JPS628291B2 - - Google Patents
Info
- Publication number
- JPS628291B2 JPS628291B2 JP12592381A JP12592381A JPS628291B2 JP S628291 B2 JPS628291 B2 JP S628291B2 JP 12592381 A JP12592381 A JP 12592381A JP 12592381 A JP12592381 A JP 12592381A JP S628291 B2 JPS628291 B2 JP S628291B2
- Authority
- JP
- Japan
- Prior art keywords
- stretching
- stretch
- blow
- parison
- stretched
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000000034 method Methods 0.000 claims description 34
- 229920005989 resin Polymers 0.000 claims description 24
- 239000011347 resin Substances 0.000 claims description 24
- 238000007664 blowing Methods 0.000 claims description 18
- 229920005992 thermoplastic resin Polymers 0.000 claims description 18
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 230000007423 decrease Effects 0.000 claims description 6
- 239000012530 fluid Substances 0.000 claims description 6
- 239000004800 polyvinyl chloride Substances 0.000 description 19
- 229920000915 polyvinyl chloride Polymers 0.000 description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 238000000071 blow moulding Methods 0.000 description 6
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 150000002825 nitriles Chemical class 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000001746 injection moulding Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 2
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical compound C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 229920001893 acrylonitrile styrene Polymers 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- SCUZVMOVTVSBLE-UHFFFAOYSA-N prop-2-enenitrile;styrene Chemical compound C=CC#N.C=CC1=CC=CC=C1 SCUZVMOVTVSBLE-UHFFFAOYSA-N 0.000 description 2
- JHPBZFOKBAGZBL-UHFFFAOYSA-N (3-hydroxy-2,2,4-trimethylpentyl) 2-methylprop-2-enoate Chemical compound CC(C)C(O)C(C)(C)COC(=O)C(C)=C JHPBZFOKBAGZBL-UHFFFAOYSA-N 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- -1 acrylic ester Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229920006026 co-polymeric resin Polymers 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000004455 differential thermal analysis Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 235000021056 liquid food Nutrition 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000002087 whitening effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D1/00—Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
- B65D1/02—Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
- B65D1/0223—Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by shape
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C49/00—Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
- B29C49/08—Biaxial stretching during blow-moulding
- B29C49/10—Biaxial stretching during blow-moulding using mechanical means for prestretching
- B29C49/12—Stretching rods
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
- Containers Having Bodies Formed In One Piece (AREA)
Description
本発明は、塩化ビニル樹脂のような熱可塑性樹
脂から成る延伸ブロー成形容器の製法に関し、よ
り詳細には新規な配向特性を有し、顕著に改善さ
れた耐衝撃性を有する延伸ブロー成形容器の製法
に関する。
塩化ビニル系樹脂は、酸素バリヤー性及び透明
性に優れた樹脂であり、そのブロー成形容器は、
化粧料、洗剤、液性食品類、或いはその他の液体
内容物を収容するための容器として広く使用され
ている。
塩化ビニル系樹脂から延伸ブロー成形容器を製
造することも既に知られており、公知方法によれ
ば、塩化ビニル系樹脂を射出成形或いは溶融ブロ
ー成形に付して有底パリソンを製造し、この有底
パリソンを延伸可能温度域で金型内で延伸棒によ
り軸方向に縦延伸し、これと同時に或いは遂次的
に周方向にブロー延伸して、延伸ブロー成形容器
とする。
しかしながら、公知方法によれば、塩化ビニル
樹脂容器には、比較的低倍率の延伸を付与できる
にすぎず、容器胴全体、特に延伸棒や金型と近接
する胴部の両端部に有効な分子配向を与えること
が困難である。しかして、延伸ブロー成形容器を
も含めてボトル(びん)の形の容器において構造
の弱い部分は、胴部中央部よりはむしろびんの肩
部や底部に近接した胴部両端部であり、この胴部
両端部を補強することは、びんの落下等による衝
撃破壊を防止する上で非常に重要なものとなる。
本発明者等は、塩化ビニル系樹脂のような熱可
塑性樹脂から成る有底パリソンを延伸ブロー成形
するに際して、この有底パリソンを以下に詳述す
る多段軸方向延伸と一段のブロー延伸とに付する
ときには、新規な配向特性が容器胴部に与えら
れ、容器の落下衝撃強度や耐熱性等が顕著に向上
することを見出すに至つた。
即ち、本発明の目的は、耐衝撃性や耐熱性の顕
著に改善された熱可塑性樹脂の延伸ブロー成形容
器の製法を提供するにある。
本発明の他の目的は、容器胴部が新規な配向特
性を有する熱可塑性樹脂の延伸ブロー成形容器の
製法を提供するにある。
本発明の更に他の目的は、偏肉や突きやぶり等
の不良品の発生率が少なくしかも延伸むらの少な
い延伸ブロー成形容器の製造方法を提供するにあ
る。
本発明によれば、熱可塑性樹脂から成る有底パ
リソンを延伸可能温度において軸方向全延伸倍率
の5乃至70%だけ軸方向に少なくとも1段の予備
延伸に付し、延伸操作を一旦停止した後、次いで
この予備延伸パリソンを軸方向に残りの延伸倍率
だけ延伸すると共に、流体の吹込みにより周方向
に膨脹させ、無定形熱可塑性樹脂で一体に形成さ
れた胴部、底部、肩部及び首部から成り、少なく
とも前記胴部は二軸方向に分子配向されている延
伸ブロー成形容器であつて、前記胴部は全体的に
言つて肩側端部から底側端部に向けて軸方向配向
係数が次第に小となり、且つ底側端部から肩側
端部に向けて周方向配向係数が次第に小となる
配向傾向を有し、且つ前記胴部の少なくとも中央
部は厚み方向配向係数が0.25よりも低い値に抑
制されている成形容器とすることを特徴とする耐
衝撃性延伸ブロー成形容器の製法が提供される。
本発明を以下に詳細に説明する。
第1図に示すように、本発明方法により製造さ
れる延伸ブロー成形容器は、塩化ビニル系樹脂の
ような無定形熱可塑性樹脂で一体に形成された胴
部1、底部2、肩部3及び首部4から成つてお
り、少なくともこの胴部1は延伸ブローにより二
軸方向、即ち軸方向及び周方向に分子配向されて
いる。
本発明方法により製造される容器は、この無定
形熱可塑性樹脂から成る胴部1に、全体的に言つ
て肩側端部1Aから底側端部1Bに向けて軸方向
配向係数が次第に小となり、且つ底側端部1B
から肩側端部1Aに向けて周方向配向係数が次
第に小となる配向傾向を付与し、且つ前記胴部の
少なくとも中央部1Cは厚み方向配向係数が
0.25よりも低い値に抑制することが特徴である。
本明細書において、配向係数とは、複屈折測定
で求められる容器壁を構成する樹脂の或る特定方
向への配向の度合いを表わし、容器の軸方向への
配向係数を、容器の周方向への配向係数を、
容器の厚さ方向への配向係数をとして表わした
とき、
++=1 ……(1)
となるように決定される値を言う。かくして、或
る特定方向への配向係数が大きいという事実は、
この特定方向への分子配向が他の方向に比して優
先的に生じているという事実を示している。
配向係数の算出法の詳細は次の通りである。
一般に高分子は分子の長軸方向と短軸方向とで
は屈折率が異なることはよく知られている。した
がつて高分子のフイルム、シートあるいはパリソ
ンなどを延伸すれば、その延伸方向に分子鎖が配
向し、配向方向とその直角方向とでは屈折率が異
なり、それら屈折率の値の差が複屈折、△と定義
されている。
ここで直交する三次元の座標(x,y,z)に
おいて、そのx方向を容器の厚さ方向、y方向を
同じく周方向、z方向を同じく軸方向とし、それ
ぞれの方向の屈折率をnx,ny,nzとすると、
下記式
ni=(n〓−n⊥)+n⊥ (i=x,y,
z) ……(2)
式中、nNは試料が完全一軸配向の場合の軸方
向の屈折率であり、nIは同じく完全一軸配向の
場合の軸方向に垂直な方向の屈折率であり、
(i=x,y,z)が、R・S.STEINら(J.
