JPS6283337A - Production of microlens array - Google Patents

Production of microlens array

Info

Publication number
JPS6283337A
JPS6283337A JP22037585A JP22037585A JPS6283337A JP S6283337 A JPS6283337 A JP S6283337A JP 22037585 A JP22037585 A JP 22037585A JP 22037585 A JP22037585 A JP 22037585A JP S6283337 A JPS6283337 A JP S6283337A
Authority
JP
Japan
Prior art keywords
glass
photosensitive
microlens array
irradiated
lenses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22037585A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Asahara
浅原 慶之
Shigeaki Omi
成明 近江
Shin Nakayama
伸 中山
Hiroyuki Sakai
裕之 坂井
Yoshitaka Yoneda
嘉隆 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP22037585A priority Critical patent/JPS6283337A/en
Publication of JPS6283337A publication Critical patent/JPS6283337A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/04Compositions for glass with special properties for photosensitive glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0005Other surface treatment of glass not in the form of fibres or filaments by irradiation
    • C03C23/002Other surface treatment of glass not in the form of fibres or filaments by irradiation by ultraviolet light

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Optical Integrated Circuits (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PURPOSE:To easily produce the titled plate microlens array wherein lenses having large numerical aperture and diameter are arranged by forming a columnar protrusion on the surface of photosensitive glass by etching, welding low m.p. glass thereon and softening the glass. CONSTITUTION:A photomask 1 wherein many circular shielding parts 2 are arranged on the surface of the photosensitive glass and UV rays are irradiated. Then the photomask 1 is removed, only the irradiated part is crystallized by heat treatment, the material is dipped in a weakly acidic soln. to etch only the crystallized part 5 and the unexposed part is formed as a columnar protrusion on the glass sheet. Then the powder of low m.p. glass 6 having a lower softening point than the photosensitive glass 3 is coated and heated to soften the low m.p. glass. The glass on the columnar protrusion is deformed into a spherical shape by surface tension and the shape of a convex lens is formed. Consequently, the microlens array wherein lenses with reduced aberration and having large numerical aperture and diameter are arranged is easily formed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は平板ガラス上に多数の微小な凸レンズを配列し
たマイクロレンズアレーの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a microlens array in which a large number of minute convex lenses are arranged on a flat glass.

[従来の技術1 マイクロレンズは、最近光通信用の各種光部品構成材料
として注目を集め、特にこのレンズを多数配列したマイ
クロレンズアレーは、複写器やミニファックス用光学系
の転写用レンズとしで使用され、装置の小型化に寄与し
ている。
[Prior art 1] Microlenses have recently attracted attention as constituent materials for various optical components for optical communication, and microlens arrays in which a large number of these lenses are arranged are particularly popular as transfer lenses in optical systems for copiers and mini-fax machines. This contributes to the miniaturization of devices.

マイクロレンズアレーの作成法は、従来直径1111m
萌後のロブト状のレンズを2〜3列に枚白木配列して、
アレー化する方法が一般的であったが、最近では第11
図に示すように、一枚の平板ガラス10Lに金属膜11
を熱着し、フォト・リングラフイー技術を利用して、こ
の金属膜に多数個の孔12を配列した後、これを丁12
などの高屈折イオンを含む溶融円柱に高温で浸漬して金
属膜の孔を通してイオンを拡散させ、第12図に示Jよ
うにガラス平板状に半円球状の高屈折イオンの拡散部1
3からなるマイクロレンズを配列する方法で作成した平
板マイクロレンズが注目を集めている。この方法によれ
ば、多数のロッドレンズを配列したり、接着したり、固
定化したりする複雑な工程を必要としないばかりか、集
積回路作成工程と同じフ7+トリングラフィー技術を用
いて精度良くいっぺんにレンズをアレー化することがで
きる。
The conventional method for creating a microlens array is a diameter of 1111 m.
The robin-shaped lenses after eruption are arranged in 2 to 3 rows of plain wood,
The common method was to form an array, but recently the 11th
As shown in the figure, a metal film 11 is formed on a single flat glass 10L.
After thermally bonding the metal film and arranging a large number of holes 12 in this metal film using photo-phosphorography technology, this
The molten cylinder containing high refractive ions is immersed at high temperature to diffuse the ions through the pores of the metal film, and as shown in FIG.
Flat microlenses made by arranging three microlenses are attracting attention. This method not only does not require complicated processes such as arranging, gluing, and fixing a large number of rod lenses, but also uses the same F7+ trinography technology used in the integrated circuit manufacturing process to process them all at once with high precision. Lenses can be arranged into an array.

