JPS628386Y2 - - Google Patents

Info

Publication number
JPS628386Y2
JPS628386Y2 JP1981037601U JP3760181U JPS628386Y2 JP S628386 Y2 JPS628386 Y2 JP S628386Y2 JP 1981037601 U JP1981037601 U JP 1981037601U JP 3760181 U JP3760181 U JP 3760181U JP S628386 Y2 JPS628386 Y2 JP S628386Y2
Authority
JP
Japan
Prior art keywords
water
turbine
water supply
power generation
float
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981037601U
Other languages
Japanese (ja)
Other versions
JPS57152464U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1981037601U priority Critical patent/JPS628386Y2/ja
Publication of JPS57152464U publication Critical patent/JPS57152464U/ja
Application granted granted Critical
Publication of JPS628386Y2 publication Critical patent/JPS628386Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Landscapes

  • Float Valves (AREA)
  • Hydraulic Turbines (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Description

【考案の詳細な説明】 本考案は落差発電設備における給水停止装置に
関するものである。
[Detailed Description of the Invention] The present invention relates to a water supply stop device in head power generation equipment.

環流水利用施設における落差発電設備は、最近
省エネルギーの社会的高まりにより、上下水道、
農業用水、工業用水、化学プラント、鉄鋼プラン
ト等にて設置されるようになつてきたが、この種
の発電手段は、既存の環流水ルートの途中に水車
タービンを割り込ませ、既存のプロセスに悪影響
を与えないように、 (1) 水車タービン故障時においても、従来通りに
充分な流水処理ができること、 (2) 循環水上流に位置する槽をオーバーフローさ
せず、且つ従来通りの流水量を確保できるこ
と、 (3) 水車タービン容量以上の過剰水量は、水車タ
ービン上流側にて吸収して別放流させること、 に考慮が払われている。
Head power generation equipment in circulating water utilization facilities has recently become popular for water supply, sewage,
This type of power generation means has been installed in agricultural water, industrial water, chemical plants, steel plants, etc., but this type of power generation means inserts a water turbine in the middle of the existing circulating water route, which has a negative impact on the existing process. (1) Even in the event of a failure of the water turbine, sufficient water treatment can be performed as before; (2) The tank located upstream of the circulating water will not overflow, and the same amount of water as before can be secured. (3) Consideration has been given to absorbing excess water that exceeds the capacity of the water turbine upstream of the water turbine and discharging it separately.

従来の設備を第1図に基いて説明すると、集水
槽1の底にタービン給水管2を設けて戻り水槽3
と連通させ、タービン給水管2の途中に水量調節
バルブ4を介して発電用タービン5(遠心ポンプ
型タービン、水平型タービン等)を設置し、発電
用タービン5を発電機6に軸7を介して接続して
いる。そして、集水槽1の上方には使用済みの環
流水排水を供給する給水管8を設け、集水槽1に
排水を一時溜めてタービン給水管2で発電用ター
ビン5に一定の水量を給水して最高効率にて運転
するとともに、タービン負荷が仕様点をオーバー
しないように、水量調節バルブ4にて水量コント
ロールを行つている。又、もし水量が仕様点より
オーバーした場合には集水槽1の上部に設けたオ
ーバーフロー配管9で戻り水槽3に戻すようにな
つている。尚、図中10はバルブである。
To explain the conventional equipment based on FIG. 1, a turbine water supply pipe 2 is provided at the bottom of a water collection tank 1 and a return water tank 3 is installed.
A power generation turbine 5 (centrifugal pump type turbine, horizontal type turbine, etc.) is installed in the middle of the turbine water supply pipe 2 via a water flow control valve 4, and the power generation turbine 5 is connected to a generator 6 via a shaft 7. connected. A water supply pipe 8 is installed above the water collection tank 1 to supply used recycled water wastewater, and the wastewater is temporarily stored in the water collection tank 1 and a constant amount of water is supplied to the power generation turbine 5 through the turbine water supply pipe 2. The water amount is controlled by the water amount adjustment valve 4 so that the turbine is operated at maximum efficiency and the turbine load does not exceed the specification point. Furthermore, if the amount of water exceeds the specification point, it is returned to the return tank 3 through an overflow pipe 9 provided at the upper part of the water collection tank 1. In addition, 10 in the figure is a valve.