Applied Physics,37、3990(1966))によつて
定義された各方向への配向係数である。
n〓,n⊥は熱可塑性樹脂によつて、それぞれ
固有の値を有し、たとえばポリ塩化ビニルなどに
ついては、松本喜代一ら(繊維学会誌、26、303
(1970))などによつて報告されている。
したがつて複屈折、△x=nz−ny,△y=nz−
nx,△z=nx−nyのうちのいずれか二つの値を
測定すれば、R・S.STEINの報告(J.Polymer
Sci.,24、383(1957))に基づいて配向係数、
,,が求められる。
また、本明細書において、容器胴部についての
全体としての配向傾向とは、容器胴部の一方の端
部からの距離と配向係数との関係をプロツトした
とき、測定位置で若干の凹凸乃至はバラツキがあ
るとしても、全体として見て一定の傾向、例えば
増加傾向或いは減少傾向があることを意味する。
この配向傾向を、好適な例について具体的数値
を挙げて説明すると胴壁の肩側端部1Aの軸方向
配向係数をA、周方向配向係数をAとし、底側
端部1Bの軸方向配向係数をB、周方向配向係
数をBとすると、
0.350≧A−B≧0.005、
特に
0.300≧A−B≧0.007、
0.400≧B−A≧0.005、
特に
0.350≧B−A≧0.007、
の関係となつている。また、胴壁中央部1Cの厚
み方向配向係数Cが、0.25よりも小、特に0.20
よりも小となつており、換言すると中央部の面内
配向係数(C+C)が0.75よりも大、特に0.80
よりも大となつている。更に、
(C+C)−A+A)≧0.005、
(C+C)−(B+B)≧0.005
の関係となつている。
本発明の容器は、上述した通り、容器胴部の底
側端部に対して優先的に軸方向の分子配向効果が
付与され、肩側端部に対して優先的に周方向の分
子配向効果が付与され、しかも胴部の中央部にお
いて面内配向が最大となつていることが顕著な特
徴である。この特徴により、本発明の容器におい
ては、胴部中央部が熱や衝撃に対して強い構造と
なるばかりではなく、落下衝撃により底部と胴部
との接続部分や肩部と胴部との接続部分が破壊し
たり、或いは内容物の熱間充填に際してこれらの
接続部分が熱変形により収縮するのが効果的に防
止される。
本発明において、無定形熱可塑性樹脂から延伸
ブロー成形容器を製造することは、ゴム状弾性の
領域が広く、延伸成形作業性の点で顕著な利点を
示す。例えば結晶性熱可塑性樹脂の場合には、延
伸成形に適したゴム状弾性の領域が融点直下の温
度のように高く、延伸成形作業性の点で問題があ
り、しかも延伸成形後の容器は、結晶化に伴なう
白化を防止するためには急冷しなければならない
という煩わしさもある。これに対して、本発明に
よれば、無定形熱可塑性樹脂を用いることによ
り、このような制約なしに延伸ブロー成形が可能
となる。
本発明において、無定形とは、この熱可塑性樹
脂が示差熱分析学的に言つて、結晶の融解に伴な
う明確な吸熱ピークを示さないことを意味する。
好適な無定形熱可塑性樹脂は、ガスバリヤー性及
び成形性の点で塩化ビニル系樹脂例えば塩化ビニ
ルホモ重合体或いは塩化ビニルの多量と塩化ビニ
リデン、酢酸ビニル、アクリル系単量体と、ビニ
ルエーテル、ブタジエン等の少量とから成る共重
合体である。塩化ビニル系樹脂の他に、熱成形可
能なニトリル系重合体、ポリスチレン、ポリカー
ボネート、非晶質のポリエステル、アクリル(メ
タクリル)樹脂等も使用することができる。熱成
形可能なニトリル系重合体としては、アクリロニ
トリルまたはメタクリロニトリル60乃至95重量%
と、スチレン、ブタジエン、ビニルエーテル、ア
クリル酸エステル、メタクリル酸エステル等の少
なくとも1種5乃至40重量%とから成る共重合体
が好適であり、かかる共重合体はハイニトリル樹
脂の名称で、ガスバリヤー性に優れたものとして
知られている。
本発明の製造法は、先ず熱可塑性樹脂から成る
有底パリソンを製造する。この有底パリソンは、
樹脂の射出成形或いは溶融ブロー成形により製造
できる。次いで、この有底パリソンを、延伸可能
温度において、軸方向全延伸倍率の5乃至70%、
特に20乃至50%だけ、軸方向に少なくとも1段の
予備延伸に付する。最後に、この予備延伸パリソ
ンを軸方向に残りの延伸倍率だけ延伸すると共
に、流体の吹込みにより周方向に膨脹延伸させ
て、最終容器とする。
本発明において、無定形熱可塑性樹脂の延伸可
能温度は、具体的には樹脂の種類によつても相違
するが、一般的には、その樹脂のガラス転移温度
以上で且つ可塑性温度以下の温度である。塩化ビ
ニル系樹脂に対しては、80乃至40℃、ハイニトリ
ル樹脂に対しては8乃至130℃、スチレン系樹脂
に対しては90乃至145℃、ポリカーボネートに対
しては120乃至200℃、ポリメチルメタクリレート
に対しては120乃至180℃の温度範囲が適当であ
る。有底パリソンのこの温度への加熱は、有底パ
リソンを熱風炉、赤外線加熱炉等の加熱炉に通す
ことにより容易に行われる。
延伸ブロー成形は、延伸棒と割金型との組合せ
を使用して好適に行われる。この態様を示す第2
―A図、第2―B図及び第2―C図において、先
ず延伸可能温度に加熱された有底パリソン10の
口部11を一対の割型12a,12bで挾持し、
このパリソン10の口部11を通して、延伸棒1
3を挿入する(第2―A図)。次いで、延伸棒1
3の先端14をパリソン底部15に当接させ、こ
れを下方に押圧して軸方向に前述した予備延伸倍
率だけ予備延伸し、この状態で延伸棒13を停止
させる(第2―B図)。この軸方向予備延伸によ
り、パリソン胴壁16は軸方向に分子配向を受け
るが、この延伸操作が停止されるため延伸棒との
係合により拘束されているパリソン胴壁の底側端
部16A以外のパリソン胴壁では軸方向の分子配
向が停止時間に対応して緩和されるものと思われ
る。
本発明において、この停止時間は0.1乃至2
秒、特に0.2乃至1秒の範囲とすることが前述し
た目的に好都合である。
最後に、第2―C図に示す通り、延伸棒13を
下方に移動させることにより、パリソンを軸方向
に全延伸倍率だけ延伸し、延伸棒13に設けられ
た流体吹込口17を通してパリソン内方に流体を
吹込み、パリソンのブロー延伸を行うことによ
り、最終延伸ブロー成形容器18とする。
本発明によれば、このような多段延伸とそれに
続くブロー延伸との組合せにより、塩化ビニル系
樹脂パリソンを、1.2乃至3倍、特に1.5乃至2.8倍
の軸方向延伸と、1.2乃至8倍、特に1.2乃至6倍
のブロー延伸とを行うことが可能となり、更に容
器胴部に前述した特異な分子配向を付与すること
が可能となる。
本発明において、パリソンの日付量は用途によ
つても相違するが一般的に言つて、25乃至50g/
1000mlの範囲とするのがよい。
本発明を次の例で説明する。
複屈折の測定には日本光学工業(株)製、ニコン偏
光顕微鏡POH型を使用した。レターダーには付
属のバビネ型コンペンセーターを用いた。また、
試料のいずれか一方向への配向が著しく、従つて
屈折率の差が大きく、なおかつ試料が厚い場合に
は水晶のレターダーを併用して補正した。
実施例 1
平均重合度が=780のポリ塩化ビニル樹脂を
8オンスのインジエクシヨンにて肉厚3.05m/m
首部を除いた有効長さ119.5m/mのプリフオー
ムを成形し、次工程でこのプリフオームの温度を
均一に(約115℃)に調整し、次にこのプリフオ
ームをブロー金型内に送入し、延伸棒にてタテ軸
に1.3倍(肉厚2.58m/m有効長さ156.1m/m)
に延伸し、いつたん止めて後、直ちにこの1.3倍
に延伸されたプリフオームを更に1.4倍に(有効
長さ218.6m/m)タテ延伸(二段縦延伸)し、
ブロー圧10Kg/cm2にてブローし目付39g600c.c.の
延伸ブロー容器を得た。
比較として、上記と同様にして得られたプリフ
オームをいつきに1.8倍にタテ延伸し、実施例と
同形状の目付39g、600c.c.の延伸ブロー容器を得
ようと試みたが延伸棒が有底パリソン(プリフオ
ーム)の底部をつき破り、容器の成形が不可能で
あつた。
このようにして得られた二段縦延伸ブロー法に
よるポリ塩化ビニルボトルについて肩側端部の軸
方向配向係数(A)、同じく周方向配向係数(
A)、底側端部の軸方向配向係数(B)、同じく周
方向配向係数(B)、および中央部の軸方向配向
係数(C)、同じく周方向配向係数(C)およ
び厚さ方向配向係数(C)を本文記載の方法に
従つて測定した。
結果はB=0.345、B=0.429、A=0.404、
A=0.359、C=0.420、C=0.385、C=
0.195、であり、従つてA−B=0.059、B−
A=0.070、C+C=0.805なる値が得られ
た。
次に本発明の二段縦延伸ブロー法によるポリ塩
化ビニルボトル20本に10重量%の食塩水を充填
し、5℃の雰囲気(冷蔵庫)中に1昼夜放置した
のち、室温で1.2mの高さから各ボトルの底部が
コンクリート面に当るように落下させ、落下試験
を施行した。落下回数は最高10回迄くり返してお
こなつた。
ボトルの破損は1本も認められなかつた。
さらに本発明のボトル3本に70℃の熱水を満注
量充填し、室温で10分間放置したのち、熱水を抜
き取つて各ボトルの熱変形の程度を目視にて観察
した。
本発明の二段縦延伸ブロー法によつて成形され
たポリ塩化ビニルボトルには変形は全く認められ
なかつた。
実施例 2
平均重合度が=780のポリ塩化ビニール樹脂
を8オンスのインジエクシヨンにて肉厚2.91m/
m、首部を除いた有効長さ136.6m/mのプリフ
オームを成形し、次工程でこのプリフオームの温
度を均一に(約115℃)に調整し、次にこのプリ
フオームをブロー金型内に送入し、延伸棒にてタ
テ軸に1.15倍(肉厚2.58m/m有効長さ156.1m/
m)に延伸し、いつたん止めて後、直ちにこの
1.15倍に延伸されたプリフオームを更に1.4倍に
(有効長さ218.6m/m)タテ延伸しブロー圧10
Kg/cm2にてブローし目付39g、600c.c.の延伸ブロ
ー容器を得た。
比較として、上記と同様にして得られたプリフ
オームをいつきに1.6倍にタテ延伸し、実施例1
と同形状の目付39g、600c.c.の延伸ブロー容器を
得た。
このようにして得られた二段縦延伸ブロー法に
よるポリ塩化ビニルボトルについて肩側端部の軸
方向配向係数(A)、同じく周方向配向係数(
A)、底側端部の軸方向配向係数(B)、同じく周
方向配向係数(B)、および中央部の軸方向配向
係数(C)、同じく周方向配向係数(C)およ
び厚さ方向配向係数(C)を本文記載の方法に
従つて測定した。
結果はB=0.365、B=0.457、A=0.515、