[発明が解決しようとする問題点] しかしながら、この平板マイクロレンズは、例えば収差
の少ないレンズを作成するためには、イオン拡散部の形
状とイオン濃度分布を厳密に制御する必要があり、時に
は電L1を印加して強制的にイオンを拡散移入すること
も必要となってくる。
[Problems to be solved by the invention] However, in order to create a lens with small aberrations, for example, it is necessary to strictly control the shape of the ion diffusion part and the ion concentration distribution, and sometimes the electric current is It is also necessary to forcefully diffuse and import ions by applying L1.

また大きなレンズを作成する場合、マスクの孔が小さい
と作成にかなりの時間を要し、マスク孔を大ぎくすると
拡散部の形状が半円球状でなくなるなど、作成時にイオ
ンの拡散挙動を微妙に制御しなければならず、生産性の
而で必ずしも良い方法とは云い難い。
In addition, when creating a large lens, if the hole in the mask is small, it will take a considerable amount of time to create it, and if the hole in the mask is made too large, the shape of the diffusion part will not be semicircular. It has to be controlled, and it is not necessarily a good method in terms of productivity.

本発明は、上記の如き従来の平板マイクロレンズアレー
作成法の問題点を改良し、しかも開口数と直径の大きな
レンズを配列したマイクロレンズアレーを提供づるもの
である。
The present invention improves the problems of the conventional flat microlens array manufacturing method as described above, and provides a microlens array in which lenses with large numerical apertures and diameters are arranged.

[問題点を解決するための手段] このため本発明は感光性ガラス板の表面にエツチングに
よって円柱状の突部を配列せしめ、しかる後にこの表面
に低融点ガラスを融着し、これを軟化させるとともに、
円柱状突部の表面のみガラスの表面張力によっで球面状
に変形させて凸レンズとするものである。以下、図面に
沿って具体例を上げ、本発明についてその特徴を説明す
る。
[Means for Solving the Problems] Therefore, the present invention arranges cylindrical protrusions on the surface of a photosensitive glass plate by etching, and then melts low-melting glass on this surface and softens it. With,
Only the surface of the cylindrical projection is deformed into a spherical shape by the surface tension of the glass to form a convex lens. Hereinafter, the features of the present invention will be explained using specific examples along with the drawings.

[実施例] 第1図および第2図に示す如く感光性ガラス3の表面に
円形状の光遮蔽部2を多数配列したフォトマスク1を配
置する。ここで感光性ガラスとは、生母のAaやCeO
2を含有するリチウム珪酸塩ガラスよりなり、紫外線を
照射した部分にのみ、Ag金属コロイドが核として生成
し、熱処理によってメタ珪酸リチウム(LizO・5i
02)微結晶が析出するので、母体ガラスよりも極めて
速く紫外線照射部のみエツチングが可能な特異なガラス
である。代表的な組成は米国特許第2.684,911
号明細書(1954)に詳細に記述されている。またフ
ォトマスクとしては、第3図に示すように紫外線を通さ
ない金属悉着膜4を、アバーヂャーを多数配列したフォ
トマスクを介して円形状に多数感光性ガラス表面に蒸着
しても良い。
[Example] As shown in FIGS. 1 and 2, a photomask 1 having a large number of circular light shielding portions 2 arranged on the surface of a photosensitive glass 3 is placed. Here, photosensitive glass refers to raw materials such as Aa and CeO.
Ag metal colloid is formed as a nucleus only in the part irradiated with ultraviolet rays, and by heat treatment it is made of lithium silicate glass containing lithium metasilicate (LizO.5i).
02) Because microcrystals are precipitated, this is a unique glass in which only the ultraviolet irradiated area can be etched much faster than the base glass. A typical composition is U.S. Patent No. 2,684,911.
(1954). Further, as a photomask, as shown in FIG. 3, a large number of metal thin film 4 which does not transmit ultraviolet rays may be vapor-deposited on the surface of the photosensitive glass in a circular shape through a photomask having a large number of aberrations arranged.

次に第2図に示すような円形の遮蔽部2を有するフォト
マスクを通して紫外線を照射すると、照(ト)部では光
電子を捕獲1・たAQよりなる潜像3aが形成される。
Next, when ultraviolet rays are irradiated through a photomask having a circular shielding part 2 as shown in FIG. 2, a latent image 3a consisting of AQ that has captured photoelectrons is formed in the irradiated part.