前記設備においては、停電時のタービン無拘束
スピード対策として、下記のような問題点があ
る。
The above-mentioned equipment has the following problems as a countermeasure for unrestricted turbine speed during power outages.

(1) 停電時に、発電用タービン5に接続された発
電機6の回転数が仕様点をオーバーし、タービ
ン機能に支障を来たす(軸受部の故障、羽根車
の破損等)が、これを避けるための確実な対策
手段がない。
(1) In the event of a power outage, the rotation speed of the generator 6 connected to the power generation turbine 5 exceeds the specification point, causing problems with the turbine function (bearing failure, impeller damage, etc.), but this can be avoided. There are no reliable countermeasures for this.

(2) 一般的な対策手段として、停電信号によつ
て、水量調節バルブ4を別系統の駆動源例え
ば、エアー駆動にて閉とし、発電用タービン5
への給水を停止させることが考えられる。しか
しながら(i)エアー設備を新たに設置する必要が
あり、設備費が高価である。(ii)エアー供給設備
の電源と発電機6の系統の電源は別系統でしか
も絶対的な信頼性の高い系統でなければならな
いという制約がある。
(2) As a general countermeasure, in response to a power outage signal, the water flow control valve 4 is closed by a drive source of another system, such as air drive, and the power generation turbine 5 is closed.
It is possible to stop the water supply to the area. However, (i) it is necessary to newly install air equipment, and the equipment cost is high. (ii) There is a constraint that the power supply for the air supply equipment and the power supply for the generator 6 system must be separate systems and have absolutely high reliability.

という問題点がある。There is a problem.

本考案者は停電時のタービン無拘束スピード対
策を研究した結果、停電が起り、発電機が無拘束
状態になつた場合、発電用タービンへの給水量は
通常運転時に比べ自然減少することが実験により
確認されている。この点に着目し集水槽内におけ
る水位の上昇を利用して給水を停止させることに
よりタービン無拘束対策を確実に行うことができ
る落差発電設備における給水停止装置を提供する
のが本考案の目的である。
As a result of researching countermeasures for unrestrained turbine speed during power outages, the inventor conducted an experiment that found that when a power outage occurs and the generator becomes unrestrained, the amount of water supplied to the power generation turbine naturally decreases compared to during normal operation. Confirmed by. Focusing on this point, the purpose of the present invention is to provide a water supply stop device for head power generation equipment that can reliably take measures against turbine unrestriction by stopping the water supply by utilizing the rise in the water level in the water collection tank. be.

本考案の構成を第2図乃至第5図に示す第1実
施例に基き詳細に説明する。集水槽1の上面に中
央に孔11を有する水槽蓋12を固定し、この水
槽蓋12の下面と集水槽1の底13とに亘つて複
数本の棒で形成した浮きガイド14を設ける。そ
して浮きガイド14内に浮き15を挿入する。
The structure of the present invention will be explained in detail based on the first embodiment shown in FIGS. 2 to 5. A water tank lid 12 having a hole 11 in the center is fixed to the upper surface of a water collection tank 1, and a floating guide 14 formed of a plurality of rods is provided across the lower surface of this water tank lid 12 and the bottom 13 of the water collection tank 1. Then, the float 15 is inserted into the float guide 14.