A=0.367、C=0.490、C=0.366、C=
0.144であり、従つてA−B=0.150、B−A
=0.090、C+C=0.856なる値が得られた。
一方、いつきに1.6倍縦延伸(一段縦延伸)し
て得られたボトルからの前記各配向係数の結果は
B=0.392、B=0.390、A=0.394、A=
0.387、C=0.365、C=0.351、C=0.284であ
り、従つてA−B=0.002、B−A=0.003、
C+C=0.716であつた。
次に本発明の二段縦延伸ブロー法によるポリ塩
化ビニルボトル、および比較のために成形した通
常の一段縦延伸ブロー法によるポリ塩化ビニルボ
トル、各20本ずつに10重量%の食塩水を充填し、
5℃の雰囲気(冷蔵庫)中に1昼夜放置したの
ち、室温で1.2mの高さから各ボトルの底部がコ
ンクリート面に当るように落下させ、落下試験を
施行した。落下回数は最高10回迄くり返しておこ
なつた。表1に1回目に破損したボトルの本数、
5回迄および10回迄に破損したボトルの本数、お
よび10回のくり返し落下でも破損しなかつたボト
ルの本数をそれぞれ表1に示す。
表1から本発明の二段縦延伸ブロー法によるボ
トルのほうが通常の一段縦延伸ブロー法によるボ
トルよりも耐衝撃性が明らかに優れていることが
知られる。なお通常の一段法により成形されたボ
トルでは破損はいずれも底部コーナー部もしくは
口部下部から発生していた。
さらに本発明のボトルおよび比較のためのボト
ル各3本に70℃の熱水を満注量充填し、室温で10
分間放置したのち、熱水を抜き取つて各ボトルの
熱変形の程度を目視にて観察した。
通常の一段縦延伸ブロー成形法によるポリ塩化
ビニルボトルでは、いずれも口部下部および底部
に明らかに変形が認められた。これに対して、本
発明の二段縦延伸ブロー法によつて成形されたポ
リ塩化ビニルボトルには変形は全く認められなか
つた。
The present invention relates to a method for making stretch-blow-molded containers made of thermoplastic resins such as vinyl chloride resins, and more particularly to a method for producing stretch-blow-molded containers having novel orientation properties and significantly improved impact resistance. Regarding the manufacturing method. Vinyl chloride resin is a resin with excellent oxygen barrier properties and transparency, and its blow molded containers are
It is widely used as a container for containing cosmetics, detergents, liquid foods, or other liquid contents. It is already known to produce stretch blow molded containers from vinyl chloride resin, and according to a known method, vinyl chloride resin is injection molded or melt blow molded to produce a parison with a bottom, and this plastic is then molded into a parison. The bottom parison is longitudinally stretched in the axial direction in a mold using a stretching rod in a temperature range capable of stretching, and simultaneously or sequentially blow-stretched in the circumferential direction to form a stretch-blow-molded container. However, according to the known method, only a relatively low stretching ratio can be applied to the vinyl chloride resin container. It is difficult to give orientation. However, in bottle-shaped containers, including stretch-blow molded containers, the weakest part of the structure is not the center of the body, but rather the ends of the body, which are close to the shoulders and bottom of the bottle. Reinforcing both ends of the body is very important to prevent impact damage caused by dropping the bottle. The present inventors have proposed that when stretch-blow molding a bottomed parison made of a thermoplastic resin such as a vinyl chloride resin, the bottomed parison is subjected to multi-stage axial stretching and one-stage blow stretching as detailed below. The inventors have discovered that when this is done, new orientation characteristics are imparted to the container body, and the drop impact strength, heat resistance, etc. of the container are significantly improved. That is, an object of the present invention is to provide a method for producing a thermoplastic resin stretch-blow molded container with significantly improved impact resistance and heat resistance. Another object of the present invention is to provide a method for producing a thermoplastic resin stretch-blow molded container whose container body has novel orientation characteristics. Still another object of the present invention is to provide a method for manufacturing a stretch-blow-molded container with a low incidence of defects such as uneven thickness and overfill, and with less uneven stretching. According to the present invention, a bottomed parison made of a thermoplastic resin is subjected to at least one stage of preliminary stretching in the axial direction by 5 to 70% of the total axial stretching ratio at a stretching temperature, and after the stretching operation is temporarily stopped. Next, this pre-stretched parison is stretched in the axial direction by the remaining stretching ratio and expanded in the circumferential direction by blowing fluid into the body, bottom, shoulders and neck integrally formed of an amorphous thermoplastic resin. a stretch blow-molded container in which at least the body has biaxial molecular orientation; the body generally has an axial orientation coefficient from a shoulder end to a bottom end; gradually decreases, and the circumferential orientation coefficient gradually decreases from the bottom end to the shoulder end, and at least the central portion of the body has an orientation coefficient in the thickness direction of less than 0.25. Provided is a method for producing a stretch-blow-molded container with impact resistance that is