JPS6283334A - Production of microlens array - Google Patents

Production of microlens array

Info

Publication number
JPS6283334A
JPS6283334A JP22037285A JP22037285A JPS6283334A JP S6283334 A JPS6283334 A JP S6283334A JP 22037285 A JP22037285 A JP 22037285A JP 22037285 A JP22037285 A JP 22037285A JP S6283334 A JPS6283334 A JP S6283334A
Authority
JP
Japan
Prior art keywords
glass
irradiated
photomask
microlens array
unirradiated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22037285A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Asahara
浅原 慶之
Shigeaki Omi
成明 近江
Shin Nakayama
伸 中山
Hiroyuki Sakai
裕之 坂井
Yoshitaka Yoneda
嘉隆 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP22037285A priority Critical patent/JPS6283334A/en
Publication of JPS6283334A publication Critical patent/JPS6283334A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/006Re-forming shaped glass by fusing, e.g. for flame sealing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B29/00Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins
    • C03B29/02Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins in a discontinuous way
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B29/00Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins
    • C03B29/02Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins in a discontinuous way
    • C03B29/025Glass sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings
    • G02B6/1245Geodesic lenses

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Surface Treatment Of Glass (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To easily produce the titled microlens array wherein many convex lenses are arranged by arranging a photomask on photosensitive glass, irradiating UV rays, then heat treating, etching only the irradiated part, and softening and deforming only the unirradiated part by reheat treatment. CONSTITUTION:The photomask 1 wherein many circular shield parts 2 are arranged is provided on the surface of the photosensitive glass 3 and UV rays are irradiated. Then the photomask 1 is removed and only irradiated part is crystallized by heat treatment. The glass sheet 3 is then dipped in a weakly acidic soln., hence the crystallized part 5 is etched and the unexposed part of the glass is formed on the glass sheet as a columnar projecting part 3b. By utilizing the fact that the softening temp. of the crystallized part 5 of the irradiated part is higher than that of the columnar projecting part 4 of the unirradiated part, the material is heated to soften only the unirradiated part 4 into a spherical shape and a convex lens 3c is formed. The microlens array wherein many minute convex lenses 3c are arranged on the flat glass sheet can be easily formed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は平板ガラス上に、多数の微小な凸レンズを配列
したマイクロレンズアレーの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a microlens array in which a large number of minute convex lenses are arranged on a flat glass.

[従来の技術] マイクロレンズは、最近光通信用の各種光部品構成材料
として注目を集め、特にこのレンズを多数配列したマイ
クロレンズアレーは、複写器やミニファックス用光学系
の転写用レンズとして使用され、装冒の小型化に寄与し
ている。
[Prior Art] Microlenses have recently attracted attention as constituent materials for various optical components for optical communication, and in particular, microlens arrays, which are made up of a large number of these lenses, are used as transfer lenses in optical systems for copiers and mini-fax machines. This contributes to the miniaturization of equipment.

マイクロレンズアレーの作成法は、従来直径1−m前後
のロンド状のレンズを2〜3列に数白木配列してアレー
化する方法が一般的であったが、最近では第11図に示
すように、一枚の平板ガラス10上に金属膜11を蒸着
し、フォトリングラフイー技術を利用して、この金属膜
11に多数個の孔12を配列した後、これをTj2など
の高屈折イオンを含む溶融塩中に高温で浸漬して金B膜
の孔12を通してイオンを拡散させ、ガラス平板上に半
円球状の高屈折イオンの拡散部13からなるマイクロレ
ンズを配列する方法で作成した平板マイクロレンズが注
目を集めている。この方法によれば、多数のロッドレン
ズを配列したり、接着したり、固定化したりする複雑な
工程を必要としないばかりか、集積回路作成工程と同じ
フォトリングラフイー技術を用いて精度良くいっぺんに
レンズをアレー化することができる。
The conventional method for creating a microlens array was to arrange several rondo-shaped lenses with a diameter of about 1 m in two or three rows in an array. First, a metal film 11 is vapor-deposited on a sheet of flat glass 10, and a large number of holes 12 are arranged in this metal film 11 using photophosphorography technology. A flat plate made by immersing it in a molten salt containing gold at high temperature to diffuse ions through the holes 12 of the gold B film, and arranging microlenses consisting of semicircular spherical high refractive ion diffusion parts 13 on the glass flat plate. Microlenses are attracting attention. This method not only does not require complicated processes such as arranging, gluing, and fixing a large number of rod lenses, but it also uses the same photolithography technology used in the integrated circuit manufacturing process to process rod lenses all at once with high precision. Lenses can be arranged into an array.