浮き15は第3図に示すように、断面円形で密
閉状態に形成し、内部に内室16を設け、下端を
截頭円錐形に形成し、その傾斜面17が給水管2
の上面を密閉できるように構成し、下面に重り1
8を固定し、上部周面に複数個の導入孔19,…
…を設けている。この浮き15の上面には取手2
0を固定し、前記水槽蓋12の孔11を覆うよう
に固定した覆蓋21から外部に突出している。
As shown in FIG. 3, the float 15 is formed in a closed state with a circular cross section, has an inner chamber 16 therein, has a truncated conical lower end, and has an inclined surface 17 that connects to the water supply pipe 2.
The top surface of the device is configured to be sealed, and a weight 1 is placed on the bottom surface.
8 is fixed, and a plurality of introduction holes 19,... are formed on the upper circumferential surface.
...is established. There is a handle 2 on the top surface of this float 15.
0 is fixed, and protrudes to the outside from a cover 21 fixed so as to cover the hole 11 of the aquarium lid 12.

尚、浮き15は下面に重り18を固定している
が、導入孔19,……の下側に水面が位置して浮
遊できるように形成する。
The float 15 has a weight 18 fixed to its lower surface, and is formed so that the water surface is located below the introduction holes 19, . . . so that the float 15 can float.

又、前記ガイド14のオーバーフロー配管9の
下面に位置した個所に複数個の棒で形成したスト
ツパー22を固定している。
Further, a stopper 22 formed of a plurality of rods is fixed to a portion of the guide 14 located on the lower surface of the overflow pipe 9.

尚、第2図中23はエアー吸入管である。 In addition, 23 in FIG. 2 is an air suction pipe.

他は第1図の従来設備と同様なので同一符号を
付し、説明を省略する。
The rest is the same as the conventional equipment shown in FIG. 1, so the same reference numerals are given and the explanation will be omitted.

第1実施例は前記のように構成したもので、通
常運転時には第3図に示すように、集水槽1内の
水位により浮き15は浮遊状態にあり、タービン
給水管2から通常の水量が発電用タービン5に給
水されて発電が行われている。
The first embodiment is constructed as described above, and during normal operation, as shown in FIG. Water is supplied to the turbine 5 for power generation.

停電時には、通常運転時に比べ給水量が自然減
少するため、集水槽1内の水位が上昇する。この
上昇に伴い浮き15も上昇し、遂にはストツパー
22にて上昇が阻止される。この状態において水
位が更に上昇すると第5図において実線で示すよ
うに導入孔19,……から内室16内に水が侵入
し、内室16内は水で満たされる。その結果、重
り18の作用により第5図において鎖線で示すよ
うに浮き15は浮きガイド14の案内で垂直に沈
下し、タービン給水管2の上面を傾斜面17で密
閉させ、発電用タービン5への給水を停止させ
る。
During a power outage, the amount of water supplied naturally decreases compared to during normal operation, so the water level in the water collection tank 1 rises. Along with this rise, the float 15 also rises, and the stopper 22 finally prevents the float from rising. In this state, when the water level rises further, water enters the interior chamber 16 through the introduction holes 19, . . . , as shown by solid lines in FIG. 5, and the interior chamber 16 is filled with water. As a result, due to the action of the weight 18, the float 15 sinks vertically under the guidance of the float guide 14 as shown by the chain line in FIG. water supply will be stopped.

前記の給水停止により、停電時における発電用
タービン5の無拘束スピード状態を回避すること
ができる。そして、タービン給水管2が閉塞され
ると、全水量はオーバーフロー配管9を通して戻
り水槽3に排水される。尚、バルブ10は通常開
放状態で使用されるので、排水に際し問題は生じ
ない。
By stopping the water supply described above, it is possible to avoid an unrestricted speed state of the power generation turbine 5 during a power outage. Then, when the turbine water supply pipe 2 is closed, the entire amount of water is drained into the return water tank 3 through the overflow pipe 9. Incidentally, since the valve 10 is normally used in an open state, no problem occurs when draining water.

又、発電用タービン5への給水が停止される
と、タービン給水管2が真空になり、配管の破損
の心配があるが、タービン給水管2にはエアー吸
入管23が設けられているので、エアーの供給が
自動的に行われる。但し、タービン給水管2が短
かい場合、或いは浮き15にエアー吸入手段を設
けている場合にはエアー吸入管23は設ける必要
はない。
Furthermore, when the water supply to the power generation turbine 5 is stopped, the turbine water supply pipe 2 becomes vacuum, and there is a risk of damage to the pipe. However, since the turbine water supply pipe 2 is provided with an air suction pipe 23, Air supply is done automatically. However, if the turbine water supply pipe 2 is short or if the float 15 is provided with air suction means, the air suction pipe 23 is not necessary.