characterized by a molded container whose impact resistance is suppressed to a low value. The invention will be explained in detail below. As shown in FIG. 1, the stretch blow-molded container manufactured by the method of the present invention has a body 1, a bottom 2, a shoulder 3, and a body 1, a bottom 2, a shoulder 3, and It consists of a neck part 4, and at least this body part 1 is molecularly oriented in two axial directions, that is, in the axial direction and in the circumferential direction, by stretch blowing. In the container manufactured by the method of the present invention, the body 1 made of the amorphous thermoplastic resin has an axial orientation coefficient that gradually decreases from the shoulder end 1A to the bottom end 1B. , and the bottom end 1B
The circumferential orientation coefficient gradually decreases from the to the shoulder end 1A, and at least the central portion 1C of the body has a thickness orientation coefficient.
It is characterized by suppressing it to a value lower than 0.25. In this specification, the orientation coefficient refers to the degree of orientation of the resin constituting the container wall in a certain specific direction, which is determined by birefringence measurement, and the orientation coefficient in the axial direction of the container is compared to the orientation coefficient in the circumferential direction of the container. The orientation coefficient of
When the orientation coefficient in the thickness direction of the container is expressed as: ++=1...(1) This is the value determined so that the orientation coefficient in the thickness direction of the container is expressed as: Thus, the fact that the orientation coefficient in a certain direction is large means that
This shows the fact that molecular orientation in this specific direction occurs preferentially compared to other directions. Details of the method for calculating the orientation coefficient are as follows. It is well known that polymers generally have different refractive indexes in the long axis direction and the short axis direction of the molecule. Therefore, when a polymer film, sheet, parison, etc. is stretched, the molecular chains are oriented in the direction of stretching, and the refractive index is different in the direction of orientation and in the direction perpendicular to it, and the difference in these refractive index values is called birefringence. , △. In the orthogonal three-dimensional coordinates (x, y, z), the x direction is the thickness direction of the container, the y direction is the circumferential direction, and the z direction is the axial direction, and the refractive index in each direction is n. Assuming x , ny , nz ,
The following formula n i = (n〓−n⊥)+n⊥ (i=x, y,
z) ...(2) In the formula, n N is the refractive index in the axial direction when the sample is completely uniaxially oriented, and n I is the refractive index in the direction perpendicular to the axial direction when the sample is also completely uniaxially oriented. ,
(i = x, y, z) was determined by R. SS TEIN et al. (J.
Applied Physics, 37 , 3990 (1966)). n〓 and n⊥ each have a unique value depending on the thermoplastic resin. For example, for polyvinyl chloride, Kiyoichi Matsumoto et al.
(1970)) and others. Therefore, birefringence, △ x = nz − ny , △ y = nz −
If any two values of n x , △ z = n x - n y are measured, R・SS TEIN report (J. Polymer
Sci., 24 , 383 (1957)),
, , is required. In addition, in this specification, the overall orientation tendency of the container body refers to slight irregularities or irregularities at the measurement position when the relationship between the distance from one end of the container body and the orientation coefficient is plotted. Even if there are variations, it means that there is a certain tendency as a whole, for example, an increasing tendency or a decreasing tendency. To explain this orientation tendency by giving specific numerical values for a preferred example, the axial orientation coefficient of the shoulder end 1A of the trunk wall is A , the circumferential orientation coefficient is A , and the axial orientation of the bottom end 1B is If the coefficient is B and the circumferential orientation coefficient is B , then 0.350≧ A − B ≧0.005, especially 0.300≧ A − B ≧0.007, 0.400≧ B − A ≧0.005, especially 0.350≧ B − A ≧0.007, It's summery. In addition, the thickness direction orientation coefficient C of the central portion 1C of the trunk wall is smaller than 0.25, especially 0.20.
In other words, the in-plane orientation coefficient ( C + C ) at the center is larger than 0.75, especially 0.80.