[発明が解決しようとする問題点] しかしながら、この平板マイク「ルンズは、例えば収差
の少ないレンズを作成するためには、イオン拡散部の形
状とイオン濃度分布を厳密に制御する必要があり、とき
には電圧を印加して強制的にイオンを拡散移入すること
も必要となってくる。
[Problems to be Solved by the Invention] However, in order to create a lens with little aberration, for example, it is necessary to strictly control the shape of the ion diffusion part and the ion concentration distribution. It is also necessary to forcefully diffuse and import ions by applying a voltage.

また大きなレンズを作成する場合、マスクの孔が小さい
と作成にかなりの時間を要し、マスク孔を大きくすると
、拡散部の形状が半円球状でなくなるなど、作成時にイ
オンの拡散挙動を微妙に制御しなければならず、生産性
の面で必ずしも良い方法とは云い難い。
In addition, when creating a large lens, if the hole in the mask is small, it will take a considerable amount of time to create it, and if the hole in the mask is made larger, the shape of the diffusion part will no longer be semicircular. This method must be controlled, and it is not necessarily a good method in terms of productivity.

本発明は、上記の如き従来の平板マイク[ルンズアレー
作成法の問題点を改良し、しかも開口数と直径の大きな
レンズを配列したマイクロレンズアレーを提供するもの
である。
The present invention improves the problems of the conventional flat microphone lens array manufacturing method as described above, and provides a microlens array in which lenses with large numerical apertures and diameters are arranged.

[問題点を解決するための手段] このため本発明は、紫外線照射部が熱処理によって結晶
化し易くなる性質を有する感光性ガラスを利用し、この
感光ガラス上に円形を多数配列したフォトマスクを配置
して、紫外線を照射した後、熱処理して照射部のみ結晶
化させ、さらに弱酸溶液中で照射部のみエツチングして
、未照射部を円柱状突起部として配列せしめ、照射部の
結晶化の軟化温度が未照射部の円柱状突起部よりも高い
ことを利用して、これを加熱し未照射部のみ軟化させて
球面状に変形せしめ凸レンズとづるものである。以下図
面に沿って具体例を上げ本発明についてその特徴を説明
する。
[Means for Solving the Problems] Therefore, the present invention utilizes photosensitive glass in which the ultraviolet irradiation portion has a property of being easily crystallized by heat treatment, and arranges a photomask in which a large number of circles are arranged on the photosensitive glass. Then, after irradiating with ultraviolet rays, heat treatment is performed to crystallize only the irradiated area, and then only the irradiated area is etched in a weak acid solution to arrange the unirradiated area as cylindrical protrusions, softening the crystallization of the irradiated area. Taking advantage of the fact that the temperature is higher than that of the cylindrical protrusion in the unirradiated part, this is heated to soften only the unirradiated part and deform it into a spherical shape, which is called a convex lens. Hereinafter, the features of the present invention will be explained using specific examples along with the drawings.

