向に変位調整し
デイフユーザに当る光束の断面形状を試料の違い
にかかわりなく実質上同一に保持できるようにし
たことにある。 The feature of the present invention is that the displacement of the photoelectric conversion element equipped with a diff user is adjusted in the optical axis direction of the light transmitted through the sample, so that the cross-sectional shape of the light beam hitting the diff user can be maintained substantially the same regardless of the difference in the sample. It is in.
検出器を光軸方向に変位させる機構の一例を第
2図に示す。10は試料4の透過光の光軸Lに平
行に設けた案内ベンチで、上面に凸条11が設け
られている。12は光電子増倍管7、デイフユー
ザ6を収納したキヤリツジで、底面に案内ベンチ
10の凸条11が嵌合される溝13を設け、凸条
に沿つて摺動自在となす。凸条11を「あり形」
とし溝13を対応する「あり溝」とするのが望ま
しい。 FIG. 2 shows an example of a mechanism for displacing the detector in the optical axis direction. Reference numeral 10 denotes a guide bench provided parallel to the optical axis L of the transmitted light of the sample 4, and has a protruding strip 11 provided on its upper surface. A carriage 12 houses the photomultiplier tube 7 and the diffuser 6, and has a groove 13 on the bottom surface into which the protrusion 11 of the guide bench 10 is fitted, so that it can slide freely along the protrusion. Convex strip 11 is "dovetail"
It is desirable that the dovetail groove 13 be a corresponding "dovetail groove".
14はキヤリツジを案内ベンチ上の所望位置に
固定するためのねじ、15はキヤリツジ前面に設
けた入射窓、16は光電管の出力電気信号を取り
出すためのコードである。 14 is a screw for fixing the carriage at a desired position on the guide bench; 15 is an entrance window provided on the front surface of the carriage; and 16 is a cord for taking out the output electrical signal of the phototube.
本案の装置によれば、先ず試料を光路中に配置
しないで(エアブランクの状態で)光をデイフユ
ーザに当て100%ラインの調整を行う(第3図
a)。このときのデイフユーザ6の表面上の光束
の断面形状ないし大きさdを例えばデイフユーザ
面の直前に設けたシヤツターの目盛によつて記録
し、この断面形状ないし大きさに試料を入れたと
きの透過光のデイフユーザ面上の断面形状ないし
大きさを合わせるように光電変換素子の位置を調
節すれば、異る試料によるデイフユーザ面上の光
束断面形状ないし大きさの違いに基づく測定誤差
を除くことができる。すなわち、例えば試料が焦
点距離の短い凸レンズ4aであればキヤリツジ1
2を試料の方に接近させ(第3図b)、逆に試料
が焦点距離の長い凸レンズ46であればキヤリツ
ジを試料から遠ざけ(第3図c)ることにより、
いずれの場合もデイフユーザ前面上の光束断面形
状ないし大きさをエアブランクにおけるそれに合
致させる。 According to the proposed device, first, the 100% line is adjusted by applying light to the diff user without placing the sample in the optical path (in an air blank state) (Fig. 3a). At this time, the cross-sectional shape or size d of the light beam on the surface of the diffuser 6 is recorded, for example, on the scale of a shutter provided just before the diffuser surface, and the transmitted light when a sample is placed in this cross-sectional shape or size. By adjusting the position of the photoelectric conversion element so as to match the cross-sectional shape or size on the diffuser surface of the light beam, it is possible to eliminate measurement errors due to differences in the cross-sectional shape or size of the light beam on the diffuser surface due to different samples. That is, for example, if the sample is a convex lens 4a with a short focal length, the carriage 1
2 toward the sample (Figure 3b), and conversely, if the sample is a convex lens 46 with a long focal length, the carriage is moved away from the sample (Figure 3c).
In either case, the cross-sectional shape or size of the light beam on the front surface of the differential user is made to match that of the air blank.
光電子増倍管は図示実施例では大径のエンドオ
ンタイプのものを使用し、このタイプのものが望
ましいが、サンドオンタイプのものでもよい。ま
た光電管以外にも光導電セルや太陽電池などを用
いてもよい。 In the illustrated embodiment, a large-diameter end-on type photomultiplier tube is used, and this type is preferable, but a sand-on type photomultiplier tube may also be used. In addition to phototubes, photoconductive cells, solar cells, etc. may also be used.
デイフユーザとしては乳白ガラスを使用できる
が、石英板の両面ないし片面をすり面にしたもの
を使用すれば340nmより短い紫外領域もカバーで
きる。第4図に示すように内面に例えばアルミニ
ユウムを蒸着したパイプ20の前端にデイフユー
ザ6を装着したものを光電変換素子の前面に配備
してもよい。 Opalescent glass can be used as a diff user, but if a quartz plate with a ground surface on both or one side is used, the ultraviolet region shorter than 340 nm can also be covered. As shown in FIG. 4, a pipe 20 whose inner surface is vapor-deposited with aluminum, for example, and a diffuser 6 attached to the front end thereof may be placed in front of the photoelectric conversion element.
ベンチの上面あるいは凸条の上面にはキヤリツ
ジの位置を示す目盛を設けてもよい。また光電変
換素子をデイフユーザと共に変位させる機構も図
示例に限らず、例えばベンチ側に溝を穿設し、キ
ヤリツジに凸条を設けてもよいし、他の構成も可
能である。 A scale indicating the position of the carriage may be provided on the top surface of the bench or the top surface of the protrusion. Furthermore, the mechanism for displacing the photoelectric conversion element together with the differential user is not limited to the illustrated example; for example, a groove may be provided on the bench side, a protrusion may be provided on the carriage, and other configurations are also possible.
