JPS6282242A - Air-fuel ratio controller for internal combustion engine - Google Patents

Air-fuel ratio controller for internal combustion engine

Info

Publication number
JPS6282242A
JPS6282242A JP22421785A JP22421785A JPS6282242A JP S6282242 A JPS6282242 A JP S6282242A JP 22421785 A JP22421785 A JP 22421785A JP 22421785 A JP22421785 A JP 22421785A JP S6282242 A JPS6282242 A JP S6282242A
Authority
JP
Japan
Prior art keywords
responsiveness
internal combustion
combustion engine
difference
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22421785A
Other languages
Japanese (ja)
Other versions
JP2503953B2 (en
Inventor
Toshiaki Mizuno
利昭 水野
Katsuhiko Kigami
樹神 勝彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP60224217A priority Critical patent/JP2503953B2/en
Publication of JPS6282242A publication Critical patent/JPS6282242A/en
Application granted granted Critical
Publication of JP2503953B2 publication Critical patent/JP2503953B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent a degree of drivability and an exhaust characteristic from getting worse, by installing a device, which makes responsiveness vary according to a difference between a fuel fundamental quantity and the responsiveness delay operating value, in a control device controlling this fundamental quantity upon compensation. CONSTITUTION:A load detecting device M2 detecting the load of an internal combustion engine M1 and a control device M3 calculating a fuel fundamental quantity while controlling this fundamental quantity upon compensation both are installed there. A responsiveness altering device M4 is installed in this control device M3, and according to a difference between the fundamental quantity and the responsiveness delay operating value, responsiveness of the responsiveness delay operating value is lowered in proportion as the difference becomes smaller, while the responsiveness is made to go up in proportion as the difference becomes larger. Accordingly, even in the case where a load variation occurs, a fuel injection supply can be increased or decreased and a compensated in the wake of delicate variations in a driving state of the internal combustion engine M1. And, even at the time of load variation occurrence, such air-fuel ratio control that favorably keeps the driving state of the engine M1 is performable without entailing any damage to drivability.

Description

【発明の詳細な説明】 発明の目的 [産業上の利用分野コ 本発明は内燃機関の空燃比制御装置に係わり、詳しくは
内燃機関の負荷変動時に有効な内燃機関の空燃比制御装
置に関する。
OBJECTS OF THE INVENTION [Industrial Field of Application] The present invention relates to an air-fuel ratio control device for an internal combustion engine, and more particularly to an air-fuel ratio control device for an internal combustion engine that is effective during load fluctuations of the internal combustion engine.

[従来の技術] 内燃機関の負荷変動が発生する場合、例えば加減速を行
なうような場合に、上記内燃機関の燃焼に寄与する混合
気の空燃比の変動を補償することを目的とした制御を行
なう内燃機関の空燃比制御装置が開発されている。例え
ば、機関の負荷状態と暖機状態とを示す情報に基づいて
吸気ボート壁や吸気バルブ等の吸気管壁表面に付着され
る燃料量を予測し、それに見合って供給燃料量を補正す
ることにより、この機関において直接燃焼に寄与する混
合気の空燃比の変動を良好に補償する「空燃比制御方法
及びその装置」 (特開昭57−24426号公報〉等
が提案されている。
[Prior Art] When load fluctuations occur in an internal combustion engine, for example, when acceleration or deceleration is performed, control is performed for the purpose of compensating for fluctuations in the air-fuel ratio of the air-fuel mixture that contributes to combustion in the internal combustion engine. An air-fuel ratio control device for an internal combustion engine has been developed. For example, by predicting the amount of fuel that will adhere to the intake pipe wall surface such as the intake boat wall or intake valve based on information indicating the load state and warm-up state of the engine, and correcting the amount of supplied fuel accordingly. , ``Air-fuel ratio control method and device'' (Japanese Patent Application Laid-Open No. 57-24426), etc., have been proposed to satisfactorily compensate for fluctuations in the air-fuel ratio of the air-fuel mixture that contributes to direct combustion in this engine.

[発明が解決しようとする問題点] かかる従来技術としての内燃機関の空燃比制御装置には
以下のような問題点が存在した。すなわち、 (1) 負荷変動があった場合の内燃機関へ供給される
燃料量の補正は、内燃機関の負荷パラメータと該負荷パ
ラメータを所定のフィルタ関数にによりフィルタ処理し
た値との差に基づいて行なわれていた。ところが、上記
所定のフィルタ関数のフィルタ定数は一定に設定されて
おり、内燃機関の負荷変動、例えば加減速状態に対する
配慮が行なわれていなかった。このため、内燃機関の運
転状態の微妙な変化に追従した燃料供給量の補正が困難
でおるという問題点がおった。
[Problems to be Solved by the Invention] This prior art air-fuel ratio control device for an internal combustion engine has the following problems. That is, (1) The amount of fuel supplied to the internal combustion engine when there is a load change is corrected based on the difference between the load parameter of the internal combustion engine and the value obtained by filtering the load parameter using a predetermined filter function. It was being done. However, the filter constant of the predetermined filter function is set constant, and no consideration is given to load fluctuations of the internal combustion engine, such as acceleration/deceleration states. Therefore, there has been a problem in that it is difficult to correct the fuel supply amount in accordance with subtle changes in the operating state of the internal combustion engine.

(2) また、上記(1)の問題点の対策として、上記
フィルタ定数を大きく設定すると、負荷変動初期の補正
量が多くなりすぎて排気特性が悪化し、一方、上記フィ
ルタ定数を小さく設定すると、燃料供給量の補正を行な
う時間が短くなりすぎて内燃機関のトルク変動が大きく
なりドライバビリティが悪化するといった問題もあった
(2) In addition, as a countermeasure for the problem in (1) above, if the filter constant is set large, the amount of correction at the beginning of load fluctuation will be too large and the exhaust characteristics will deteriorate; on the other hand, if the filter constant is set small Another problem is that the time for correcting the fuel supply amount becomes too short, resulting in large torque fluctuations in the internal combustion engine and deterioration of drivability.