[実施例] まず第1図および第2図に示す如く感光性がラス3の表
面に円形状の遮蔽部2を多数配列したフォトマスク1を
配置する。ここで感光性ガラスとは、少鑓の八〇やCe
0zを含有するリチウム珪酸塩ガラスよりなり、紫外線
を照射した部分にのみ、AQ金属コロイドが核として生
成し、熱処理によってメタ珪酸リチウム(L i ?○
・SiO2)微結晶を析出させるものであって、母体ガ
ラスよりも極めて速く紫外線照射部のみエツチングが可
能な特異なガラスである。代表的な組成は米国特許第2
,684,911号明細書(1954)に詳細に記述さ
れている。またフォトマスクとしては、第3図に示すよ
うに、アパーチャーを多数配列したフォトマスクを介し
て感光性ガラス3の表面に、紫外線を通さない円形の金
属蒸着g!4を多数配列させたちのCあってら良い。
[Example] First, as shown in FIGS. 1 and 2, a photomask 1 having a large number of circular shielding portions 2 arranged on the surface of a photosensitive lath 3 is placed. Here, photosensitive glass refers to Shorin's 80 or Ce.
Made of lithium silicate glass containing 0z, AQ metal colloid is generated as a nucleus only in the part irradiated with ultraviolet rays, and lithium metasilicate (L i ?○) is formed by heat treatment.
・SiO2) It is a unique glass that precipitates microcrystals and can be etched only in the ultraviolet irradiated area much faster than the base glass. Typical composition is U.S. Patent No. 2
, 684, 911 (1954). Further, as a photomask, as shown in FIG. 3, a circular metal evaporation g! It would be nice to have a C with many 4s arranged.

次に第2図に示すような円形の遮蔽部2を有するフォト
マスク1を通して紫外線を照射すると、照射部では、光
電子を捕獲したAQよりなる潜像3a(第3図)が形成
される。ここでフォトマスク1を除去するか、又は蒸着
金属膜4を遮蔽部として用いた場合は、これを取り去っ
た後、400℃〜530℃で熱処理して、照射部に金属
コロイドを生成させ、ざらに550〜600℃の温度に
昇温し、第4図に示す如く適当な時間保持してメタ珪酸
リチウム結晶を析出させた部分5を形成させる。この場
合、未露光部は核が形成されないので、この熱処理では
結晶は析出せず元の透明なガラスの状態に保たれる。
Next, when ultraviolet rays are irradiated through the photomask 1 having a circular shielding section 2 as shown in FIG. 2, a latent image 3a (FIG. 3) made of AQ that has captured photoelectrons is formed in the irradiated section. At this point, the photomask 1 is removed, or if the vapor-deposited metal film 4 is used as a shielding part, after removing it, heat treatment is performed at 400°C to 530°C to generate metal colloid in the irradiated part and make it rough. The temperature is then raised to 550-600 DEG C. and maintained for an appropriate period of time as shown in FIG. 4 to form a portion 5 in which lithium metasilicate crystals are precipitated. In this case, since no nuclei are formed in the unexposed area, crystals do not precipitate during this heat treatment and the original transparent glass state is maintained.

次に2〜6%の希弗酸水溶液にこのガラス板を浸漬する
と、結晶化部分5は、未露光のガラス部分より約30倍
も速くエツチングされるので、所望の時間エツチングす
ることによって、第5図および第6図に示すように、未
露光のガラス部分を円柱状の突起部分3bとしてガラス
機上に形成することができる。
Next, when this glass plate is immersed in a 2-6% dilute hydrofluoric acid aqueous solution, the crystallized portion 5 will be etched approximately 30 times faster than the unexposed glass portion. As shown in FIGS. 5 and 6, the unexposed glass portion can be formed as a cylindrical protruding portion 3b on a glass machine.

未露光のガラス部分の軟化温度は500℃前後であって
、露光部の結晶化部5の軟化温度が800℃以上である
のに比較すると遥かに低いので、このガラス板3aを、
ガラス部分の軟化温度より遥かに高く、また結晶化部5
の軟化温度よりも低い温度で再加熱することによって、
第9図に示すように、ガラス部よりなる円柱状突起部分
3bを軟化させ、表面張力で第10図のような球面状(
球面レンズ体3c)に変形して、レンズ状とすることが
できる。
The softening temperature of the unexposed glass portion is around 500°C, which is much lower than the softening temperature of the exposed crystallized portion 5, which is 800°C or higher.
It is much higher than the softening temperature of the glass part, and the crystallized part 5
By reheating at a temperature lower than the softening temperature of
As shown in FIG. 9, the cylindrical protrusion portion 3b made of glass is softened, and the surface tension creates a spherical shape (as shown in FIG. 10).
It can be transformed into a spherical lens body 3c) to have a lens shape.