試料は図示のレンズのような固体に限らず液体
試料でもよいこと勿論である。 Of course, the sample is not limited to a solid sample like the illustrated lens, but may also be a liquid sample.
以上のように本考案によれば測光装置におい
て、直前にデイフユーザを配備した光電変換素子
を試料に対して光軸方向に変位させるようにした
ので試料透過光のデイフユーザ面上における光束
断面形状ないし大きさを試料にかかわりなく一定
にすることができるので、光電変換素子の受光面
における局所的感度むらの影響を最小ならしめる
ことができる。また試料と検出器の間の距離を変
えることができるので、懸濁液のような半透明試
料の場合は、検出器を試料に近づけて透過光を感
度よく測定できるし、逆に螢光を発生する試料に
対しては検出器を遠ざけることにより螢光の影響
を実質上完全に除去することができるといつた効
果がある。尚、本考案は分光光度計に限らず他の
測光装置にも実施できること勿論である。 As described above, according to the present invention, in the photometry device, the photoelectric conversion element in which the diff user is disposed immediately before is displaced in the optical axis direction with respect to the sample, so that the cross-sectional shape or size of the light flux on the diff user surface of the light transmitted through the sample can be changed. Since the intensity can be made constant regardless of the sample, the influence of local sensitivity unevenness on the light-receiving surface of the photoelectric conversion element can be minimized. In addition, the distance between the sample and the detector can be changed, so in the case of translucent samples such as suspensions, the detector can be brought closer to the sample to measure transmitted light with high sensitivity, and conversely, the transmitted light can be measured with high sensitivity. By moving the detector away from the generated sample, the effect of fluorescence can be virtually completely eliminated. It should be noted that the present invention is of course applicable not only to spectrophotometers but also to other photometric devices.
第1図は本案の構成原理図、第2図は検出器を
光軸方向に変位させる具体的構成の一例を示す斜
視図、第3図a〜cは動作説明図、第4図はデイ
フユーザの変形例を示す図である。
4……試料、6……デイフユーザ、7……光電
変換素子、10……案内ベンチ、12……キヤリ
ツジ、L……光軸。
Fig. 1 is a diagram showing the principle of construction of the present invention, Fig. 2 is a perspective view showing an example of a specific arrangement for displacing the detector in the optical axis direction, Figs. It is a figure showing a modification. 4...Sample, 6...Difuser, 7...Photoelectric conversion element, 10...Guide bench, 12...Carriage, L...Optical axis.
Claims (1)
からなり、この光検出器を、受光面の前面に密接
または近接して光拡散体が配備された光電変換素
子と、この素子を試料からの光の光軸方向に変位
自在に保持する手段とによつて構成したことを特
徴とする測光装置。 It consists of a light source, a spectrometer, a sample holder, and a photodetector, and this photodetector is combined with a photoelectric conversion element in which a light diffuser is disposed closely or in close proximity to the front surface of the light-receiving surface, and this element is 1. A photometric device comprising means for holding light from a sample so as to be freely displaceable in the optical axis direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1397277U JPS628505Y2 (en) | 1977-02-07 | 1977-02-07 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1397277U JPS628505Y2 (en) | 1977-02-07 | 1977-02-07 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS53109488U JPS53109488U (en) | 1978-09-01 |
JPS628505Y2 true JPS628505Y2 (en) | 1987-02-27 |
Family
ID=28833030
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1397277U Expired JPS628505Y2 (en) | 1977-02-07 | 1977-02-07 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS628505Y2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6205162B2 (en) * | 2013-04-12 | 2017-09-27 | パナソニック デバイスSunx株式会社 | Photoelectric sensor and light receiver |
-
1977
- 1977-02-07 JP JP1397277U patent/JPS628505Y2/ja not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS53109488U (en) | 1978-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3573470A (en) | Plural output optimetric sample cell and analysis system | |
Brown | Ultraviolet, visible, near-infrared spectrophotometers | |
Horvath | The university of Vienna telephotometer | |
US3733130A (en) | Slotted probe for spectroscopic measurements | |
RU181779U1 (en) | Device for measuring the integral scattering coefficient over the surface of mirrors | |
JPS628505Y2 (en) | ||
JPH0140035Y2 (en) | ||
CN201352150Y (en) | Photometric device | |
US3506359A (en) | Apparatus for measuring light absorption of a sample | |
CN109001116A (en) | A kind of entrance slit regulating mechanism and the Atomic Emission Spectrometer AES using it | |
JPH03503314A (en) | Fluorescence measuring instrument | |
US3669547A (en) | Optical spectrometer with transparent refracting chopper | |
JP2745576B2 (en) | Spectrophotometer | |
CN212459391U (en) | Automatic reader of ultraviolet-visible spectrophotometer | |
SU152091A1 (en) | Instrument for measuring the indicatrix of dispersion | |
JPS626482Y2 (en) | ||
Toy et al. | A new selenium cell density meter | |
JPS594258Y2 (en) | double beam spectrophotometer | |
JPH0142027Y2 (en) | ||
SU1038811A1 (en) | Device for measuring radiation receiver relative spectral sensitivit | |
SU1617309A1 (en) | Spectral device | |
JPH0571757U (en) | Concentrating cell for ultra-trace sample spectrophotometry and its holder | |
JPS63167241A (en) | Spectrophotometer | |
JPS6236102Y2 (en) | ||
SU914942A1 (en) | Dispersed light photometer |