JPS6282381A - Sonar device - Google Patents

Sonar device

Info

Publication number
JPS6282381A
JPS6282381A JP22443785A JP22443785A JPS6282381A JP S6282381 A JPS6282381 A JP S6282381A JP 22443785 A JP22443785 A JP 22443785A JP 22443785 A JP22443785 A JP 22443785A JP S6282381 A JPS6282381 A JP S6282381A
Authority
JP
Japan
Prior art keywords
signal
frequency
target
received signal
inputted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22443785A
Other languages
Japanese (ja)
Inventor
Masaaki Shishido
宍戸 正昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP22443785A priority Critical patent/JPS6282381A/en
Publication of JPS6282381A publication Critical patent/JPS6282381A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To find the relative speed between a target and a ship in the sea at the same time even with a linear frequency-modulated acoustic wave by finding the correla tion between both of them by varying the frequency of a transmitted signal, bit by bit, and calculating the quantity of frequency variation with which the correlation is maximum. CONSTITUTION:A received signal inputted to a receiver 22 is passed through a receiving amplification parts 31 and a BPF 32 to have its unnecessary band removed and also inputted to an AD converter 41, and the receive signal 100 form calculating and displaying the distance and the direction of the target is obtained. On the other hand, the received signal passed through the converter 41 and a fast Fourier transform processor 42 becomes a received signal expressed by frequency space and inputted to a window integrator 51. The received signal expressed by the frequency space is integrated by the integrator 51 within the range of the band width of the transmitted signal. Then, a peak detector 52 calculates the integral value corresponding to the difference between the position of the integral range of the received signal and the position of the band width of the transmitted signal and also finds the quantity of frequency variation corresponding to the maximum value. A signal corresponding to this quantity of variation is inputted to a speed calculator 53 to calculate the relative speed between the ship and target.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はソーナー装置に関し、特に直線周波数変調され
た音波を用いるのと同時に目標からの反射音波と発射音
波との間でドプラ周波数を検出しこれより目標と本発明
のソーナー装置を搭載している船舶との間の相対速度を
検出できるソーナー装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a sonar device, and particularly to a sonar device that uses linear frequency modulated sound waves and simultaneously detects the Doppler frequency between the reflected sound waves from the target and the emitted sound waves. The present invention relates to a sonar device capable of detecting the relative speed between a target and a ship equipped with the sonar device of the present invention.

〔従来の技術〕[Conventional technology]

従来直線状周波数変調方式を採用したソーナー装置は、
目標から反射して戻って来た受信信号に対して時間圧縮
などの信号処理を行い、目標からの信号が微弱でありそ
も信号対雑音比の向上が著るしいので広く用いられてい
る。しかし目標とソーナー装置を搭載した船舶との相対
速度を、反射波のドプラ周波数の検出により求めるには
、送信波が単一の周波数の場合に限って求め得ることが
通例である。
Sonar equipment that conventionally uses linear frequency modulation method is
Signal processing such as time compression is performed on the received signal reflected back from the target, and it is widely used because it significantly improves the signal-to-noise ratio even though the signal from the target is weak. However, in order to determine the relative speed between a target and a ship equipped with a sonar device by detecting the Doppler frequency of the reflected waves, it is usually possible to determine the relative speed only when the transmitted waves have a single frequency.

そのため、上述のソーナー装置で目標と船舶との相対速
度を求めるには、単一周波数の音波をある一定時間(一
般には上述のソーナー装置と同程度の時間)送信し、そ
の周波数と反射音波の周波数との間でドブ2周波数を求
めて、相対速度の検出を行っている。
Therefore, in order to determine the relative speed between a target and a ship using the above-mentioned sonar device, a single-frequency sound wave is transmitted for a certain period of time (generally about the same time as the above-mentioned sonar device), and the frequency and reflected sound wave are The relative velocity is detected by finding the double frequency between the two frequencies.