ここで、ただ単に感光性ガラスに第1図に示す如く円形
状の遮蔽部2を右するマスク1を配列し、紫外線を照射
の後、感光性ガラスの軟化温度より高温で熱処理して露
光部を結晶化させ、この結晶化部分の収縮によって、未
露光部のガラス部をしぼり出し、軟化も手伝って表面張
力で球面状の突起部をガラス基板上に形成することも考
えられる。
Here, a mask 1 with a circular shielding part 2 on the right side is simply arranged on the photosensitive glass as shown in FIG. It is also conceivable to crystallize the crystallized portion, squeeze out the unexposed glass portion by shrinking the crystallized portion, and form a spherical protrusion on the glass substrate due to surface tension with the help of softening.

即ち、第4図の段階ですでに球面状の突起部を形成する
ことも考えらるが、この場合、1m−〜2■の大きな直
径のレンズを作ることはむずかしく、また開口数を大き
くすることもむずかしい。この方法と比較すると本発明
はエツチングによって、あらかじめ球状レンズとなるべ
き部分に突起部としてガラス部を形成しているため、大
口径のみならず高開口レンズを形成することができるこ
とを特徴としている。また感光性ガラスを用いずに、た
だ単に光学ガラス基板を用いてフォトリングラフイー技
術でエツチングを施し、光学ガラス板上に円柱状の突部
を設け、これをガラスの軟化温度より高温で加熱して突
部を軟化し、球面状のレンズ体にする考えもあるが、こ
の場合は文部と基板ガラスの軟化点が同じであり、基板
自身が軟化するおそれがある。もし仮に突部のみ加熱す
ることかできるとしてもその工程は複雑となることが予
想される。本発明によれば突部の軟化点と比較して基板
部分の軟化点はおおむね300℃以上も高いので、基板
部が軟化するおそれはまったくないことを特徴としてい
る。
That is, it is possible to form a spherical protrusion already at the stage shown in Fig. 4, but in this case, it would be difficult to make a lens with a large diameter of 1 m to 2 cm, and the numerical aperture would have to be increased. It's also difficult. Compared to this method, the present invention is characterized in that it is possible to form not only a large-diameter lens but also a high-aperture lens because a glass portion is formed in advance as a protrusion in a portion that is to become a spherical lens by etching. In addition, without using photosensitive glass, etching is simply performed using photophosphorography technology using an optical glass substrate, a cylindrical protrusion is provided on the optical glass plate, and this is heated at a temperature higher than the softening temperature of the glass. There is also an idea to soften the protrusions and make a spherical lens body, but in this case, the text and the substrate glass have the same softening point, and there is a risk that the substrate itself will soften. Even if it were possible to heat only the protrusions, the process would be expected to be complicated. According to the present invention, the softening point of the substrate portion is approximately 300° C. or more higher than that of the protrusion, so there is no possibility that the substrate portion will soften.