ここぐフォトマスク1を除去するか、又は蒸着金属膜4
を遮蔽部として用いた場合は、これを取り去った後、4
00℃〜530℃で熱処理して、照射部に金属コロイド
を生成させ、さらに550〜600℃の温度にR渇し、
第4図に示づ如く適当な時間保持してメタ珪酸リチウム
結晶を析出さけた部分5を形成させる。この場合、感光
生ガラス3の未露光部は、核が形成されないので、この
熱処理では結晶は析出せず元の透明なガラスの状態に保
たれる。
At this point, the photomask 1 is removed or the evaporated metal film 4 is removed.
If used as a shield, after removing it,
Heat treatment is performed at 00°C to 530°C to generate metal colloid in the irradiated area, and R-heated to a temperature of 550 to 600°C.
As shown in FIG. 4, the mixture is held for an appropriate time to form a portion 5 in which lithium metasilicate crystals are precipitated. In this case, since no nuclei are formed in the unexposed portion of the photosensitive raw glass 3, no crystals are precipitated during this heat treatment and the original transparent glass state is maintained.

次に2〜6%希弗酸水溶液にこのガラス板を浸)6づる
と、結晶化部分5は、未露光のガラス部分より約30倍
も速くエツチングされるので、所望の時間エツチングす
ることによって、第5図および第6図に示すように未露
光のガラス部分を円柱状の突起部分3bとしてガラス板
上に形成することができる。次いで、通常パッシベーシ
ョン用ガラスを融着する場合とほぼ同様の手段によって
、第7図に示す如く感光性ガラスよりも軟化点の低い低
融点ガラス6の粉末を厚さ調節して塗布する。
Next, this glass plate is immersed in a 2-6% diluted hydrofluoric acid aqueous solution) 6. Since the crystallized portion 5 is etched approximately 30 times faster than the unexposed glass portion, by etching it for a desired time. As shown in FIGS. 5 and 6, the unexposed glass portion can be formed as a cylindrical projection portion 3b on the glass plate. Next, as shown in FIG. 7, a powder of low-melting glass 6 having a softening point lower than that of photosensitive glass is coated in a controlled thickness by using substantially the same means as when fusing glass for passivation.

この際、低融点ガラス6と感光性ガラス3の膨張係数は
、極力合せることが必要である。例えば膨張係数の大き
さを感光性ガラスに合せたガラスを粉末にして酢酸アミ
ルと硝酸セルローズとの混合液又はアセトン等の0機溶
媒でといて、これを塗布する方法がある。また、低融点
ガラス7をあらかじめシート状に研磨し、これを第8図
に示す如く感光性がガラス上にセットする方法がある。
At this time, it is necessary to match the expansion coefficients of the low melting point glass 6 and the photosensitive glass 3 as much as possible. For example, there is a method of powdering glass whose expansion coefficient matches that of photosensitive glass, dissolving it in a mixed solution of amyl acetate and cellulose nitrate, or a zero-organic solvent such as acetone, and applying the powder. Alternatively, there is a method in which the low melting point glass 7 is polished in advance into a sheet shape and the photosensitivity is set on the glass as shown in FIG.

この方法によれば厚さの制御が容易で、後に軟化させた
ときに円柱状部の上に乗るガラス最の調節が容易にでき
るようになる。第7図又は第8図の状態で温度を−L昇
し、低融点ガラスを軟化させると、円柱状の突部に乗っ
たガラス8は表面張力で球面状に変形し、第9図のよう
に凸レンズ状にすることができる。このようなレンズを
多数配列した場合の一例を第10図に示した。ここにお
いて、レンズ以外の結晶化部6は、不透明なので、たと
え低融点ガラスがどのような形で融着してもレンズの特
性には影響しないばかりか、レンズより出た迷光を防ぐ
効果もある。
According to this method, the thickness can be easily controlled, and the amount of glass that rests on the cylindrical part when softened later can be easily adjusted. When the temperature is raised by -L in the state shown in Figure 7 or Figure 8 to soften the low melting point glass, the glass 8 resting on the cylindrical protrusion is deformed into a spherical shape due to surface tension, as shown in Figure 9. It can be made into a convex lens shape. An example of a case where a large number of such lenses are arranged is shown in FIG. Here, since the crystallized portion 6 other than the lens is opaque, no matter how the low melting point glass is fused, it not only does not affect the characteristics of the lens, but also has the effect of preventing stray light coming out of the lens. .