従って、目標までの距離または方位を求める機能と、目
標と船舶との相対速度を求める機能とは同時に満足でき
ず、そのためこれらの必要情報を収集するに際していず
れか一方の機能を満足する時間に比べて約2倍の時間と
消費電力が必要になる。
Therefore, the function of determining the distance or direction to the target and the function of determining the relative speed between the target and the ship cannot be satisfied at the same time, and therefore, when collecting these necessary information, it takes more time than it takes to satisfy either function. This will require approximately twice as much time and power consumption.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明が解決しようとする従来の技術の問題点は上述の
ように、海中の目標までの距離または方位を求める機能
と、目標と船舶との相対速度を求める機能とは同時に満
足できず1両者の機能を満足させるためにはいずれか一
方の機能を満足する時間に比べて約2倍の時間と消費電
力を必要とする点にある。
The problem with the conventional technology that the present invention aims to solve is, as described above, that the function of determining the distance or direction to an underwater target and the function of determining the relative speed between the target and the ship cannot be satisfied at the same time. In order to satisfy these functions, approximately twice the time and power consumption are required compared to the time required to satisfy either function.

従って本発明の目的は、上記欠点を解決したンーナー装
置V提供することにある。
SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a tuner device V that overcomes the above-mentioned drawbacks.

〔問題点を解決するための手段〕 本発明のンーナー装置は、直線状周波数変調された音波
を送受信するソーナー装置において、直線状周波数変調
された送信信号を出力する送信手段と、1記送信信号を
入力し音波に変換して水中に放射し目標から反射して戻
って来た音波を電気信号に変換して出力する送受波手段
と、前記電気信号を入力し増幅戸波して受信信号を出力
する受信手段と、前記受信信号をデジタル化しフーリエ
変換して周波数領域信号を出力する変換手段と、前記周
波数領域信号をあらかじめ定められた周波数ごとにずら
しつつ前記送信音波の変調周波数幅で切り出し前記変調
周波幅の積分を求めその算大値に対応する周波数帯域と
送信周波数の差からソーナー装置と目標との相対速度信
号を併せ出力する信号処理手段とを備えて構成される。
[Means for Solving the Problems] The sonar device of the present invention is a sonar device that transmits and receives linear frequency modulated sound waves, and includes a transmitting means that outputs a linear frequency modulated transmission signal, and a sonar device that outputs a linear frequency modulated transmission signal; a wave transmitting/receiving means that inputs the electrical signal, converts it into a sound wave, radiates it into the water, converts the sound wave reflected from the target and returns to an electrical signal, and outputs it; and a wave transmitting and receiving means that inputs the electrical signal, amplifies it, and outputs a received signal a receiving means for digitizing and Fourier transforming the received signal to output a frequency domain signal; and a converting means for outputting a frequency domain signal by digitizing and Fourier transforming the received signal; It is configured to include a signal processing means that calculates the integral of the frequency width and outputs a relative velocity signal between the sonar device and the target based on the difference between the frequency band corresponding to the calculated value and the transmission frequency.

〔実施例〕〔Example〕

次に本発明について実施例を示す図面を参照して詳細に
説明する。第1図は本発明の一実施例の構成を示すブロ
ック図、第2図(a)および(b)は本発明の送信レベ
ルを周波数空間および時間空間で表わす図表、第2図(
C)および(d)は本発明の受信レベルを周波数空間お
よび時間空間で表わす図表、第3図(a)および(b)
は本発明の受信レベルを周波数空間で表わし送信波の周
波数幅で積分する関係およびその結果を表わす図表、第
4図(a)および(b)は一般的な送信レベルを時間空
間および周波数空間で表わす図表、第4図(C)および
(d)は一般的な受信レベルを時間空間および周波数空
間で表わす図表である。
Next, the present invention will be described in detail with reference to drawings showing embodiments. FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention, FIGS. 2(a) and 2(b) are charts representing the transmission level of the present invention in frequency space and time space,
C) and (d) are graphs representing the reception level of the present invention in frequency space and time space, FIG. 3 (a) and (b)
4(a) and (b) are graphs showing the relationship and results of representing the received level of the present invention in frequency space and integrating it over the frequency width of the transmitted wave, and Figures 4(a) and (b) show the general transmitted level in time space and frequency space. The charts shown in FIGS. 4(C) and 4(d) are charts showing general reception levels in time space and frequency space.