さらに本発明の別の具体例を示す。第7図に示す如く感
光性ガラス3の表面にフォトレジスト6を塗布し、さら
にこの上に円形状の遮蔽部2を有するフォトマスク1を
配し、紫外線を照射して潜像3aを形成する。フォトマ
スク1を除去し、ざらにフォトレジスト露光部をエツチ
ングした後、ガラス板を希弗酸水溶液でエツチングする
と露光部は浸蝕され、第8図に示す如く、ガラス板上に
は、円そ↑状の突起部3bが形成される。次いで、フォ
トレジストを除去し、400℃〜530℃で熱処理して
照射部に金属コロイドを生成させ、さらに550〜60
0℃の温度に昇温し、長時間保持して露光部にメタ珪酸
リヂウム結晶5を析出させるともに第9図、第10図の
ように円柱状突部を軟化させて球面状レンズ体3Cとす
る。この方法によれば、円柱状突起部を形成するエツチ
ングの工程で後にレンズとなるべき未露光部の表面を7
オトレジストで覆っているので、表面を荒すことなく、
エツチングが行なえる利点がある。また、レンズ以外の
部分は、結晶化しているため、不透明となり、迷光を防
ぐことも可能である。
Furthermore, another specific example of the present invention will be shown. As shown in FIG. 7, a photoresist 6 is applied to the surface of the photosensitive glass 3, a photomask 1 having a circular shielding part 2 is placed on top of the photoresist 6, and ultraviolet rays are irradiated to form a latent image 3a. . After removing the photomask 1 and roughly etching the exposed areas of the photoresist, the glass plate is etched with a dilute hydrofluoric acid aqueous solution, and the exposed areas are eroded, leaving a circle ↑ on the glass plate, as shown in Figure 8. A shaped protrusion 3b is formed. Next, the photoresist is removed, heat treated at 400-530°C to generate metal colloid in the irradiated area, and further heated at 550-600°C.
The temperature is raised to 0° C. and held for a long time to precipitate rhidium metasilicate crystals 5 in the exposed area and soften the cylindrical protrusions as shown in FIGS. 9 and 10 to form a spherical lens body 3C. do. According to this method, in the etching process for forming the cylindrical protrusions, the surface of the unexposed area that will later become the lens is etched by 7.
Since it is covered with Otoresist, the surface will not be roughened.
It has the advantage of being able to be etched. Furthermore, since the parts other than the lens are crystallized, they are opaque and can prevent stray light.

[発明の効果1 以上述べたように、本発明によれば紫外線照射部が熱処
理によって結晶化し易くなる性質を有する感光生ガラス
を用い、この感光生ガラス、Lにフォトマスクを配置し
て、紫外線を照射したのち照射部のみエツチングし、未
照射部のみ軟化させることにより、球面状に変形させて
多数の微小な高開口凸レンズを配列したマイクロレンズ
アレーを容易に製作することができる。
[Effect of the invention 1 As described above, according to the present invention, a photosensitive raw glass having a property that the ultraviolet ray irradiated part is easily crystallized by heat treatment is used, a photomask is placed on this photosensitive raw glass, L, and the ultraviolet rays are irradiated. By irradiating only the irradiated area and softening only the unirradiated area, it is possible to easily produce a microlens array in which a large number of small high-aperture convex lenses are deformed into a spherical shape and arranged.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明マイクロレンズアレーの製造方法におい
て、感光生ガラスの表面にフォトマスクを配置して紫外
線を照射する工程の断面図、第2図は同じく斜視図、第
3図は第1図の工程において金属蒸着膜を用いた場合の
断面図、第4図は熱処理により紫外線照射部に結晶を析
出させた状態の断面図、第5図は未露光のガラス部分を
円柱状に突出させた状態の断面図、第6図は同じく斜視
図、第7図は感光生ガラスの表面にフォトレジストを塗
布したうえ、フォトマスクを配して紫外線を照射する場
合の断面図、第8図はエツチングしたのちの断面図、第
9図は熱処理によって円柱状突部を軟化させて球面状レ
ンズ体とした段階の断面図、第10図は本発明方法によ
る平板マイクロレンズアレーの斜視図、第11図は従来
の作製法を示す断面図、第12図は第11図の方法によ
る平板マイクロレンズアレーの断面図である。 1・・・フォトマスク、2・・・フォトマスク中の円形
光遮蔽部、3・・・感光性ガラス、3a・・・紫外線照
射による潜像、3b・・・円柱状突起部、3c・・・球
面レンズ体、4・・・金属蒸着膜、5・・・結晶化部分
、6・・・フォトレジスト。 出 願 人  ホーヤ株式会社 代  理  人   朝  倉  正  幸第1図 第6図 第4図 第7図 第8図 第9図 r 第10図 第11図 第12図
Figure 1 is a cross-sectional view of the process of arranging a photomask on the surface of photosensitive raw glass and irradiating it with ultraviolet rays in the method for manufacturing a microlens array of the present invention, Figure 2 is a perspective view of the same, and Figure 3 is the same as Figure 1. Figure 4 is a cross-sectional view of the case where a metal vapor deposited film is used in the step of 1. Figure 4 is a cross-sectional view of a state in which crystals are precipitated in the ultraviolet irradiated area by heat treatment, and Figure 5 is a cross-sectional view of the state in which the unexposed glass part is made to protrude in a cylindrical shape. Figure 6 is a perspective view, Figure 7 is a cross-sectional view of photoresist coated on the surface of photosensitive raw glass, a photomask is placed and ultraviolet rays are irradiated, Figure 8 is etching. 9 is a cross-sectional view at a stage where the cylindrical protrusion is softened by heat treatment to form a spherical lens body; FIG. 10 is a perspective view of a flat microlens array according to the method of the present invention; FIG. 11 12 is a sectional view showing a conventional manufacturing method, and FIG. 12 is a sectional view of a flat microlens array produced by the method shown in FIG. DESCRIPTION OF SYMBOLS 1... Photomask, 2... Circular light shielding part in photomask, 3... Photosensitive glass, 3a... Latent image by ultraviolet irradiation, 3b... Cylindrical protrusion, 3c... - Spherical lens body, 4... Metal vapor deposited film, 5... Crystallized portion, 6... Photoresist. Applicant Hoya Co., Ltd. Agent Masayuki Asakura Figure 1 Figure 6 Figure 4 Figure 7 Figure 8 Figure 9 r Figure 10 Figure 11 Figure 12