It's getting bigger than that. Furthermore, the relationships are ( C + C ) - A + A )≧0.005 and ( C + C ) - ( B + B )≧0.005. As described above, in the container of the present invention, an axial molecular orientation effect is preferentially imparted to the bottom end of the container body, and a circumferential molecular orientation effect is preferentially imparted to the shoulder end. It is a remarkable feature that the in-plane orientation is maximum at the center of the body. Due to this feature, in the container of the present invention, the center part of the body not only has a structure that is resistant to heat and shock, but also the connection between the bottom and the body and the connection between the shoulder and the body due to drop impact. This effectively prevents parts from breaking or shrinking due to thermal deformation of these connecting parts during hot filling with contents. In the present invention, manufacturing a stretch-blow-molded container from an amorphous thermoplastic resin has a wide range of rubber-like elasticity and exhibits significant advantages in terms of stretch-molding workability. For example, in the case of crystalline thermoplastic resins, the range of rubber-like elasticity suitable for stretch molding is as high as just below the melting point, which poses problems in terms of stretch molding workability. There is also the inconvenience that rapid cooling is required to prevent whitening due to crystallization. On the other hand, according to the present invention, by using an amorphous thermoplastic resin, stretch blow molding is possible without such restrictions. In the present invention, amorphous means that the thermoplastic resin does not exhibit a clear endothermic peak due to melting of crystals in terms of differential thermal analysis.
Suitable amorphous thermoplastic resins include vinyl chloride resins such as vinyl chloride homopolymers or large amounts of vinyl chloride, vinylidene chloride, vinyl acetate, acrylic monomers, vinyl ether, butadiene, etc. in terms of gas barrier properties and moldability. It is a copolymer consisting of a small amount of In addition to vinyl chloride resins, thermoformable nitrile polymers, polystyrene, polycarbonate, amorphous polyesters, acrylic (methacrylic) resins, and the like can also be used. As a thermoformable nitrile polymer, 60 to 95% by weight of acrylonitrile or methacrylonitrile
and 5 to 40% by weight of at least one of styrene, butadiene, vinyl ether, acrylic ester, methacrylic ester, etc. Such a copolymer is called a high nitrile resin and is used as a gas barrier resin. It is known for its excellent sex. In the manufacturing method of the present invention, first, a bottomed parison made of thermoplastic resin is manufactured. This bottomed parison is
It can be manufactured by resin injection molding or melt blow molding. Next, this bottomed parison is stretched at a stretching temperature of 5 to 70% of the total stretching ratio in the axial direction.
In particular, it is subjected to at least one pre-stretching in the axial direction by 20 to 50%. Finally, this pre-stretched parison is stretched in the axial direction by the remaining stretching ratio, and expanded and stretched in the circumferential direction by blowing fluid into the parison to form the final container. In the present invention, the stretchable temperature of the amorphous thermoplastic resin varies depending on the type of resin, but generally it is a temperature higher than the glass transition temperature and lower than the plastic temperature of the resin. be. 80 to 40℃ for vinyl chloride resin, 8 to 130℃ for high nitrile resin, 90 to 145℃ for styrene resin, 120 to 200℃ for polycarbonate, polymethyl A temperature range of 120 to 180°C is suitable for methacrylates. Heating the bottomed parison to this temperature is easily accomplished by passing the bottomed parison through a heating furnace such as a hot air oven or an infrared heating furnace. Stretch blow molding is suitably performed using a combination of a stretch rod and a split mold. A second example showing this aspect
-A, 2-B, and 2-C, first, the opening 11 of the bottomed parison 10 heated to a temperature that allows stretching is held between a pair of split molds 12a and 12b,
The drawing rod 1 is passed through the opening 11 of this parison 10.
3 (Figure 2-A). Next, the stretching rod 1
The tip 14 of the parison 3 is brought into contact with the parison bottom 15 and pressed downward to pre-stretch it in the axial direction by the aforementioned pre-stretching ratio, and in this state the stretching rod 13 is stopped (FIG. 2-B). Due to this axial pre-stretching, the parison body wall 16 undergoes molecular orientation in the axial direction, but since this stretching operation is stopped, all but the bottom end 16A of the parison body wall, which is restrained by engagement with the stretching rod, It is thought that the axial molecular orientation in the parison shell wall is relaxed in response to the stopping time. In the present invention, this stopping time is 0.1 to 2
seconds, especially in the range from 0.2 to 1 second, is advantageous for the above-mentioned purpose. Finally, as shown in FIG. 2-C, the parison is stretched in the axial direction by the entire stretching ratio by moving the stretching rod 13 downward, and the parison is drawn inside the parison through the fluid inlet 17 provided on the stretching rod 13. A final stretch-blow-molded container 18 is obtained by blowing fluid into the parison and blow-stretching the parison. According to the present invention, by combining such multi-stage stretching and subsequent blow stretching, the vinyl chloride resin parison is axially stretched 1.2 to 3 times, particularly 1.5 to 2.8 times, and 1.2 to 8 times, especially It becomes possible to carry out blow stretching of 1.2 to 6 times, and furthermore, it becomes possible to impart the above-mentioned unique molecular orientation to the container body. In the present invention, the amount of parison varies depending on the use, but generally speaking, it is 25 to 50g/
A range of 1000ml is recommended. The invention is illustrated by the following example. A Nikon polarizing microscope POH model manufactured by Nippon Kogaku Kogyo Co., Ltd. was used to measure birefringence. I used the included Babinet type compensator for the letterer. Also,
If the sample was significantly oriented in one direction, resulting in a large difference in refractive index, and if the sample was thick, a quartz crystal retarder was also used for correction. Example 1 A polyvinyl chloride resin with an average degree of polymerization of = 780 was molded into a wall thickness of 3.05 m/m using an 8 oz injection molding.
A preform with an effective length of 119.5 m/m excluding the neck is molded, and in the next step, the temperature of this preform is adjusted to be uniform (approximately 115°C), and then this preform is sent into a blow mold. 1.3 times the vertical axis with a stretching rod (wall thickness 2.58m/m effective length 156.1m/m)
Immediately after stretching and stopping, the preform stretched 1.3 times was further stretched vertically to 1.4 times (effective length 218.6 m/m) (two-stage longitudinal stretching),
It was blown at a blowing pressure of 10 kg/cm 2 to obtain a stretched blow container with a basis weight of 39 g and 600 c.c. For comparison, I tried to vertically stretch the preform obtained in the same manner as above by 1.8 times to obtain a stretch-blown container with a weight of 39 g and 600 c.c. having the same shape as in the example, but there was no need for a stretching rod. The bottom of the bottom parison (preform) was pierced, making it impossible to form a container. For the polyvinyl chloride bottle obtained by the two-stage longitudinal stretch blow method obtained in this way, the axial orientation coefficient ( A ) of the shoulder end and the circumferential orientation coefficient (
A ), the axial orientation coefficient of the bottom end ( B ), the same circumferential orientation coefficient ( B ), and the axial orientation coefficient of the central part ( C ), the same circumferential orientation coefficient ( C ) and the thickness direction The coefficient ( C ) was measured according to the method described in the text. The results are B = 0.345, B = 0.429, A = 0.404,
A = 0.359, C = 0.420, C = 0.385, C =
0.195, so A − B = 0.059, B −
The values A = 0.070 and C + C = 0.805 were obtained. Next, 20 polyvinyl chloride bottles produced by the two-stage longitudinal stretch blowing method of the present invention were filled with 10% by weight saline solution, left in an atmosphere (refrigerator) at 5°C for one day and night, and then heated to a height of 1.2 m at room temperature. A drop test was conducted by dropping each bottle from the side so that the bottom touched the concrete surface. The number of falls was repeated up to 10 times. Not a single bottle was found to be damaged. Further, three bottles of the present invention were fully filled with hot water at 70°C, and after being left at room temperature for 10 minutes, the hot water was removed and the degree of thermal deformation of each bottle was visually observed. No deformation was observed in the polyvinyl chloride bottle molded by the two-stage longitudinal stretch blow method of the present invention. Example 2 Polyvinyl chloride resin with an average degree of polymerization of = 780 was molded into a wall thickness of 2.91 m/m using an 8 oz in-die extension.