本発明の実施例の概要について説明する。An overview of embodiments of the present invention will be described.

まず第4図(a)〜(d)をみるに時間空間で表わした
送信信号が、第4図(a)のように時間tに対して振幅
がh(t)で表わされる場合(t=0は基準値を示す)
は、これを音波として海中に放射する。この音波が目標
で反射して戻って来たとき、受信信号は時間空間では第
4図に示すように、時間tに対して振幅がf (t)で
表わされる(t=0は基準値で第4図(a)の基準値と
は異っている)ものとする。
First, looking at FIGS. 4(a) to 4(d), when the transmitted signal expressed in time and space has an amplitude expressed by h(t) with respect to time t as shown in FIG. 4(a) (t= 0 indicates the reference value)
radiates this into the ocean as sound waves. When this sound wave is reflected by the target and returns, the received signal has an amplitude expressed in time and space as f (t) with respect to time t, as shown in Figure 4 (t = 0 is the reference value). 4(a)).

これら送信信号および受信信号を周波数空間で表わせば
、それぞれ周波数角速度ωに対して第4図(b)のH(
ω)および第4図(d)のF ((=))のようになり
、受信信号の周波数角速度範囲は送信信号のそれに比べ
て60Mだけ高い所に存在し、ドプラ効果に従えば目標
が近付いていることを示している。
If these transmitted signals and received signals are expressed in frequency space, H(
ω) and F ((=)) in Figure 4(d), the frequency angular velocity range of the received signal is 60M higher than that of the transmitted signal, and according to the Doppler effect, the target is approaching. It shows that

この方法の具体化には、まず時間空間にある送信および
受信信号を、それぞれ周波数空間の送信信号H(Q))
および受信信号F(→に変換する。そしてそのいずれか
一方の周波数を少しずつ変化させながら両者の相関を求
め、さらにその相関が最大値を示す周波数変化量ΔωM
を求めればよい。従って、周波数空間で表わされた送信
信号H((ロ)と受信信号F(ω)のうちいずれか一方
を定数または定数に準する形態に制御することができれ
ば、相関演算は極めて簡単となる。そこでこの二つの信
号のうち制御の容易な送信信号H((社)を、定数また
はこれに準する形態とする方法を述べる。
To implement this method, first, we convert the transmitted and received signals in time space to the transmitted signal H(Q) in frequency space, respectively.
and the received signal F (→).Then, while changing the frequency of either one little by little, the correlation between the two is determined, and the amount of frequency change ΔωM at which the correlation shows the maximum value is
All you have to do is ask for. Therefore, if either one of the transmitted signal H((b) and received signal F(ω) expressed in frequency space can be controlled to a constant or a form similar to a constant, the correlation calculation will be extremely simple. Therefore, a method will be described in which the transmission signal H (Company), which is easier to control out of these two signals, is made into a constant or a form similar to this.

第2図(a)〜(d)を見るに、相関演算の一方の信号
である周波数空間で表わされた送信信号H(ω)を、第
2図(a)のように周波数範囲を限定し、その振幅を一
定とする。この周波数空間で表わされた送信信号H(−
を時間空間の送信信号h (gに変換すると、第2図(
b)のようになるがエネルギは時間的に分散されるので
、その大部分(例えば全エネルギの80チを占める範囲
)を含む範囲内を送信に用いれば、振幅も大きな変化を
しない(例えばこの範囲に全エネルギの80%を含ませ
るようにすると、最大値に対して最小でも64チの振幅
となる)ので、実現が容易である。そしである程度の1
差の増加を容認するときはその振幅が一定であっても差
支えない。
Looking at Figures 2(a) to (d), the transmission signal H(ω) expressed in frequency space, which is one of the signals in the correlation calculation, is limited to a frequency range as shown in Figure 2(a). and its amplitude is constant. Transmission signal H(-
When converted into the temporal and spatial transmission signal h (g, Fig. 2 (
b) However, since the energy is dispersed over time, if a range that includes most of the energy (for example, the range that accounts for 80 cm of the total energy) is used for transmission, the amplitude will not change significantly (for example, this If 80% of the total energy is included in the range, the amplitude will be at least 64 inches from the maximum value), which is easy to implement. That's a certain amount of 1
When an increase in the difference is allowed, there is no problem even if the amplitude is constant.