Claims (1)

【特許請求の範囲】 1 感光性ガラス板の表面に、円形のフォトマスクパタ
ーンのアレーを配置する工程と、このマスクを通して感
光性ガラスに紫外線を照射する工程と、感光性ガラスを
高温で加熱して、照射部のみ結晶化させる工程と、熱処
理後、室温に於て弱酸溶液にて結晶化部のみエッチング
して未照射部を円柱形の突起部として配列せしめる工程
と、再熱処理によって円柱形突起部を球面状に軟化変形
せしめ凸レンズとする工程を含むことを特徴とするマイ
クロレンズアレーの製造方法。 2 円形のフォトマスクパターンは、感光生ガラス板の
表面に形成された金属蒸着膜である特許請求の範囲第1
項記載のマイクロレンズアレーの製造方法。 3 円形のフォトマスクパターンのアレーを配置する工
程において、あらかじめ感光性ガラス板表面にフォトレ
ジストを塗布して、フォトマスクパターンを配置し、紫
外線照射後、フォトレジストを利用して照射部をエッチ
ングし、未照射部を円柱状突起部のアレーを配列せしめ
たのち、加熱して照射部の結晶化と未照射部円柱突起部
を球面状に軟化変形せしめる工程を同時に行なうことを
特徴とする特許請求の範囲第1項記載のマイクロレンズ
アレーの製造方法。
[Claims] 1. A step of arranging an array of circular photomask patterns on the surface of a photosensitive glass plate, a step of irradiating the photosensitive glass with ultraviolet rays through this mask, and a step of heating the photosensitive glass at a high temperature. After the heat treatment, only the crystallized parts are etched with a weak acid solution at room temperature so that the unirradiated parts are arranged as cylindrical protrusions, and the cylindrical protrusions are formed by reheating. A method for manufacturing a microlens array, comprising the step of softening and deforming a portion into a spherical shape to form a convex lens. 2. The circular photomask pattern is a metal vapor deposited film formed on the surface of a photosensitive raw glass plate.
2. Method for manufacturing a microlens array as described in Section 1. 3. In the process of arranging an array of circular photomask patterns, photoresist is applied to the surface of the photosensitive glass plate in advance, the photomask pattern is arranged, and after UV irradiation, the irradiated areas are etched using the photoresist. , a patent claim characterized in that after arranging an array of cylindrical protrusions in the unirradiated area, the steps of crystallizing the irradiated area and softening and deforming the cylindrical protrusions in the unirradiated area into a spherical shape by heating are performed simultaneously. A method for manufacturing a microlens array according to item 1.
JP22037285A 1985-10-04 1985-10-04 Production of microlens array Pending JPS6283334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22037285A JPS6283334A (en) 1985-10-04 1985-10-04 Production of microlens array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22037285A JPS6283334A (en) 1985-10-04 1985-10-04 Production of microlens array