本発明は、内燃機関の負荷変動発生時に、該内燃機関の
運転状態の微妙な変化に追従した燃料供給量の好適な補
正を行なう内燃機関の空燃比制御装置の提供を目的とす
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide an air-fuel ratio control device for an internal combustion engine that appropriately corrects the fuel supply amount in accordance with subtle changes in the operating state of the internal combustion engine when load fluctuations occur in the engine.

発明の構成 [問題点を解決するための手段] 本発明は上記問題を解決するため第1図に示す構成をと
った。第1図は、本発明の内容を示す基本的構成図であ
る。本発明は第1図に示すように、内燃機関M1の負荷
を検出する負荷検出手段M2と、 該検出された負荷に応じて上記内燃機関M1に供給する
燃料の基本量を算出すると共に、該基本量とその応答性
遅れ処理値との差に応じた補正量で上記基本量を補正し
て制御する制御手段M3と、を具備した内燃機関の空燃
比制御装置において、さらに上記制御手段M3が、 上記基本量とその応答性遅れ処理値との差に応じて、そ
の差が小さくなる程上記応答性遅れ処理値の応答性を低
下させ、一方、その差が大きくなる程上記応答性を上昇
させる応答性変更手段M4を備えて構成されたことを特
徴とする内燃機関の空燃比制御装置を要旨とするもので
ある。
Configuration of the Invention [Means for Solving the Problems] In order to solve the above problems, the present invention adopts the configuration shown in FIG. 1. FIG. 1 is a basic configuration diagram showing the content of the present invention. As shown in FIG. 1, the present invention includes a load detection means M2 for detecting the load of the internal combustion engine M1, and a basic amount of fuel to be supplied to the internal combustion engine M1 according to the detected load. In the air-fuel ratio control device for an internal combustion engine, the control means M3 corrects and controls the basic quantity with a correction amount according to the difference between the basic quantity and its responsiveness delay processing value, further comprising the control means M3. , Depending on the difference between the basic quantity and its responsiveness delay processing value, the smaller the difference, the lower the responsiveness of the responsiveness delay processing value, and the larger the difference, the more the responsiveness is increased. The gist of the present invention is an air-fuel ratio control device for an internal combustion engine, which is characterized in that it is configured to include a responsiveness changing means M4.

負荷検出手段M2とは、内燃機関M1の負荷を検出する
ものである。例えば、内燃機関M1の吸気管内圧力を圧
力センサにより検出し、該内燃機関M1の回転速度と上
記吸気管内圧力とから負荷を検出するよう構成してもよ
い。また、内燃機関M1への基本燃料噴射量の演痺値に
基づいて該内燃機関M1の負荷を検出するよう構成する
こともできる。さらに、内燃機関M1の吸入空気量をエ
アフロメータにより検出し、該吸入空気量と内燃機関M
1の回転速度とから負荷を検出するよう構成してもよい
。また、Mlのスロットルバルブ開度から負荷を検出し
てもよい。
The load detection means M2 detects the load of the internal combustion engine M1. For example, the pressure in the intake pipe of the internal combustion engine M1 may be detected by a pressure sensor, and the load may be detected from the rotational speed of the internal combustion engine M1 and the pressure in the intake pipe. Further, the load on the internal combustion engine M1 may be detected based on the numbing value of the basic fuel injection amount to the internal combustion engine M1. Further, the amount of intake air of the internal combustion engine M1 is detected by an air flow meter, and the amount of intake air and the amount of intake air of the internal combustion engine M1 are detected.
The load may be detected from the rotation speed of 1. Alternatively, the load may be detected from the throttle valve opening degree of Ml.

制御手段M3とは、上記負荷検出手段M2により検出さ
れた負荷に基づいて基本燃料供給量を算出すると共に、
該基本燃料供給量とその応答性遅れ処理値との差に対応
して上記基本燃料供給量を増減補正する制御を行なうも
のである。例えば、内燃機関M1の吸入空気量を回転速
度で除したものに定数を掛けて基本燃料噴射量を算出し
、該基本燃料噴射量を、内燃機関M1の吸入空気温度、
冷却水温度、スロットルバルブ開度等の値に基づいて補
正して燃料噴射量を演算するよう構成することもできる
。なお、応答性遅れ処理値とは、例えば過去の基本量の
重み付き平均値を用いてもよく、また、例えば過去の基
本量の積分値を使用してもよい。さらに、例えば所定の
遅れ定数を有するフィルタ関数により上記基本量から算
出した値等、種々の算出値が使用できる。
The control means M3 calculates the basic fuel supply amount based on the load detected by the load detection means M2, and
Control is performed to increase or decrease the basic fuel supply amount in accordance with the difference between the basic fuel supply amount and its responsiveness delay processing value. For example, the basic fuel injection amount is calculated by dividing the intake air amount of the internal combustion engine M1 by the rotational speed and multiplying it by a constant, and then calculates the basic fuel injection amount by dividing the intake air amount of the internal combustion engine M1 by the rotational speed.
It is also possible to calculate the fuel injection amount by correcting it based on values such as the cooling water temperature and the throttle valve opening. Note that the responsiveness delay processing value may be, for example, a weighted average value of past basic quantities, or may be, for example, an integral value of past basic quantities. Furthermore, various calculated values can be used, such as a value calculated from the basic quantity by a filter function having a predetermined delay constant.

応答性変更手段M4とは、内燃機関M1に供給される燃
料の基本量とその応答性遅れ処理値との差が小さくなる
程、上記応答性遅れ処理値の応答性を低下させ、一方、
上記差が大ぎくなる程上記応答性を上昇させるものであ
る。例えば、応答性遅れ処理値を算出する所定関数の定
数を変更するよう構成することも考えられる。
The responsiveness changing means M4 reduces the responsiveness of the responsiveness delay processing value as the difference between the basic amount of fuel supplied to the internal combustion engine M1 and its responsiveness delay processing value becomes smaller;
The larger the difference, the higher the responsiveness. For example, a configuration may be considered in which the constant of a predetermined function for calculating the responsiveness delay processing value is changed.