タービン給水管2を閉塞した浮き15を再び復
旧させる際は、水槽蓋12及びストツパー22を
取り外し、取手20を利用して浮き15を持ち上
げ、内室16内の水を排水させ、元の状態に戻
し、水面に浮遊させる。
When restoring the float 15 that has blocked the turbine water supply pipe 2, remove the water tank lid 12 and stopper 22, lift the float 15 using the handle 20, drain the water in the inner chamber 16, and return it to its original state. Return it and let it float on the water surface.

次に第6図イ,ロ,ハに示す浮き15の他の実
施例を説明すると、イは外形を第1実施例と同様
に形成し、上面を取り除いて中空状の内室16を
形成し、上面から水を導入するように形成したも
のである。
Next, another embodiment of the float 15 shown in Fig. 6 A, B, and C will be explained. , so that water can be introduced from the top surface.

ロは球形に形成して内部に内室16を設け、底
面に重り18を内蔵し、第1実施例と同様に導入
孔19,……を設けたものである。
B is formed into a spherical shape, has an inner chamber 16 inside, has a built-in weight 18 in the bottom surface, and has introduction holes 19, . . . as in the first embodiment.

ハは半球形に形成し、中空状の内室16を設
け、底に重り18を内蔵し、上面から水を導入す
るようにしたものである。
C is formed into a hemispherical shape, has a hollow interior chamber 16, has a built-in weight 18 at the bottom, and is configured to introduce water from the top surface.

尚、前記各種浮き15の上昇を停止させるスト
ツパー22の高さ位置は、浮き15の内室16内
への水の侵入が、オーバーフロー配管9へのオー
バーフローする前に行えるように設ければよいも
のである。
The height position of the stopper 22 that stops the lifting of the various floats 15 may be set so that water can enter the inner chamber 16 of the float 15 before it overflows into the overflow pipe 9. It is.

各種の浮き15は総て、内室16内に浸入しな
い場合には水面に浮き、浸水した場合に重り18
の作用により水中に沈下する比重を持つ材質(例
えば合成樹脂、軽金属等)により製造するが、特
に材質は限定するものではない。
All of the various floats 15 float on the water surface if they do not enter the inner chamber 16, and become weighted 18 when submerged in water.
It is manufactured from a material (for example, synthetic resin, light metal, etc.) that has a specific gravity that sinks in water due to the action of water, but the material is not particularly limited.