かようにして時間空間で表わされた送信信号h(1)を
送信し、目標から反射して戻って来た第2図(C)に示
す時間空間で表わされた受信信号f(t)f、受信し、
周波数空間で表わされた受信信号F(ω)に変換する。
In this way, the transmitted signal h(1) expressed in time and space is transmitted, and the received signal f(t) expressed in time and space shown in FIG. 2(C) is reflected from the target and returned. ) f, receive;
The received signal F(ω) is converted into a received signal F(ω) expressed in frequency space.

そして周波数空間で表わされた送信信号H((ロ)と受
信信号F(ω)のうち送信信号H((ロ)の周波数を少
しずつ変化させながら両者の相関を求め、その相関が最
大値を示す周波数変化量ΔωMを求めればよい。次にそ
の方法を記す。
Then, while gradually changing the frequency of the transmitted signal H ((b)) and the received signal F(ω) expressed in frequency space, the correlation between the two is determined, and the correlation is the maximum value. What is necessary is to find the amount of frequency change ΔωM that indicates the following.The method will be described next.

第3図(a)および(b)を見るに周波数空間で表わさ
れた送信信号H(ω)はあらかじめ指定された周波数帯
域内で一定であるので、送信信号H(→と受信信号F(
(ロ)との相関を求めるには、第3図(a)に示すよう
に受信信号F(ω)を送信信号H(ω)の帯域幅の範囲
だけ、順次ウィンドウ積分(移動積分)すればよい。そ
の位置に対応するウィンドウ積分の最大値を求めるとき
は、第3図(b)のように受信信号F(ω)の積分範囲
の位置と送信信号H((ロ)の帯域幅の位置との差Δω
を横軸とし、これに対応する積分値A(Δω)を第3図
(b)のように求めその最大値を示す周波数変化量Δω
Mを求めればよい。これがドプラ変化量である。
Looking at Figures 3(a) and (b), since the transmitted signal H(ω) expressed in frequency space is constant within a pre-specified frequency band, the transmitted signal H(→ and the received signal F(
(b) To find the correlation with good. When finding the maximum value of the window integral corresponding to that position, as shown in Figure 3(b), the position of the integration range of the received signal F(ω) and the position of the bandwidth of the transmitted signal H((b)) must be difference Δω
is the horizontal axis, and the corresponding integral value A(Δω) is calculated as shown in Fig. 3(b), and the frequency change amount Δω indicates the maximum value.
Just find M. This is the amount of Doppler change.

また、特に直線状周波数変調(LFM)された信号を取
扱う場合は、変調された信号の周波数のうちある周波数
に着目すると第2図(b)のように時間空間で表わされ
る送信信号h(t)に近くなる(t=0の付近で)ので
、先に述べたような勝差は縮小する方向になると考えて
よい。
In addition, especially when dealing with linear frequency modulated (LFM) signals, if we focus on a certain frequency among the frequencies of the modulated signal, the transmitted signal h(t ) (near t=0), it can be considered that the winning margin as mentioned earlier will decrease.

次に本発明の実施例についてその構成と動作を中心に説
明する。第1図を見るに、本実施例は送信手段1と、送
受波手段2と、受信手段3と、変換手段4と、信号処理
手段5とを備えている。
Next, an embodiment of the present invention will be described, focusing on its configuration and operation. As shown in FIG. 1, this embodiment includes a transmitting means 1, a wave transmitting/receiving means 2, a receiving means 3, a converting means 4, and a signal processing means 5.