上記制御手段M3と応答性変更手段M4とは、各々独立
したディスクリートな論理回路として実現することもで
きる。また、周知のCPUを中心として、ROM、RA
Mおよびその他の周辺回路素子から論理演算回路として
構成され、予め定められた処理手順に従って上記両手段
を実現してもよい。
The control means M3 and the responsiveness changing means M4 can also be realized as independent discrete logic circuits. In addition, centering on the well-known CPU, ROM, RA
M and other peripheral circuit elements may be configured as a logical operation circuit, and both of the above means may be realized according to a predetermined processing procedure.

[作用] 本発明の内燃機関の空燃比制御装置は、第1図に示すよ
うに、負荷検出手段M2により検出された内燃機関M1
の負荷に応じて、制御手段M3が燃料の基本量を算出し
、さらに該基本量とその応答性遅れ処理値との差に応じ
た補正量で上記基本量の補正を行なうが、応答性変更手
段M4が上記基本量とその応答性遅れ処理値との差が小
さくなる程、上記応答性遅れ処理値の応答性を低下させ
、一方、その差が大きくなる程上記応答性を上昇させる
よう働く。
[Operation] As shown in FIG. 1, the air-fuel ratio control device for an internal combustion engine according to the present invention has
The control means M3 calculates the basic amount of fuel according to the load, and further corrects the basic amount with a correction amount according to the difference between the basic amount and the response delay processing value. Means M4 acts to reduce the responsiveness of the responsiveness delayed processing value as the difference between the basic quantity and its responsiveness delayed processing value becomes smaller, and to increase the responsiveness as the difference becomes larger. .

すなわち、負荷変動発生時等には、応答性変更手段M4
は、上記基本量とその応答性遅れ処理値との差が小さく
なる程、該応答性遅れ処理値の応答性を低下させるので
、制御手段M3による基本量の補正を行なう制御の追従
性が向上するのでおる。
That is, when load fluctuation occurs, the response changing means M4
As the difference between the basic quantity and its responsiveness delayed processing value becomes smaller, the responsiveness of the responsiveness delayed processing value decreases, so that the followability of the control for correcting the basic quantity by the control means M3 is improved. That's why I'm here.

従って、本発明の内燃機関の空燃比制御装置は、内燃機
関M1の負荷変動発生時に、速やかに燃料供給量の補正
を行なうよう動く。以上のように本発明の各構成要素が
作用することより、本発明の技術的課題が解決される。
Therefore, the air-fuel ratio control device for an internal combustion engine according to the present invention operates to quickly correct the fuel supply amount when a load change occurs in the internal combustion engine M1. The technical problems of the present invention are solved by each component of the present invention acting as described above.

[実施例] 次に、本発明の好適な一実施例を図面に基づいて詳細に
説明する。
[Example] Next, a preferred example of the present invention will be described in detail based on the drawings.

本発明の一実施例であるエンジンの空燃比制御装置は、
第2図に示すようなシステム構成をなす。
An engine air-fuel ratio control device that is an embodiment of the present invention includes:
The system configuration is as shown in Figure 2.

第2図に示すように、エンジン1はシリンダ2とピスト
ン3およびシリンダヘッド4により燃焼室5を形成し、
該燃焼室5には点火プラグ6が配設されている。
As shown in FIG. 2, the engine 1 has a combustion chamber 5 formed by a cylinder 2, a piston 3, and a cylinder head 4.
A spark plug 6 is disposed in the combustion chamber 5.

エンジン1の吸気系統は、上記燃焼室5に吸気バルブ7
を介して連通ずる吸気マニホールド8、該吸気マニホー
ルド8に燃料を噴射する燃料噴射弁9、上記吸気マニホ
ールド8に連通ずる吸気管10、吸入空気の脈動を吸収
するサージタンク11、スロットルバルブ12、■アク
リーチ13がら構成されている。また、エンジン1の排
気系統は、上述した燃焼室5に排気バルブ14を介して
連通する排気マニホールド15を有している。さらに、
エンジン1には、点火に必要な高電圧を出力するイグナ
イタ16、図示しないクランク軸に連動して上記イグナ
イタ16で発生した高電圧を各気筒の点火プラグ6に分
配供給するディストリビュータ17を有する。
The intake system of the engine 1 includes an intake valve 7 in the combustion chamber 5.
an intake manifold 8 that communicates with the intake manifold 8, a fuel injection valve 9 that injects fuel into the intake manifold 8, an intake pipe 10 that communicates with the intake manifold 8, a surge tank 11 that absorbs pulsation of intake air, a throttle valve 12, It is made up of Acrylee 13. Further, the exhaust system of the engine 1 includes an exhaust manifold 15 that communicates with the above-mentioned combustion chamber 5 via an exhaust valve 14. moreover,
The engine 1 includes an igniter 16 that outputs a high voltage necessary for ignition, and a distributor 17 that is linked to a crankshaft (not shown) and distributes the high voltage generated by the igniter 16 to the spark plugs 6 of each cylinder.