Publications (1)

Publication Number Publication Date
JPS6283334A true JPS6283334A (en) 1987-04-16

Family

ID=16750090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22037285A Pending JPS6283334A (en) 1985-10-04 1985-10-04 Production of microlens array

Country Status (1)

Country Link
JP (1) JPS6283334A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0642042A1 (en) * 1993-09-02 1995-03-08 AT&T Corp. Optical fiber alignment techniques
JP2015131756A (en) * 2014-01-15 2015-07-23 ショット アクチエンゲゼルシャフトSchott AG Method for manufacturing rod lens and rod lens
JP2017508177A (en) * 2014-01-24 2017-03-23 スリーディー グラス ソリューションズ,インク3D Glass Solutions,Inc Method for fabricating photoactive substrates for microlenses and arrays
US11367692B2 (en) 2016-04-07 2022-06-21 Schott Ag Lens cap for a transistor outline package

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0642042A1 (en) * 1993-09-02 1995-03-08 AT&T Corp. Optical fiber alignment techniques
JP2015131756A (en) * 2014-01-15 2015-07-23 ショット アクチエンゲゼルシャフトSchott AG Method for manufacturing rod lens and rod lens
AT515332B1 (en) * 2014-01-15 2018-11-15 Schott Ag Process for the production of rod lenses and rod lens
AT515332A3 (en) * 2014-01-15 2018-11-15 Schott Ag Process for the production of rod lenses and rod lens
JP2017508177A (en) * 2014-01-24 2017-03-23 スリーディー グラス ソリューションズ,インク3D Glass Solutions,Inc Method for fabricating photoactive substrates for microlenses and arrays
US11367692B2 (en) 2016-04-07 2022-06-21 Schott Ag Lens cap for a transistor outline package

Similar Documents

Publication Publication Date Title
US4269935A (en) Process of doping silver image in chalcogenide layer
US6015650A (en) Method for forming micro patterns of semiconductor devices
EP0741418A3 (en) Solid state imaging device and production method for the same
NL8204928A (en) LITHOGRAPHIC METHOD FOR MAKING OPTICAL FIBERS.
JPS6283334A (en) Production of microlens array
JPS6283337A (en) Production of microlens array
US6368775B1 (en) 3-D photo-patterning of refractive index structures in photosensitive thin film materials
JPH08166502A (en) Microlens array and its production
KR100539090B1 (en) Method for manufacturing micro-lens
JPS6283335A (en) Production of microlens array
JP2002026466A (en) Condensing optical system and light source for laser machines
KR100701355B1 (en) Fabrication method of micro lens array and stamper for duplicating micro lens array
JPS58185445A (en) Preparation of microlense array
JPH07104106A (en) Production of aspherical microlens array
JP3041916B2 (en) Method for manufacturing lens array
JPH1148354A (en) Method for working microlens
US4434217A (en) Chalcogenide product
JPH0353263B2 (en)
JPS58167452A (en) Preparation of material wherein very small lenses are arranged
JPS6283336A (en) Production of microlens array
JP2003140314A5 (en)
JPH0210784B2 (en)
JPS62191445A (en) Production of microlens
JPWO2006038392A1 (en) Microlens manufacturing method and microlens mold manufacturing method
JPH06331806A (en) Production of matrix for molding diffusion plate