本考案は前記のような構成、作用を有するか
ら、停電時には自動的に浮き15が沈下して発電
用タービン5への給水を停止させ、発電用タービ
ン5の無拘束スピード状態を回避し、発電用ター
ビン5の故障を防止することができる。
Since the present invention has the above-described configuration and operation, the float 15 automatically sinks in the event of a power outage, stopping the water supply to the power generation turbine 5, avoiding the unrestricted speed state of the power generation turbine 5, and preventing power generation. Failure of the turbine 5 can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の落差発電設備を示す正面図、第
2図は本考案に係る落差発電設備における給水停
止装置の第1実施例を示す正面図、第3図は要部
を拡大した断面図、第4図は第3図の−線断
面図、第5図は浮きの作用状態を示す正面図、第
6図イ,ロ,ハは浮きの他の実施例を示す斜視図
を夫々示す。 尚、図中1は集水槽、2はタービン給水管、3
は戻り水槽、15は浮き、16は内室、22はス
トツパーである。
Fig. 1 is a front view showing a conventional head power generation equipment, Fig. 2 is a front view showing a first embodiment of a water supply stop device in a head power generation equipment according to the present invention, and Fig. 3 is an enlarged sectional view of the main parts. , FIG. 4 is a sectional view taken along the line -- in FIG. 3, FIG. 5 is a front view showing the operating state of the float, and FIGS. 6A, 6B, and 6 are perspective views showing other embodiments of the float. In the figure, 1 is a water collection tank, 2 is a turbine water supply pipe, and 3 is a water collection tank.
1 is a return tank, 15 is a float, 16 is an inner chamber, and 22 is a stopper.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 戻り水槽3と、その上流に位置する集水槽1と
をタービン給水管2で接続し、このタービン給水
管2に発電用タービン5を設置し、集水槽1にオ
ーバーフロー用配管9を設けた落差発電設備にお
いて、集水槽1内のタービン給水管2の開口部よ
り上方位置にストツパー22を設け、集水槽1内
に内室16を設けて水位により追従浮遊し、前記
ストツパー22と係止することによりオーバーフ
ローする前に内室16内への浸水を促して沈下し
タービン給水管2の開口部を閉塞する浮き15を
設けたことを特徴とする落差発電設備における給
水停止装置。
A head power generation system in which a return water tank 3 and a water collection tank 1 located upstream thereof are connected by a turbine water supply pipe 2, a power generation turbine 5 is installed in the turbine water supply pipe 2, and an overflow pipe 9 is provided in the water collection tank 1. In the equipment, a stopper 22 is provided at a position above the opening of the turbine water supply pipe 2 in the water collection tank 1, and an inner chamber 16 is provided in the water collection tank 1, which floats according to the water level and locks with the stopper 22. A water supply stop device for a head power generation facility, characterized in that a float 15 is provided to encourage water to enter an interior chamber 16 and sink to close the opening of a turbine water supply pipe 2 before overflowing.
JP1981037601U 1981-03-19 1981-03-19 Expired JPS628386Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1981037601U JPS628386Y2 (en) 1981-03-19 1981-03-19

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1981037601U JPS628386Y2 (en) 1981-03-19 1981-03-19

Publications (2)

Publication Number Publication Date
JPS57152464U JPS57152464U (en) 1982-09-24
JPS628386Y2 true JPS628386Y2 (en) 1987-02-26

Family

ID=29834789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1981037601U Expired JPS628386Y2 (en) 1981-03-19 1981-03-19

Country Status (1)

Country Link
JP (1) JPS628386Y2 (en)

Also Published As

Publication number Publication date
JPS57152464U (en) 1982-09-24

Similar Documents

Publication Publication Date Title
US4121307A (en) Positive flow swimming pool gutter
IL25626A (en) Water distribution system for swimming pools
JP4772489B2 (en) Reactor building
JPS628386Y2 (en)
KR101972106B1 (en) Water storage tank of the quality of water improvementsystem which uses a hydraulic pressure
JP3831280B2 (en) Seal pit for drainage
BR112018001788B1 (en) FACILITIES WITH DYNAMIC ARTIFICIAL WAVES FOR SURFING
CN216810212U (en) Flow buffering sewage pump station
JP2022090944A (en) Siphon drainage system
KR101873493B1 (en) Mitigation system for loss of coolant in spent fuel pool
JP2936325B1 (en) Pollution prevention fitting for floor drain funnel
US3244285A (en) Enforced operation treatment tank
KR102252146B1 (en) Automatic emergency roof drainage device for floating roof type oil storage tank
RU2066490C1 (en) Marine nuclear steam-generating plant
CN215888095U (en) Dykes and dams anti-blocking flood discharge device for hydraulic engineering
JPH0320547Y2 (en)
JPH0353035Y2 (en)
JPS60243596A (en) Sloshing preventive device
JP4644562B2 (en) Water intake method in waterway
JP2006132192A (en) Sewage relay pump equipment
US4534931A (en) Installation for cooling a fuel element storage well with several water circuits
JPH0476876B2 (en)
JP2918353B2 (en) Reactor containment vessel
JP2022007094A (en) Water discharge mechanism and water splash backflow prevention cover
JP2512778Y2 (en) Full-speed standby operation pump