エンジン1は検出器として、エンジン1の冷却系統に設
けられて冷却水温度を検出する水温センサ20、エアク
リーナ13内に設けられてエンジン1に送られる吸入空
気温度を検出する吸気温センサ21、スロットルバルブ
12に連動して該スロットルバルブ12の開度を検出す
るスロットルポジションセンサ22、吸気管10に連通
して吸気管内圧力を測定する吸気管内圧力センサ23、
排気マニホールド15に備えられて排気中の残存酸素濃
度をアナログ信号として検出する酸素濃度センサ24、
上記ディストリビュータ17内に取り付けられてディス
トリビュータ17のカムシャフトの1/24回転毎に、
すなわらクランク角O°から30’の整数倍毎に回転角
信号を出力する回転速度センサを兼ねた回転角センサ2
5、上記ディストリビュータ17のカムシャフトの1回
転毎に、すなわら図示しないクランク軸の2回転毎に基
準信号を1回出力する気筒判別ヒンサ26を各々備えて
いる。
The engine 1 includes a water temperature sensor 20 provided in the cooling system of the engine 1 to detect the temperature of the cooling water, an intake temperature sensor 21 provided in the air cleaner 13 to detect the temperature of the intake air sent to the engine 1, and a throttle sensor. a throttle position sensor 22 that detects the opening of the throttle valve 12 in conjunction with the valve 12; an intake pipe pressure sensor 23 that communicates with the intake pipe 10 and measures the pressure inside the intake pipe;
an oxygen concentration sensor 24 that is provided in the exhaust manifold 15 and detects the residual oxygen concentration in the exhaust gas as an analog signal;
Every 1/24 rotation of the camshaft of the distributor 17 installed in the distributor 17,
In other words, a rotation angle sensor 2 that also serves as a rotation speed sensor outputs a rotation angle signal every integer multiple of the crank angle 0° to 30'.
5. Each cylinder is provided with a cylinder discrimination hinge 26 which outputs a reference signal once for each revolution of the camshaft of the distributor 17, that is, for every two revolutions of the crankshaft (not shown).

上記各センサにより検出された信号は電子制御装置(以
下単にECUとよぶ)30に入力され、ECU3Oは各
信号に基づいて既述した燃料噴射弁9およびイグナイタ
16を駆動して、エンジン1の制御を行なう。
The signals detected by each of the above sensors are input to an electronic control unit (hereinafter simply referred to as ECU) 30, and ECU 3O drives the fuel injection valve 9 and igniter 16 described above based on each signal to control the engine 1. Do the following.

次に、上記ECU3Oの構成を第3図に基づいて説明す
る。ECU3Oは、上述した各センサにより検出された
各信号を制御プログラムに従って入力および演算すると
共に、既述した各機器を制御するための処理を行なうC
PU30a、上記制御プログラムおよび初期データが予
め記憶されているROM30b、ECU3Oに入力され
る各種信号や演算制御に必要なデータが一時的に記憶さ
れるRAM30c、エンジン1のキースイッチが運転者
によりOFFされても以後のエンジン1の制御に必要な
各種データを記憶保持可能なようにバッテリによってバ
ックアップされたバックアツプRAM30d等を中心に
論理演算回路として構成され、]モシンバス30を介し
て入出力ボート30f、入力ポート30C1,出力ポー
ト30hに接続されて外部機器との入出力を行なう。
Next, the configuration of the ECU 3O will be explained based on FIG. 3. ECU3O inputs and calculates each signal detected by each sensor mentioned above according to a control program, and also performs processing for controlling each device mentioned above.
The PU 30a, the ROM 30b in which the above control program and initial data are stored in advance, the RAM 30c in which various signals input to the ECU 3O and data necessary for arithmetic control are temporarily stored, and the key switch of the engine 1 are turned off by the driver. It is configured as a logic operation circuit centered around a backup RAM 30d backed up by a battery so that it can store and hold various data necessary for controlling the engine 1 from then on. It is connected to the input port 30C1 and the output port 30h to perform input/output with external equipment.

ECU3Oには、既述した吸気管内圧力センサ23、水
温センサ20、吸気温センサ21、スロッ1〜ルポジシ
ョンセンFj22からの出力信号のバラ/r30i、3
0J、30に、30mが設けられており、上記各センサ
の出力信号をCPU30aに選択的に出力するマルチプ
レクサ30n、およびアナログ信号をディジタル信号に
変換するA/D変換器30pも配設されている。これら
の各信号は入出力ポート30fを介してCPU30aに
入力される。また、ECU3Oは、既述した酸素濃度セ
ンサ24の出力信号のバッファ30q、該バッファ30
Qの出力電圧が所定電圧以上となった場合に信号を出力
するコンパレータ30r、既述した気筒判別センサ゛2
6、回転角センサ25の出力信号の波形を整形する波形
整形回路30Sを有する。これらの各信号は、入力ポー
ト3pC1を介してCPU30aに入力される。さらに
、ECU3Oは、既述した燃料噴射弁9およびイグナイ
タ16に駆動電流を通電する駆動回路30t。
The ECU 3O includes the intake pipe internal pressure sensor 23, the water temperature sensor 20, the intake air temperature sensor 21, and the variation of output signals from the throttle 1 to position sensor Fj22.
A multiplexer 30n that selectively outputs the output signal of each sensor to the CPU 30a, and an A/D converter 30p that converts an analog signal into a digital signal are also provided. . Each of these signals is input to the CPU 30a via the input/output port 30f. In addition, the ECU 3O includes a buffer 30q for the output signal of the oxygen concentration sensor 24 described above, and a buffer 30q for the output signal of the oxygen concentration sensor 24 described above.
A comparator 30r that outputs a signal when the output voltage of Q exceeds a predetermined voltage, and the cylinder discrimination sensor 2 described above.
6. It has a waveform shaping circuit 30S that shapes the waveform of the output signal of the rotation angle sensor 25. Each of these signals is input to the CPU 30a via the input port 3pC1. Further, the ECU 3O includes a drive circuit 30t that supplies a drive current to the fuel injection valve 9 and the igniter 16 described above.

30uを有し、CPU30aは出力ポート30iを介し
て上記両駆動回路30t、30uに制御信号を出力する
。なお、ECU3OはCPU30aを始めROM30b
、RAM30c等への所定の間隔で制御タイミングとな
るクロック信号を送るクロック回路30Vも備えている
30u, and the CPU 30a outputs control signals to both of the drive circuits 30t and 30u via the output port 30i. In addition, ECU3O includes CPU30a and ROM30b.
, RAM 30c, etc., is also provided with a clock circuit 30V that sends a clock signal serving as a control timing at predetermined intervals.

次に、上記E CU’ 30により実行される補正係数
算出処理を、第4図に示すフローチャートに基づいて説
明する。本補正係数算出処理は、エンジン1のクランク
角360°毎に起動され、該エンジン1の回転に同期し
て繰り返して実行される。
Next, the correction coefficient calculation process executed by the ECU' 30 will be explained based on the flowchart shown in FIG. This correction coefficient calculation process is started every 360 degrees of crank angle of the engine 1, and is repeatedly executed in synchronization with the rotation of the engine 1.