[発明の効果] 本発明は収差が少なく、開口数と直径の大きなレンズを
配列した平板状マイクロレンズを容易に製作することが
できる。
[Effects of the Invention] According to the present invention, a flat microlens with small aberrations and arranged with lenses having a large numerical aperture and a large diameter can be easily manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明マイクロレンズアレーの製造方法におい
てガラス板の表面にフォトマスクを配置して紫外線を照
射する工程の断面図、第2図は同じく斜視図、第3図は
第1図の工程において金属蒸着膜を用いた場合の断面図
、第4図は熱処理により、紫外線照射部に結晶を析出さ
せた状態の断面図、第5図は未露光のガラス部分を円柱
状に突出させた状態の断面図、第6図は同じく斜視図、
第7図は第5図のガラス上面に低融点ガラス粉末を塗布
した状態の断面図、第8図は第5図のガラス粉末の代り
に低融点ガラスシートをレットした状態の断面図、第9
図は円柱状突部にのせたガラスを球面状に変形させた状
態の断面図、第10図は本発明方法による平板マイクロ
レンズの斜視図、第11図は従来の作製法を示す断面図
、第12図は第11図によるマイクロレンズアレーの断
面図である。 1・・・フォトマスク、2・・・フォトマスク中の円形
光遮蔽部、3・・・感光性ガラス基板、3a・・・紫外
線露光にする潜像、4・・・金属蒸着膜、5・・・結晶
化部分、6・・・低融点ガラス粉末、7・・・低融点ガ
ラスシート、8・・・レンズ部分。 出 願 人  ホーヤ株式会社 代  理  人    朝  倉  正  幸第1図 光照射 第4図      第6図 第7図
Figure 1 is a cross-sectional view of the process of arranging a photomask on the surface of a glass plate and irradiating it with ultraviolet rays in the method for manufacturing a microlens array of the present invention, Figure 2 is a perspective view of the same, and Figure 3 is the process of Figure 1. Figure 4 is a cross-sectional view of a state in which crystals have been precipitated in the ultraviolet irradiated area by heat treatment, and Figure 5 is a state in which an unexposed glass part is protruded in a cylindrical shape. , and FIG. 6 is a perspective view as well.
Figure 7 is a cross-sectional view of a state in which low-melting glass powder is applied to the top surface of the glass shown in Figure 5, Figure 8 is a cross-sectional view of a state in which a low-melting glass sheet is applied instead of the glass powder in Figure 5, and Figure 9
The figure is a cross-sectional view of glass placed on a cylindrical protrusion and deformed into a spherical shape, FIG. 10 is a perspective view of a flat microlens produced by the method of the present invention, and FIG. 11 is a cross-sectional view showing a conventional manufacturing method. FIG. 12 is a sectional view of the microlens array according to FIG. 11. DESCRIPTION OF SYMBOLS 1... Photomask, 2... Circular light shielding part in photomask, 3... Photosensitive glass substrate, 3a... Latent image exposed to ultraviolet rays, 4... Metal vapor deposited film, 5... ...Crystallized part, 6...Low melting point glass powder, 7...Low melting point glass sheet, 8... Lens part. Applicant Hoya Co., Ltd. Agent Masayuki Asakura Figure 1 Light irradiation Figure 4 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】[Claims] 感光性ガラス板の表面に、円形の光遮蔽部を有するフォ
トマスクパターンを配置し、このマスクを通して感光性
ガラスに紫外線を照射する工程と、感光性ガラスを高温
で加熱して照射部のみ結晶化させ、次いで弱酸性溶液で
結晶化部のみエッチングして未露光部を円柱形の突部と
してガラス上に配列せしめる工程と、次にガラス表面に
低融点ガラスを融着し、これを軟化させて円柱状の突部
に接した低融点ガラスのみをガラスの表面張力によって
球面状に変形させて凸レンズ状とする工程を含むことを
特徴とするマイクロレンズアレーの製造方法。
A photomask pattern with a circular light shielding part is placed on the surface of a photosensitive glass plate, and the photosensitive glass is irradiated with ultraviolet rays through this mask, and the photosensitive glass is heated to a high temperature to crystallize only the irradiated part. Then, a process of etching only the crystallized parts with a weak acid solution and arranging the unexposed parts as cylindrical protrusions on the glass, and then fusing low melting point glass to the glass surface and softening it. A method for manufacturing a microlens array, comprising the step of deforming only the low melting point glass in contact with a cylindrical protrusion into a spherical shape by the surface tension of the glass to form a convex lens shape.
JP22037585A 1985-10-04 1985-10-04 Production of microlens array Pending JPS6283337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22037585A JPS6283337A (en) 1985-10-04 1985-10-04 Production of microlens array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22037585A JPS6283337A (en) 1985-10-04 1985-10-04 Production of microlens array