m, a preform with an effective length of 136.6 m/m excluding the neck is molded, the temperature of this preform is adjusted uniformly (approximately 115°C) in the next process, and then this preform is sent into a blow mold. 1.15 times (wall thickness 2.58m/m effective length 156.1m/
m), and after stopping, immediately
The preform stretched 1.15 times is further stretched vertically to 1.4 times (effective length 218.6 m/m) and blowing pressure 10
It was blown at Kg/cm 2 to obtain a stretch-blown container with a basis weight of 39 g and 600 c.c. For comparison, a preform obtained in the same manner as above was vertically stretched to 1.6 times, and Example 1
A stretch-blown container of the same shape and weight of 39 g and 600 c.c. was obtained. For the polyvinyl chloride bottle obtained by the two-stage longitudinal stretch blow method obtained in this way, the axial orientation coefficient ( A ) of the shoulder end and the circumferential orientation coefficient (
A ), the axial orientation coefficient of the bottom end ( B ), the same circumferential orientation coefficient ( B ), and the axial orientation coefficient of the central part ( C ), the same circumferential orientation coefficient ( C ) and the thickness direction The coefficient ( C ) was measured according to the method described in the text. The results are B = 0.365, B = 0.457, A = 0.515,
A = 0.367, C = 0.490, C = 0.366, C =
0.144, so A − B = 0.150, B − A
= 0.090, and C + C = 0.856. On the other hand, the results of each orientation coefficient from the bottle obtained by longitudinal stretching 1.6 times (single-stage longitudinal stretching) are
B = 0.392, B = 0.390, A = 0.394, A =
0.387, C = 0.365, C = 0.351, C = 0.284, so A − B = 0.002, B − A = 0.003,
C + C = 0.716. Next, 20 polyvinyl chloride bottles molded by the two-stage longitudinal stretch blow method of the present invention and a polyvinyl chloride bottle molded by the ordinary single-stage longitudinal stretch blow method for comparison were filled with 10% by weight saline solution. death,
After being left in a 5°C atmosphere (refrigerator) for one day and night, a drop test was performed by dropping each bottle from a height of 1.2 m at room temperature so that the bottom of each bottle touched the concrete surface. The number of falls was repeated up to 10 times. Table 1 shows the number of bottles that were damaged the first time.
Table 1 shows the number of bottles that were broken up to 5 times and up to 10 times, and the number of bottles that remained undamaged even after being dropped 10 times. From Table 1, it is known that the impact resistance of the bottle produced by the two-stage longitudinal stretch-blowing method of the present invention is clearly superior to that of the bottle produced by the conventional single-stage longitudinal stretch-blowing method. In addition, for bottles molded using the conventional one-step method, breakage occurred from the bottom corners or the lower part of the mouth. Furthermore, three bottles each of the present invention and three bottles for comparison were filled with hot water at 70°C, and
After standing for a minute, the hot water was removed and the degree of thermal deformation of each bottle was visually observed. In all of the polyvinyl chloride bottles produced by the conventional one-stage longitudinal stretch blow molding method, clear deformation was observed in the lower part of the mouth and the bottom. On the other hand, no deformation was observed in the polyvinyl chloride bottle molded by the two-stage longitudinal stretch blow method of the present invention.
【表】
一方、本発明の二段縦延伸ブロー法によるポリ
塩化ビニルボトル、および比較のために成形した
通常の一段縦延伸ブロー法によるポリ塩化ビニル
ボトルについて肩側端部から底側端部の対応部
分、11個所についての各ボトルの肉厚を計測した
結果を表2に示す。本発明のボトルでは肉厚値の
バラツキが明らかに少なく、偏肉が明らかに少な
いことがこの表から知られる。[Table] On the other hand, for the polyvinyl chloride bottle molded by the two-stage longitudinal stretch blowing method of the present invention and the polyvinyl chloride bottle molded by the ordinary single-stage longitudinal stretch blowing method molded for comparison, from the shoulder end to the bottom end. Table 2 shows the results of measuring the wall thickness of each bottle at 11 corresponding locations. It can be seen from this table that the bottles of the present invention have clearly less variation in wall thickness values and less uneven thickness.
【表】
実施例 3
平均重合度が=780のポリ塩化ビニル樹脂を
8オンスのインジエクシヨンにて肉厚3.01m/m
首部を除いた有効長さ125.0m/mのプリフオー
ムを成形し、次工程でこのプリフオームの温度を
均一に(約117℃)に調整し、次にこのプリフオ
ームをブロー金型内に送入し、延伸棒にてタテ軸
に1.28倍(肉厚2.80m/m有効長さ160.7m/m)
に延伸し、いつたん止めて後、直ちにこの1.28倍
に延伸されたプリフオームを更に1.4倍に(有効
長さ225m/m)タテ延伸し、ブロー圧10Kg/cm2
にてブローし、目付40g、1000c.c.の延伸ブロー容
器を得た。
比較として、上記と同様にして得られたプリフ
オームをいつきに1.8倍にタテ延伸し、実施例と
同形状の目付40g、1000c.c.の延伸ブロー容器を得
ようと試みたが延伸棒有底パリソン(プリフオー
ム)の底部をつき破り、容器の成形が不可能であ
つた。
このようにして得られた二段縦延伸ブロー法に
よるポリ塩化ビニルボトルについて肩側端部の軸
方向配向係数(A)、同じく周方向配向係数(
A)、底側端部の軸方向配向係数(B)、同じく周
方向配向係数(B)、および中央部の軸方向配向
係数(C)、同じく周方向配向係数(C)およ
び厚さ方向配向係数(C)を本文記載の方法に
従つて測定した。
結果はB=0.350、B=0.446、A=0.371、
A=0.438、C=0.403、C=0.370、C=
0.227であり、従つてA−B=0.021、B−A
=0.006、C+C=0.775なる値が得られた。
次に本発明の二段縦延伸ブロー法によるポリ塩
化ビニルボトル20本に10重量%の食塩水を充填
し、5℃の雰囲気(冷蔵庫)中に1昼夜放置した
のち、室温で1.2mの高さから各ボトルの底部が
コンクリート面に当るように落下させ、落下試験
を施行した。落下回数は最高10回迄くり返してお
こなつた。
ボトルの破損は7回目に1本認められた。
さらに本発明のボトル3本に70℃の熱水を満注
量充填し、室温で10分間放置したのち、熱水を抜
き取つて各ボトルの熱変形の程度を目視にて観察
した。
本発明の二段縦延伸ブロー法によつて成形され
たポリ塩化ビニルボトルには変形は全く認められ
なかつた。
実施例 4
アクリロニトリル72重量%のアクリロニトリル
スチレン共重合体樹脂を、8オンスのインジエク
シヨンにて肉厚3.35m/m、首部を除いた延伸有
効長さ120.0m/mのプリフオームを形成し、次
工程にて、このプリフオームの温度を、均一(約
110℃)に調整し、ブロー金型内に送入し、延伸
棒にてタテ軸に先づ1.12倍(有効長さ134m/
m)に延伸し、延伸をいつたん止めた後、直ちに
1.15倍(有効長さ154.2m/m)に2段目のタテ
延伸を行い、更にこの延伸されたプリフオームを
1.4倍(有効長さ216.0m/m)に3段目のタテ延
伸を行いブロー圧10Kg/cm2にてブローし、1000c.c.