まず、ステップ100では、既述した吸気管内圧力セン
サ23から吸気管内圧力PMを、水温センサ20から冷
却水温度THWを各々検出する処理か行なわれる。続く
ステップ110では、上記ステップ100で検出された
冷却水温度THWに基づいて、実燃料噴射量を算出する
際に使用される水温補正係数KTCと、後述する重み付
き平均値PMDiを算出する際に使用する定数切替判定
値LTCとを算出する処理が行なわれる。ここで、冷却
水温度THWと水温補正係数KTCとの間には、第5図
に示すような関係がある。すなわち、冷却水温度THW
の低下に伴い、水温補正係数KTCは増加する。ECU
3Oは、第5図に示すような、冷五〇水温度THWと水
温補正係数KTCとの関係を規定したマツプを予めRO
M30b内の所定のエリアに記憶している。冷却水温度
THWが検出されると、ECU3Oは上記マツプに基づ
いて水温補正係数KTCを算出する。また、冷却水温度
THWと定数切替判定値LTCとの間には、第6図に示
すような関係がある。すなわち、冷却水温度THWの低
下に伴い、定数切替判定値LTCは増加する。ECU3
Oは、第6図に示すような、冷却水温度THWと定数切
替判定値LTCとの関係を規定したマツプを予めROM
30b内の所定のエリアに記憶している。冷却水温度T
HWが検出されると、ECU3Oは上記マツプに基づい
て定数切替判定値LTCを算出する。
First, in step 100, a process is performed in which the intake pipe pressure PM is detected from the intake pipe pressure sensor 23 and the cooling water temperature THW is detected from the water temperature sensor 20. In subsequent step 110, based on the cooling water temperature THW detected in step 100, a water temperature correction coefficient KTC used when calculating the actual fuel injection amount and a weighted average value PMDi, which will be described later, are calculated. A process of calculating a constant switching determination value LTC to be used is performed. Here, there is a relationship as shown in FIG. 5 between the cooling water temperature THW and the water temperature correction coefficient KTC. That is, the cooling water temperature THW
As the water temperature correction coefficient KTC decreases, the water temperature correction coefficient KTC increases. ECU
3O is a map that defines the relationship between the cold water temperature THW and the water temperature correction coefficient KTC as shown in Fig. 5.
It is stored in a predetermined area within M30b. When the coolant temperature THW is detected, the ECU 3O calculates the water temperature correction coefficient KTC based on the above map. Further, there is a relationship as shown in FIG. 6 between the cooling water temperature THW and the constant switching determination value LTC. That is, as the cooling water temperature THW decreases, the constant switching determination value LTC increases. ECU3
O stores in advance in the ROM a map that defines the relationship between the cooling water temperature THW and the constant switching judgment value LTC, as shown in FIG.
It is stored in a predetermined area within 30b. Cooling water temperature T
When HW is detected, the ECU 3O calculates a constant switching determination value LTC based on the above map.

次に、ステップ120に進み、吸気管内圧力PMとその
重み付き平均値PMDとの前回算出された差ΔPMi−
1の絶対値が、上記ステップ110で算出された定数切
替判定値LTCを上回るか否かが判定される。上記差Δ
PMi−1の絶対値が定数切替判定値LTCを上回る場
合には、ステップ130に進み、定数Nを4に設定する
処理を行なった後ステップ150に進む。一方、上記差
ΔPM i−1の絶対値が定数切替判定値LTC以下で
ある場合には、ステップ140に進み、定数Nを8に設
定する処理を行なった後ステップ’150に進む。ステ
ップ150では吸気管内圧力PMの重み付ぎ平均値pv
o;を次式(1)に示すように算出する処理が行なわれ
る。
Next, the process proceeds to step 120, where the previously calculated difference ΔPMi- between the intake pipe internal pressure PM and its weighted average value PMD
It is determined whether the absolute value of 1 exceeds the constant switching determination value LTC calculated in step 110 above. Above difference Δ
If the absolute value of PMi-1 exceeds the constant switching determination value LTC, the process proceeds to step 130, where the constant N is set to 4, and then the process proceeds to step 150. On the other hand, if the absolute value of the difference ΔPM i-1 is less than or equal to the constant switching determination value LTC, the process proceeds to step 140, where the constant N is set to 8, and then the process proceeds to step '150. In step 150, the weighted average value pv of the intake pipe internal pressure PM
A process is performed to calculate o; as shown in the following equation (1).

PDMi = (PMDi−I X (N−1) 十PM)/N・・・
(1)但し、pMD;−tは前回算出された吸気管内圧
力の重み付き平均値である。
PDMi = (PMDi-I x (N-1) 10 PM)/N...
(1) However, pMD;-t is the weighted average value of the intake pipe internal pressure calculated last time.

Nは、ステップ130もしくは140で設定された定数 PMは今回検出された吸気管内圧力 続くステップ160では、上記ステップ100て検出さ
れた吸気管内圧力PMと上記ステップ150で算出した
吸気管内圧力PMの重み付き平均値pMD;の差△PM
iを次式(2)のように算出する処理が行なわれる。
N is the constant PM set in step 130 or 140, and in step 160, the weight of the intake pipe pressure PM detected in step 100 and the intake pipe pressure PM calculated in step 150. Difference △PM between mean value pMD;
A process is performed to calculate i as shown in the following equation (2).

ΔPMi =PM−PMDi       ・・・(2
)続くステップ170では、上記ステップ160で算出
した差ΔPMiが加速判定値α(本実施例では10 [
mmHg] )を上回るか否かが判定される。差ΔPM
iが加速判定値αを上回る場合にはステップ180に進
む。ステップ180では、増量補正係数FTCIを次式
(3)のように算出する処理が行なわれる。
ΔPMi = PM−PMDi (2
) In the subsequent step 170, the difference ΔPMi calculated in the above step 160 is determined as the acceleration determination value α (10 [
mmHg] ) is determined. Difference ΔPM
If i exceeds the acceleration determination value α, the process proceeds to step 180. In step 180, a process is performed to calculate the increase correction coefficient FTCI as shown in the following equation (3).