Publications (1)

Publication Number Publication Date
JPS6283337A true JPS6283337A (en) 1987-04-16

Family

ID=16750136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22037585A Pending JPS6283337A (en) 1985-10-04 1985-10-04 Production of microlens array

Country Status (1)

Country Link
JP (1) JPS6283337A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7179728B2 (en) 2002-09-25 2007-02-20 Seiko Epson Corporation Optical component and manufacturing method thereof, microlens substrate and manufacturing method thereof, display device, and imaging device
US7197212B2 (en) 2002-09-27 2007-03-27 Seiko Epson Corporation Optical waveguide and method of manufacturing the same, circuit board, optical module, and optical transfer apparatus
WO2014030680A1 (en) * 2012-08-21 2014-02-27 日立化成株式会社 Substrate with lens and production method therefor, and optical waveguide with lens
JP2015131756A (en) * 2014-01-15 2015-07-23 ショット アクチエンゲゼルシャフトSchott AG Method for manufacturing rod lens and rod lens
JP2016194733A (en) * 2012-07-12 2016-11-17 ショット アクチエンゲゼルシャフトSchott AG Rod lens and methods for producing the same
US11367692B2 (en) 2016-04-07 2022-06-21 Schott Ag Lens cap for a transistor outline package

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7179728B2 (en) 2002-09-25 2007-02-20 Seiko Epson Corporation Optical component and manufacturing method thereof, microlens substrate and manufacturing method thereof, display device, and imaging device
US7197212B2 (en) 2002-09-27 2007-03-27 Seiko Epson Corporation Optical waveguide and method of manufacturing the same, circuit board, optical module, and optical transfer apparatus
JP2016194733A (en) * 2012-07-12 2016-11-17 ショット アクチエンゲゼルシャフトSchott AG Rod lens and methods for producing the same
WO2014030680A1 (en) * 2012-08-21 2014-02-27 日立化成株式会社 Substrate with lens and production method therefor, and optical waveguide with lens
JP2014041181A (en) * 2012-08-21 2014-03-06 Hitachi Chemical Co Ltd Substrate with lens and production method therefor, and optical waveguide with lens
CN104583815A (en) * 2012-08-21 2015-04-29 日立化成株式会社 Substrate with lens and production method therefor, and optical waveguide with lens
CN104583815B (en) * 2012-08-21 2016-10-26 日立化成株式会社 Carry lensed substrate and manufacture method thereof, and carry lensed fiber waveguide
US9519109B2 (en) 2012-08-21 2016-12-13 Hitachi Chemical Company, Ltd. Substrate with lens and production method therefor, and optical waveguide with lens
JP2015131756A (en) * 2014-01-15 2015-07-23 ショット アクチエンゲゼルシャフトSchott AG Method for manufacturing rod lens and rod lens
US11367692B2 (en) 2016-04-07 2022-06-21 Schott Ag Lens cap for a transistor outline package

Similar Documents

Publication Publication Date Title
US4269935A (en) Process of doping silver image in chalcogenide layer
JPH07151935A (en) Matching formation of optical fiber and microlens
KR20160140598A (en) Methods of fabricating photoactive substrates for micro-lenses and arrays
JPS6283337A (en) Production of microlens array
JPH0584481B2 (en)
CN110596905A (en) Random micro-lens array structure for light beam homogenization and manufacturing method thereof
WO2004033382A1 (en) Lens array, method for fabricating the lens array and photosensitive glass plate
JPS6283334A (en) Production of microlens array
JPH08166502A (en) Microlens array and its production
JPH06194502A (en) Microlens and microlens array and their production
JPS6283335A (en) Production of microlens array
CN113740942B (en) Micro-lens array grating and preparation method and application thereof
CN112034541B (en) Method and system for preparing silicon microlens product by photoresist hot melting method
JPS58185445A (en) Preparation of microlense array
US5104481A (en) Method for fabricating laser generated I.C. masks
JPH05150103A (en) Production of aspherical microlens array
JPH07104106A (en) Production of aspherical microlens array
JP4107800B2 (en) Manufacturing method of flat lens
JP2001518206A (en) Method for manufacturing light guiding structure
JP3041916B2 (en) Method for manufacturing lens array
JPS59101881A (en) Manufacture of lens-loaded optical communication diode
JPH0210784B2 (en)
JPH0210783B2 (en)
JPH07134202A (en) Microlens array and its production
JPH0353263B2 (en)