(目付41g)の延伸ブロー容器を得た。
比較として上記と同様のプリフオームをいつき
に1.8倍にタテ延伸し、実施例と同じ、1000c.c.の
延伸ブロー容器を得ようと試みたが、延伸棒がプ
リフオームの底部をつき破り、容器の成形が不可
能であつた。
このようにして得られた二段縦延伸ブロー法に
よるアクリロニトリル・スチレン共重合体ボトル
について肩側端部の軸方向配向係数(A)、同じ
く周方向配向係数(A)、底側端部の軸方向配向
係数(B)、同じく周方向配向係数(B)およ
び中央部の軸方向配向係数(C)、同じく周方向
配向係数(C)および厚さ方向配向係数(C)
を本文記載の方法に従つて測定した。
結果はB=0.404、B=0.391、A=0.411、
A=0.357、C=0.465、C=0.365、C=
0.170であり、従つてA−B=0.007、B−A
=0.034、C+C=0.830なる値が得られた。
次に本発明の二段縦延伸ブロー法によるポリ塩
化ビニルボトル20本に10重量%の食塩水を充填
し、5℃の雰囲気(冷蔵庫)中に1昼夜放置した
のち、室温で1.2mの高さから各ボトルの底部が
コンクリート面に当るように落下させ、落下試験
を施行した。落下回数は最高10回迄くり返してお
こなつた。
ボトルの破損は1本も認められなかつた。
さらに本発明のボトル3本に70℃の熱水を満注
量充填し、室温で10分間放置したのち、熱水を抜
き取つて各ボトルの熱変形の程度を目視にて観察
した。
本発明の二段縦延伸ブロー法によつて成形され
たポリ塩化ビニルボトルには変形は全く認められ
なかつた。[Table] Example 3 Polyvinyl chloride resin with an average degree of polymerization of = 780 was molded into a wall thickness of 3.01 m/m using an 8 oz injection molding.
A preform with an effective length of 125.0 m/m excluding the neck is molded, and in the next step, the temperature of this preform is adjusted to be uniform (approximately 117°C), and then this preform is sent into a blow mold. 1.28 times the vertical axis with a stretching rod (wall thickness 2.80m/m effective length 160.7m/m)
Immediately after stopping, the preform stretched 1.28 times was further vertically stretched 1.4 times (effective length 225 m/m), and the blowing pressure was 10 kg/cm 2.
A stretched blow container with a basis weight of 40 g and a capacity of 1000 c.c. was obtained. For comparison, I tried to vertically stretch the preform obtained in the same manner as above by 1.8 times to obtain a stretch-blown container with a fabric weight of 40 g and 1000 cc. The bottom of the parison (preform) was pierced, making it impossible to form a container. For the polyvinyl chloride bottle obtained by the two-stage longitudinal stretch blow method obtained in this way, the axial orientation coefficient ( A ) of the shoulder end and the circumferential orientation coefficient (
A ), the axial orientation coefficient of the bottom end ( B ), the same circumferential orientation coefficient ( B ), and the axial orientation coefficient of the central part ( C ), the same circumferential orientation coefficient ( C ) and the thickness direction The coefficient ( C ) was measured according to the method described in the text. The results are B = 0.350, B = 0.446, A = 0.371,
A = 0.438, C = 0.403, C = 0.370, C =
0.227, so A − B = 0.021, B − A
= 0.006, C + C = 0.775 were obtained. Next, 20 polyvinyl chloride bottles produced by the two-stage longitudinal stretch blowing method of the present invention were filled with 10% by weight saline solution, left in an atmosphere (refrigerator) at 5°C for one day and night, and then heated to a height of 1.2 m at room temperature. A drop test was conducted by dropping each bottle from the side so that the bottom touched the concrete surface. The number of falls was repeated up to 10 times. One bottle was found to be damaged on the seventh occasion. Further, three bottles of the present invention were fully filled with hot water at 70°C, and after being left at room temperature for 10 minutes, the hot water was removed and the degree of thermal deformation of each bottle was visually observed. No deformation was observed in the polyvinyl chloride bottle molded by the two-stage longitudinal stretch blow method of the present invention. Example 4 An acrylonitrile styrene copolymer resin containing 72% by weight of acrylonitrile was formed into a preform with a wall thickness of 3.35 m/m and an effective stretching length of 120.0 m/m excluding the neck using an 8-ounce in-die extrusion, and then subjected to the next process. to keep the temperature of this preform uniform (approximately
Adjust the temperature to 110℃), feed it into a blow mold, and use a stretching rod to stretch it by 1.12 times (effective length 134m/
m) and immediately after stopping the stretching.
A second stage of vertical stretching is performed to 1.15 times (effective length 154.2 m/m), and this stretched preform is
The third stage of vertical stretching was performed to 1.4 times (effective length 216.0 m/m) and blowing was performed at a blowing pressure of 10 Kg/cm 2 to 1000 c.c.
(Weight: 41 g) A stretched blow container was obtained. For comparison, an attempt was made to vertically stretch the same preform as above by 1.8 times to obtain a 1000 c.c. stretch-blown container, the same as in the example, but the stretching rod broke through the bottom of the preform, causing the container to collapse. It was impossible to mold it. Regarding the acrylonitrile-styrene copolymer bottle obtained by the two-stage longitudinal stretch blowing method, the axial orientation coefficient ( A) at the shoulder end, the circumferential orientation coefficient (A ), and the axial orientation coefficient ( A ) at the bottom end. directional orientation coefficient ( B ), also circumferential orientation coefficient ( B ) and central axial orientation coefficient ( C ), also circumferential orientation coefficient ( C ) and thickness direction orientation coefficient ( C )
was measured according to the method described in the text. The results are B = 0.404, B = 0.391, A = 0.411,
A = 0.357, C = 0.465, C = 0.365, C =
0.170, so A − B = 0.007, B − A
= 0.034, and C + C = 0.830. Next, 20 polyvinyl chloride bottles produced by the two-stage longitudinal stretch blowing method of the present invention were filled with 10% by weight saline solution, left in an atmosphere (refrigerator) at 5°C for one day and night, and then heated to a height of 1.2 m at room temperature. A drop test was conducted by dropping each bottle from the side so that the bottom touched the concrete surface. The number of falls was repeated up to 10 times. Not a single bottle was found to be damaged. Further, three bottles of the present invention were fully filled with hot water at 70°C, and after being left at room temperature for 10 minutes, the hot water was removed and the degree of thermal deformation of each bottle was visually observed. No deformation was observed in the polyvinyl chloride bottle molded by the two-stage longitudinal stretch blow method of the present invention.