FTC1=△pM; XKTC・・・(3)但し、ΔP
Mi・・・上記ステップ160で算出した差 KTC・・・上記ステップ110で算出した水温補正係
数 その後NEXTへ扱けて本処理を終了する。
FTC1=ΔpM; XKTC...(3) However, ΔP
Mi...Difference KTC calculated in step 160 above...Water temperature correction coefficient calculated in step 110 above.Then, proceed to NEXT and end this process.

一方、ステップ170において差ΔPM1が加速判定値
α以下である場合には、ステップ190に進む。ステッ
プ190では、上記ステップ160で算出した差ΔPM
iが減速判定値β(本実施例では−10[mmHQ ]
 )未満でおるか否かが判定される。差ΔPMiが減速
判定値β未満である場合には、ステップ200に進む。
On the other hand, if the difference ΔPM1 is less than or equal to the acceleration determination value α in step 170, the process proceeds to step 190. In step 190, the difference ΔPM calculated in step 160 above is
i is the deceleration judgment value β (-10 [mmHQ] in this example)
) is determined. If the difference ΔPMi is less than the deceleration determination value β, the process proceeds to step 200.

ステップ200では、減量補正係数FT02を次式(4
)のように算出する処理が行なわれる。
In step 200, the weight loss correction coefficient FT02 is calculated using the following formula (4
) is calculated as follows.

FTC2=ΔpMr XKTC・・・(4)但し、ΔP
Mi・・・上記ステップ’160で算出した差 KTC・・・上記ステップ110で算出した水温補正係
数 その後NEXTへ抜けて本処理を終了する。なお、ステ
ップ190で差ΔPM1が減速判定値β以上でおる場合
には、そのままNEXTへ扱けて本処理を終了する。以
俊、本補正係数算出処理は、クランク角360°毎に起
動されて繰り返し実行される。本処理で算出された増量
補正係数FTC1必るいは減量補正係数FTC2は、図
示しない燃料噴射量算出処理において、基本噴tJJ量
を補正して実噴射量を算出する場合に使用される。該算
出された実噴射量に相当する燃料が燃料噴射弁9からエ
ンジン1に供給されて、エンジン1の運転が行なわれる
FTC2=ΔpMr XKTC...(4) However, ΔP
Mi...Difference calculated in step '160 above KTC...Water temperature correction coefficient calculated in step 110 above After that, the process goes to NEXT and ends this process. Note that if the difference ΔPM1 is equal to or greater than the deceleration determination value β in step 190, the process can be directly proceeded to NEXT and the process ends. This correction coefficient calculation process is activated and repeatedly executed every 360 degrees of crank angle. The increase correction coefficient FTC1 or the decrease correction coefficient FTC2 calculated in this process is used when correcting the basic injection amount tJJ to calculate the actual injection amount in the fuel injection amount calculation process (not shown). Fuel corresponding to the calculated actual injection amount is supplied from the fuel injection valve 9 to the engine 1, and the engine 1 is operated.

次に上述した制御の様子の一例として、加速により負荷
変動が発生した場合の諸量の変化を時間の経過に従って
表現した第7図に示すタイミングチャートに基づいて説
明する。時刻t1において加速が始まる。すると、吸気
管内圧力PMは急激に上昇して大気圧に近づく。一方、
吸気管内圧力の重み付き平均値PMDも、これに伴い上
昇する。
Next, as an example of the above-mentioned control, a description will be given based on the timing chart shown in FIG. 7, which expresses changes in various quantities over time when load fluctuation occurs due to acceleration. Acceleration begins at time t1. Then, the intake pipe internal pressure PM rapidly increases and approaches atmospheric pressure. on the other hand,
The weighted average value PMD of the intake pipe internal pressure also increases accordingly.

この場合、定数Nが4に設定されている場合を一点鎖線
で示し、定数Nが8に設定されている場合を破線で示す
。吸気管内圧力PMとその重み付き平均値PMDとの差
ΔPMは時刻t2において最大となる。この時刻t1か
ら時刻t2までの間の吸気管内圧力の重み付き平均値P
MDは、その定数Nが4に設定されていても、8に設定
されていても、さほどの差は生じない。上記時刻t2に
おいて、最大値に達した差ΔPMは、その後減少し、時
刻t3において、定数切替判定値LTCを下回る。
In this case, the case where the constant N is set to 4 is shown by a dashed line, and the case where the constant N is set to 8 is shown by a broken line. The difference ΔPM between the intake pipe internal pressure PM and its weighted average value PMD reaches a maximum at time t2. Weighted average value P of the intake pipe internal pressure between time t1 and time t2
There is no significant difference in MD whether the constant N is set to 4 or 8. The difference ΔPM that reached the maximum value at the time t2 decreases and falls below the constant switching determination value LTC at the time t3.

この時刻t3より、吸気管内圧力重み付き平均値PMD
を算出する場合の定数Nを、従来のように4に設定して
固定した場合を第7図に一点鎖線で示す。すなわち、吸
気管内圧力PMとその重み付き平均値PMDとの差ΔP
Mは、時刻t3より速やかに減少し、時刻t4において
差△PMは零となる。このため、上記差△PMに基づい
て定められる増量補正係数FTCIは、時刻t3から減
少して時刻t4でOになるので、加速時に充分な燃料の
増■補正が行なわれない。その結果空燃比は時刻t3か
ら時刻t5まで、第7図に二点鎖線で示すように理論空
燃比から薄い側(1−ean)に移行するため、エンジ
ン1のトルク変動等が発生し易い状態となっていた。
From this time t3, the intake pipe internal pressure weighted average value PMD
The case where the constant N used to calculate is set and fixed at 4 as in the conventional case is shown by a dashed line in FIG. That is, the difference ΔP between the intake pipe internal pressure PM and its weighted average value PMD
M decreases rapidly from time t3, and the difference ΔPM becomes zero at time t4. Therefore, the fuel increase correction coefficient FTCI determined based on the difference ΔPM decreases from time t3 and reaches O at time t4, so that sufficient fuel increase correction is not performed during acceleration. As a result, the air-fuel ratio shifts from the stoichiometric air-fuel ratio to the lean side (1-ean) from time t3 to time t5, as shown by the two-dot chain line in FIG. It became.