送信手段1は、送信発振部11と送信増幅部12とを備
え、直線状周波変調(LFM)された送信信号を送信発
振部11で発生し、その出力は送信増幅部12で電力増
幅され、必要な電力を得た送信信号となって送受波手段
の送波器21へ印加される。
The transmission means 1 includes a transmission oscillation section 11 and a transmission amplification section 12, the transmission oscillation section 11 generates a linear frequency modulated (LFM) transmission signal, the output thereof is power amplified by the transmission amplification section 12, A transmission signal with the necessary power is applied to the wave transmitter 21 of the wave transmitting/receiving means.

送受波手段2は、送波部21と受波部22とを備え、送
波部21は送信信号を音波に変換し、その音波を海中に
輻射し、さらに径路91を通り、目標9で反射し、径路
92を通り受波器22でふたたび電気信号に変換され、
受信手段3の受信増幅部31へ入力する。
The wave transmitting/receiving means 2 includes a wave transmitting section 21 and a wave receiving section 22. The wave transmitting section 21 converts the transmitted signal into a sound wave, radiates the sound wave into the sea, further passes through a path 91, and is reflected at the target 9. The signal passes through the path 92 and is converted into an electrical signal again by the receiver 22.
The signal is input to the reception amplification section 31 of the reception means 3.

受信手段3は、受信増幅部31と帯域F波器32とを備
え、受波器22から入力した電気信号は電信増幅部31
と帯域戸波器32を通り、増幅され不要な帯域を除去し
受信信号として変換手段4のAD変換器41へ入力され
る。これと同時に目標までの距離および方位を求め表示
するために受信信号100が出力される。
The receiving means 3 includes a reception amplification section 31 and a band F wave device 32, and the electric signal input from the wave receiver 22 is transmitted to the telegraph amplification section 31.
The signal passes through the bandpass filter 32, is amplified, removes unnecessary bands, and is input to the AD converter 41 of the conversion means 4 as a received signal. At the same time, a received signal 100 is output to determine and display the distance and direction to the target.

変換手段4は、AD変換器41と高速7−りエ変換器4
2とを備え、帯域p波器32から入力した受信信号は、
AD変換器41でデジタル化され続いて高速フーリエ変
換器42で周波数空間で表わされた受信信号F((ロ)
となり、信号処理手段5のウィンドウ積分器51へ入力
する。
The conversion means 4 includes an AD converter 41 and a high-speed 7-way converter 4.
2, and the received signal input from the band p-wave device 32 is
The received signal F((b) is digitized by the AD converter 41 and then expressed in frequency space by the fast Fourier transformer 42.
and is input to the window integrator 51 of the signal processing means 5.

信号処理手段5は、ウィンドウ積分器51とピーク検出
器52と速度算出器53とを備え、ウィンドウ積分器5
1に入力した周波数空間で表わされた受信信号F((ロ
)は、送信信号H(ω)の帯域幅の範囲だけ順次ウィン
ドウ積分(移動積分)される(第3図(a)参照)。そ
の結果からさらにピーク検出器52において、第3図(
b)のように受信信号F(的の積分範囲の位置と送信信
号H(→の帯域幅の位置との差Δωに対応する極分値人
(Δω)が求まり(第3図(b)参照)、さらにその最
大値に対応する周波数変化量ΔωMが求まり、これに対
応した信号を速度算出器53に入力し、ここで船舶と目
標との相対速度とを算出し、相対速度信号101が出力
される。
The signal processing means 5 includes a window integrator 51, a peak detector 52, and a velocity calculator 53.
The received signal F((b) expressed in the frequency space input in 1 is sequentially window integrated (moving integral) within the bandwidth range of the transmitted signal H(ω) (see Figure 3(a)). From the results, the peak detector 52 further calculates the
As shown in b), the extremal value (Δω) corresponding to the difference Δω between the position of the integral range of the received signal F (target) and the position of the bandwidth of the transmitted signal H (→) is found (see Figure 3 (b)). ), the frequency change amount ΔωM corresponding to the maximum value is determined, and the signal corresponding to this is input to the speed calculator 53, where the relative speed between the ship and the target is calculated, and a relative speed signal 101 is output. be done.