第1は、本発明の延伸ブロー成形容器の全体を
示す図、第2―A図、第2―B図及び第2―C図
は、延伸ブロー成形のプロセスを示す説明図であ
つて、
引照数字1は胴部(1Aは肩側端部、1Bは底
側端部、1Cは中心部)、2は底部、3は肩部、
4は首部、10は有底パリソン、11は有底パリ
ソン10の口部、12a及び12bは対となつて
いる割型、13は延伸棒、14は延伸棒13の先
端、15はパリソン底部、16はパリソン胴壁、
16Aはパリソン胴壁の底側端部、17は流体吹
込み口、18は最終延伸ブロー成形容器を夫々示
す。
The first is a diagram showing the entire stretch blow molded container of the present invention, and Figure 2-A, Figure 2-B, and Figure 2-C are explanatory diagrams showing the process of stretch blow molding. Number 1 is the torso (1A is the shoulder end, 1B is the bottom end, 1C is the center), 2 is the bottom, 3 is the shoulder,
4 is a neck, 10 is a bottomed parison, 11 is a mouth of the bottomed parison 10, 12a and 12b are paired split molds, 13 is a stretching rod, 14 is a tip of the stretching rod 13, 15 is a bottom of the parison, 16 is the parison body wall;
16A represents the bottom end of the parison body wall, 17 represents the fluid inlet, and 18 represents the final stretch blow molded container.
Claims (1)
能温度において軸方向全延伸倍率の5乃至70%だ
け軸方向に少なくとも1段の予備延伸に付し、延
伸操作を一旦停止した後、次いでこの予備延伸パ
リソンを軸方向に残りの延伸倍率だけ延伸すると
共に、流体の吹込みにより周方向に膨脹させ、 無定形熱可塑性樹脂で一体に形成された胴部、
底部、肩部及び首部から成り、少なくとも前記胴
部は二軸方向に分子配向されている延伸ブロー成
形容器であつて、前記胴部は全体的に言つて肩側
単部から底側端部に向けて軸方向配向係数が次
第に小となり、且つ底側単部から肩側端部に向け
て周方向配向係数が次第に小となる配向傾向を
有し、且つ前記胴部の少なくとも中央部は厚み方
向配向係数が0.25よりも低い値に抑制されてい
る成形容器とすることを特徴とする耐衝撃性延伸
ブロー成形容器の製法。 2 熱可塑性樹脂が塩化ビニル系樹脂である特許
請求の範囲第1項記載の製法。 3 前記パリソンを全体として1.2乃至3の軸方
向延伸倍率で延伸し且つ1.2乃至8倍の周方向延
伸倍率でブロー延伸する特許請求の範囲第1項記
載の方法。 4 予備延伸とそれに続く延伸との間で延伸操作
を0.1乃至2秒間停止する特許請求の範囲第1項
記載の方法。[Scope of Claims] 1. A bottomed parison made of a thermoplastic resin is subjected to at least one stage of preliminary stretching in the axial direction by 5 to 70% of the total axial stretching ratio at a stretching temperature, and the stretching operation is temporarily stopped. Then, this pre-stretched parison is stretched in the axial direction by the remaining stretching ratio, and expanded in the circumferential direction by blowing fluid into the body, which is integrally formed of an amorphous thermoplastic resin.
A stretch blow molded container comprising a bottom, a shoulder and a neck, at least the body having biaxial molecular orientation, the body generally extending from the shoulder end to the bottom end. The body has an orientation tendency in which the axial orientation coefficient gradually decreases toward the shoulder end, and the circumferential orientation coefficient gradually decreases from the bottom single part toward the shoulder end, and at least the central part of the body part has an orientation in the thickness direction. A method for producing an impact-resistant stretch-blow-molded container, characterized by forming a molded container whose orientation coefficient is suppressed to a value lower than 0.25. 2. The manufacturing method according to claim 1, wherein the thermoplastic resin is a vinyl chloride resin. 3. The method of claim 1, wherein the parison as a whole is stretched at an axial stretch ratio of 1.2 to 3 and blow stretched at a circumferential stretch ratio of 1.2 to 8. 4. The method according to claim 1, wherein the stretching operation is stopped for 0.1 to 2 seconds between the preliminary stretching and the subsequent stretching.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56125923A JPS5829632A (en) | 1981-08-13 | 1981-08-13 | Orientated and blow molded container and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56125923A JPS5829632A (en) | 1981-08-13 | 1981-08-13 | Orientated and blow molded container and manufacture thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5829632A JPS5829632A (en) | 1983-02-21 |
JPS628291B2 true JPS628291B2 (en) | 1987-02-21 |
Family
ID=14922287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56125923A Granted JPS5829632A (en) | 1981-08-13 | 1981-08-13 | Orientated and blow molded container and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5829632A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3815193A1 (en) * | 1988-05-04 | 1989-11-16 | Krupp Corpoplast Masch | Process and apparatus for blow moulding a hollow body from thermoplastic material |
US5290506A (en) * | 1991-04-30 | 1994-03-01 | Nissei Asb Machine Co., Ltd. | Process of injection stretch blow molding hollow article having thick-walled bottom |
ES2910992T3 (en) * | 2013-08-01 | 2022-05-17 | Sa Des Eaux Minerales Devian S A E M E | Preform and method for manufacturing a PEF container by injection stretch blow molding |
-
1981
- 1981-08-13 JP JP56125923A patent/JPS5829632A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5829632A (en) | 1983-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0494098B2 (en) | Method of blow moulding container | |
JP5058825B2 (en) | Process for forming a container by stretch blow molding, and container formed by the process | |
US5622735A (en) | Fluid supply apparatus for blow mold | |
US4318882A (en) | Method for producing a collapse resistant polyester container for hot fill applications | |
US4497855A (en) | Collapse resistant polyester container for hot fill applications | |
US4725464A (en) | Refillable polyester beverage bottle and preform for forming same | |
JPH036061B2 (en) | ||
WO1988001563A1 (en) | Production of polyester hollow molded article | |
US4603066A (en) | Poly(ethylene terephthalate) articles | |
JPH01154723A (en) | Random copolymer polypropylene vessel and manufacture thereof | |
JPS6356104B2 (en) | ||
JPS628291B2 (en) | ||
JPH05200839A (en) | Production of heat and pressure-resistant bottle | |
JP2998559B2 (en) | One-piece heat-resistant polyester bottle and its manufacturing method | |
JPS5841182B2 (en) | Method for manufacturing hot-fillable plastic containers | |
JP3802970B2 (en) | Propylene polymer container excellent in impact resistance and method for producing the same | |
JPH01157828A (en) | Heat-setting polyester orientation molding container | |
JPS6410329B2 (en) | ||
JP2757732B2 (en) | Polyester container having a body part partially different in crystallinity and method for producing the same | |
JPS5820634A (en) | Plastic vessel | |
JPS60189418A (en) | Manufacture of heat resisting polyester bottle | |
JPH0272925A (en) | Manufacture of stretched blow bottle with handle | |
JPH0324934A (en) | Preparation of drinking container made of polyester | |
JPS5850177B2 (en) | Method for manufacturing biaxially oriented bottles | |
JPH0421577B2 (en) |