一方、本実施例の場合のように、上記時刻t3より吸気
管内圧力の重み付き平均値PMDを算出する場合の定数
Nを、4から8に変更した場合には、吸気管内圧力の重
み付き平均値PMDは第7図に破線で示すように変化す
る。すなわち、吸気管内圧力PMとその重み付き平均値
PMDとの差ΔPMは、時刻t3より徐々に減少し、時
刻t5に至って差ΔPMは零となる。このため、上記差
△PMに基づいて定められる増量補正係数FTC1は、
時刻t3から時刻t5まで徐々に減少していくので、加
速時に充分な燃料の増量補正が行なわれる。その結果、
空燃比は時刻t3から時刻t5まで、第7図に実線で示
すように理論空燃比近傍の値をとるので、エンジン1の
運転状態は安定する。
On the other hand, when the constant N for calculating the weighted average value PMD of the intake pipe internal pressure from time t3 is changed from 4 to 8 as in the case of this embodiment, the weighted average value PMD of the intake pipe internal pressure is changed from 4 to 8. The value PMD changes as shown by the broken line in FIG. That is, the difference ΔPM between the intake pipe internal pressure PM and its weighted average value PMD gradually decreases from time t3, and reaches zero at time t5. Therefore, the increase correction coefficient FTC1 determined based on the above difference ΔPM is:
Since it gradually decreases from time t3 to time t5, sufficient fuel increase correction is performed during acceleration. the result,
Since the air-fuel ratio takes a value close to the stoichiometric air-fuel ratio from time t3 to time t5, as shown by the solid line in FIG. 7, the operating state of the engine 1 is stable.

なお、減速により負荷変動が発生した場合にも、差ΔP
Mの絶対値が定数切替判定値LTCを下回った時刻にお
いて、定数が4から8に変更される。
In addition, even if load fluctuation occurs due to deceleration, the difference ΔP
At the time when the absolute value of M falls below the constant switching determination value LTC, the constant is changed from 4 to 8.

このため、減量補正係数FT02が徐々に減少するので
、減速に伴い燃料の減少が行なわれて、空燃比は理論空
燃比から濃い側(Rich)に離れるといった問題を生
じることなく、理論空燃比近傍に制御される。
Therefore, since the reduction correction coefficient FT02 gradually decreases, the fuel decreases with deceleration, and the air-fuel ratio does not move away from the stoichiometric air-fuel ratio to the rich side (Rich), but instead approaches the stoichiometric air-fuel ratio. controlled by.

なお本実施例において、エンジン1が内燃機関M1に、
吸気管内圧力センサ23とECU3Oと該ECU3Oに
より実行されるffi!(ステップ100)が負荷検出
手段M1に、ECU3Oが制御手段M3に該当する。ま
た、ECU3Oと該ECU3Oにより実行される処理(
ステップ120゜130.140)が応答性変更手段M
4として機能する。
Note that in this embodiment, the engine 1 is replaced by the internal combustion engine M1,
The intake pipe pressure sensor 23, the ECU 3O, and the ffi! executed by the ECU 3O. (Step 100) corresponds to the load detection means M1, and the ECU 3O corresponds to the control means M3. In addition, the ECU 3O and the processing executed by the ECU 3O (
Step 120゜130.140) is responsiveness changing means M
Functions as 4.

以上説明したように本実施例は、吸気管内圧力PMとそ
の重み付き平均値PMDとの差ΔPMの絶対値が定数切
替判定値LTC以下の場合には、重み付き平均値PMD
@%出する際の定数Nを4から8に変更して増量補正係
数FT01または減量補正係数FT02を算出するよう
構成されている。このため、エンジン1が加速状態に移
行した場合には、上記差ΔPMがLTC以下となった時
に、定数Nが4から8に変更されるため、その後上記差
へPMの減少が徐々に行なわれ、増量補正係数FTCI
に基づく補正により実燃料噴射量の増量補正が継続され
るので、空燃比が理論空燃比近傍に制御されて、エンジ
ン1のトルク変動が発生じず、加速性能を良好に保つこ
とができる。
As explained above, in this embodiment, when the absolute value of the difference ΔPM between the intake pipe internal pressure PM and its weighted average value PMD is equal to or less than the constant switching judgment value LTC, the weighted average value PMD
The constant N for outputting @% is changed from 4 to 8 to calculate the increase correction coefficient FT01 or the decrease correction coefficient FT02. Therefore, when the engine 1 shifts to an acceleration state, the constant N is changed from 4 to 8 when the difference ΔPM becomes less than or equal to LTC, so that PM is gradually reduced to the above difference. , increase correction coefficient FTCI
Since the increase correction of the actual fuel injection amount is continued through the correction based on , the air-fuel ratio is controlled to be close to the stoichiometric air-fuel ratio, and torque fluctuations of the engine 1 do not occur, making it possible to maintain good acceleration performance.

また、エンジン1が減速状態に移行した場合には、同様
に定数Nが4から8に変更されるため、減量補正係数F
TC2に基づく補正により実燃料噴射量の減量補正が継
続されるので、空燃比が理論空燃比近傍に制御されて、
エンジン1の排気特性を良好に保つことが可能となる。
Furthermore, when the engine 1 shifts to a deceleration state, the constant N is similarly changed from 4 to 8, so the reduction correction coefficient F
Since the correction based on TC2 continues to reduce the actual fuel injection amount, the air-fuel ratio is controlled to be close to the stoichiometric air-fuel ratio,
It becomes possible to maintain good exhaust characteristics of the engine 1.