以上述べたように海中の目標までの距離または方位を求
めるために一般に使用されている直線状周波数変調され
た音波であっても、海中の目標と船舶との相対速度を同
時に求めることが可能となったソーナー装置を提供する
ものである。
As mentioned above, even with linear frequency modulated sound waves, which are generally used to determine the distance or direction to an underwater target, it is possible to simultaneously determine the relative speed between the underwater target and the ship. This is to provide a new sonar device.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明は直線状周波数変調
された音波でもドプラ効果による相対速度の計測が可能
となるので、海中の目標までの距離および方位を求める
機能と、ソーナー装置を搭載した船舶と目標との相対速
度を求める機能とが同時に満足できさらに所要時間と消
費電力も節約できるという効果がある。
As explained in detail above, the present invention makes it possible to measure relative velocity using the Doppler effect even with linear frequency modulated sound waves. This has the effect of simultaneously satisfying the function of determining the relative speed between the ship and the target, and further saving time and power consumption.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成を示すプロ。 り図、第2図(a)および(b)は本発明の送信レベル
を周波数空間および時間空間で表わす図表、第2図(C
)および(d)は本発明の受信レベルを周波数空間およ
び時間空間で表わす図表、第3図(a)および(b)は
本発明の受信レベルを周波数空間で表わし送信波の周波
数幅で積分する関係およびその結果を表わす図表、第4
図(a)および(b)は一般的な送信レベルを時間空間
および周波数空間で表わす図表、第4図(C)および(
d)は一般的な受信レベルを時間空間および周波数空間
で表わす図表。 l・・・・・・送信手段、2・・・・・・送受波手段、
3・・・・・・受信手段、4・・・・・・変換手段、5
・・・・・・信号処理手段。 ゛) 代理人 弁理士  内 原   晋 第 l 図 牟 2 ℃gJくαノ 牛 2[く&) 牛2凹(C) 羊2回cd−) 0    −÷乙ひJ 帛3図(6) 牟4刃偉) ω。 −一にω 第4”A(が O−+を 櫓4図CC) (J、)o−−−(υ 手4別(む
FIG. 1 is a diagram showing the configuration of an embodiment of the present invention. Figures 2 (a) and (b) are diagrams representing the transmission level of the present invention in frequency space and time space, Figure 2 (C
) and (d) are charts representing the received level of the present invention in frequency space and time space, and Figures 3 (a) and (b) represent the received level of the present invention in frequency space and are integrated over the frequency width of the transmitted wave. Diagrams representing relationships and their results, Part 4
Figures (a) and (b) are diagrams representing general transmission levels in time and frequency space, and Figures 4 (C) and (
d) is a chart showing general reception levels in time space and frequency space. 1... Transmission means, 2... Wave transmission/reception means,
3... Receiving means, 4... Conversion means, 5
...Signal processing means.゛) Agent Patent attorney Shindai Uchihara l Figure 2 ℃gJ くαノ牛 2 [ku&) Cow 2 dent (C) Sheep 2 times cd-) 0 -÷ Otsuhi J 帛3 fig (6) ㉟ 4 blades) ω. −1 to ω 4th A (but O−+ to turret 4 figure CC) (J,) o---(υ hand 4 separate (mu)

Claims (1)

【特許請求の範囲】[Claims] 直線状周波数変調された音波を送受信するソーナー装置
において、直線状周波数変調された送信信号を出力する
送信手段と、前記送信信号を入力し音波に変換して水中
に放射し目標から反射して戻って来た音波を電気信号に
変換して出力する送受波手段と、前記電気信号を入力し
増幅ろ波して受信信号を出力する受信手段と、前記受信
信号をデジタル化しフーリエ変換して周波数領域信号を
出力する変換手段と、前記周波数領域信号をあらかじめ
定められた周波数ごとにずらしつつ前記送信音波の変調
周波数幅で切り出し前記変調周波幅の積分を求めその最
大値に対応する周波数帯域と送信周波数の差からソーナ
ー装置と目標との相対速度信号を併せ出力する信号処理
手段とを備えてなるソーナー装置。
A sonar device that transmits and receives linear frequency modulated sound waves includes a transmitter that outputs a linear frequency modulated transmission signal, and a transmitter that inputs the transmission signal, converts it into a sound wave, emits it into the water, and reflects it from a target and returns. a wave transmitting/receiving means that converts the received sound wave into an electrical signal and outputs it; a receiving means that inputs the electrical signal, amplifies and filters it, and outputs a received signal; a conversion means for outputting a signal, a frequency domain signal that is shifted by a predetermined frequency, cut out at the modulation frequency width of the transmitted sound wave, and an integral of the modulated frequency width that is obtained, and a frequency band corresponding to the maximum value and the transmission frequency; A sonar device comprising signal processing means for outputting a relative velocity signal between the sonar device and a target based on the difference in speed.
JP22443785A 1985-10-07 1985-10-07 Sonar device Pending JPS6282381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22443785A JPS6282381A (en) 1985-10-07 1985-10-07 Sonar device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22443785A JPS6282381A (en) 1985-10-07 1985-10-07 Sonar device

Publications (1)

Publication Number Publication Date
JPS6282381A true JPS6282381A (en) 1987-04-15

Family

ID=16813756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22443785A Pending JPS6282381A (en) 1985-10-07 1985-10-07 Sonar device

Country Status (1)

Country Link
JP (1) JPS6282381A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991014953A1 (en) * 1990-03-26 1991-10-03 Furuno Electric Company, Limited Device for measuring speed of moving body
US6804167B2 (en) * 2003-02-25 2004-10-12 Lockheed Martin Corporation Bi-directional temporal correlation SONAR
JP2007507691A (en) * 2003-09-29 2007-03-29 エイシー キャピタル マネージメント インコーポレーテッド Sonar systems and processes
JP2007292668A (en) * 2006-04-26 2007-11-08 Furuno Electric Co Ltd Doppler measuring instrument and tidal current meter
JP2011203276A (en) * 2011-07-15 2011-10-13 Furuno Electric Co Ltd Doppler measuring instrument and tidal current meter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991014953A1 (en) * 1990-03-26 1991-10-03 Furuno Electric Company, Limited Device for measuring speed of moving body
US6804167B2 (en) * 2003-02-25 2004-10-12 Lockheed Martin Corporation Bi-directional temporal correlation SONAR
JP2007507691A (en) * 2003-09-29 2007-03-29 エイシー キャピタル マネージメント インコーポレーテッド Sonar systems and processes
JP2007292668A (en) * 2006-04-26 2007-11-08 Furuno Electric Co Ltd Doppler measuring instrument and tidal current meter
JP2011203276A (en) * 2011-07-15 2011-10-13 Furuno Electric Co Ltd Doppler measuring instrument and tidal current meter

Similar Documents

Publication Publication Date Title
US4112735A (en) Detection of bubbles in a liquid
US5455588A (en) Method for determining target velocity by measuring phase shift
FR2370988A1 (en) RADAR SYSTEM WORKING WITH TWO TYPES OF PULSES
WO2022061828A1 (en) Radar detection method and related apparatus
JPS6222111B2 (en)
JPS6282381A (en) Sonar device
US3257638A (en) Doppler navigation system
US5509416A (en) Fetal heart detector
CN209946381U (en) Tunnel safety distance measuring system
JP2596360B2 (en) Sonar device
JPH07120553A (en) Sonar device
JP2951045B2 (en) Ultrasonic reflection intensity measurement device
JPH03277987A (en) Ultrasonic range finder
JPH0134133Y2 (en)
JPH0348789A (en) Cw doppler device
JPH0789146B2 (en) Underwater object detection and discrimination device
JPS5550174A (en) Method of measuring distance
JPH0559389B2 (en)
JPS5821178A (en) Ultrasonic detector
JPS6329263Y2 (en)
JPH0395477A (en) Ultrasonic detector
JPS54136293A (en) Echo detection system
JP2674375B2 (en) Stationary underwater acoustic simulation target device
JPS6447985A (en) Cw radar system
RU1775726C (en) Method of measuring distance and velocity