なお、本実施例では吸気管内圧力センサ23により検出
された吸気管内圧力PMと、その重み付き平均値PMD
とに基づいて増量補正係数FTC1及び減量増量補正係
数FTC2を算出するよう構成した。しかし、例えば、
吸気管内圧力PMの代わりに、スロットルポジションセ
ンサ22から1qられるスロットルバルブ開度もしくは
、負荷と回転速度とから算出される基本燃料噴tjJ量
等に基づいて増量もしくは減量補正係数FTC1,FT
C2を算出するよう構成しても、本発明の効果は奏する
ものである。
In this embodiment, the intake pipe internal pressure PM detected by the intake pipe internal pressure sensor 23 and its weighted average value PMD
It is configured to calculate the weight increase correction coefficient FTC1 and the weight loss/increase correction coefficient FTC2 based on the following. However, for example,
Instead of the intake pipe internal pressure PM, increase or decrease correction coefficients FTC1, FT are based on the throttle valve opening obtained 1q from the throttle position sensor 22 or the basic fuel injection amount tjJ calculated from the load and rotational speed.
Even if the configuration is such that C2 is calculated, the effects of the present invention can still be achieved.

以上本発明の実施例について説明したが、本発明はこの
ような実施例に回答限定されるものではなく、本発明の
要旨を逸脱しない範囲内において種々なる態様で実施し
得ることは勿論である。
Although the embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and it goes without saying that it can be implemented in various forms without departing from the gist of the present invention. .

発明の効果 以上詳記したように本発明の内燃機関の制御装置は、負
荷検出手段により検出された負荷に基づいて、制御手段
が内燃機関に供給する燃料の基本量を算出すると共に、
該基本量とその応答性遅れ処理値との差に応じた補正量
で上記基本量を補正する制御を行なうに際して、応答性
変更手段が上記基本量とその応答性遅れ処理値との差が
小さくなる程該応答性遅れ処理値の応答性を低下させ、
一方、その差が大きくなる程上記応答性を上昇させるよ
う構成されている。このため、内燃機関に負荷変動が発
生した場合でも、該内燃機関の運転状態の微妙な変化に
追従して燃料噴射供給量を増減補正することができると
いう優れた効果を奏する。
Effects of the Invention As detailed above, in the internal combustion engine control device of the present invention, the control means calculates the basic amount of fuel to be supplied to the internal combustion engine based on the load detected by the load detection means, and
When performing control to correct the basic amount with a correction amount corresponding to the difference between the basic amount and its responsiveness delay processing value, the responsiveness changing means adjusts the basic amount so that the difference between the basic amount and its responsiveness delay processing value is small. Indeed, the responsiveness of the responsiveness delay processing value is reduced,
On the other hand, the larger the difference, the higher the responsiveness. Therefore, even when load fluctuations occur in the internal combustion engine, an excellent effect is achieved in that the fuel injection supply amount can be increased or decreased in accordance with subtle changes in the operating state of the internal combustion engine.

また、内燃機関の負荷変動発生時にも、ドライバビリテ
ィを損うことなく、一方、排気特性を悪化させることな
く、該内燃機関の運転状態を良好に保つ空燃比制御を行
なうことができる。
Moreover, even when load fluctuations occur in the internal combustion engine, air-fuel ratio control can be performed to maintain the operating condition of the internal combustion engine in a good condition without impairing drivability or deteriorating exhaust characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の内容を示す基本的構成図、第2図は本
発明一実施例でおるエンジンの空燃比制御装置のシステ
ム構成図、第3図は同じくその電子制御装置(ECU>
の構成を説明するためのブロック図、第4図はECUに
より実行される処理のフローチャート、第5図は水温補
正係数と冷却水温度との関係を規定したマツプを示すグ
ラフ、第6図は定数切替判定値と冷却水温度との関係を
規定したマツプを示すグラフ、第7図は諸量の変化を時
間の経過に従って表現したタイミングチャートである。 Ml・・・内燃機関 M2・・・負荷検出手段 M3・・・制御手段 M4・・・応答性変更手段 1・・・エンジン 20・・・水温センサ 22・・・スロットルポジションセンサ23・・・吸気
管内圧力センサ
FIG. 1 is a basic configuration diagram showing the contents of the present invention, FIG. 2 is a system configuration diagram of an engine air-fuel ratio control device according to an embodiment of the present invention, and FIG.
Fig. 4 is a flowchart of the processing executed by the ECU, Fig. 5 is a graph showing a map defining the relationship between the water temperature correction coefficient and the cooling water temperature, and Fig. 6 is a flowchart of the process executed by the ECU. A graph showing a map defining the relationship between the switching determination value and the cooling water temperature, and FIG. 7 is a timing chart showing changes in various quantities over time. Ml... Internal combustion engine M2... Load detection means M3... Control means M4... Response changing means 1... Engine 20... Water temperature sensor 22... Throttle position sensor 23... Intake Pipe pressure sensor

Claims (1)

【特許請求の範囲】 1 内燃機関の負荷を検出する負荷検出手段と、該検出
された負荷に応じて上記内燃機関に供給する燃料の基本
量を算出すると共に、該基本量とその応答性遅れ処理値
との差に応じた補正量で上記基本量を補正して制御する
制御手段と、 を具備した内燃機関の空燃比制御装置において、さらに
上記制御手段が、 上記基本量とその応答性遅れ処理値との差に応じて、そ
の差が小さくなる程上記応答性遅れ処理値の応答性を低
下させ、一方、その差が大きくなる程上記応答性を上昇
させる応答性変更手段を備えて構成されたことを特徴と
する内燃機関の空燃比制御装置。
[Scope of Claims] 1. Load detection means for detecting the load of an internal combustion engine, calculating a basic amount of fuel to be supplied to the internal combustion engine according to the detected load, and calculating the basic amount and its response delay. In an air-fuel ratio control device for an internal combustion engine, the air-fuel ratio control device for an internal combustion engine includes: a control means for correcting and controlling the basic quantity with a correction amount according to a difference from a processed value; Responsiveness changing means is configured to reduce the responsiveness of the delayed responsiveness processed value as the difference becomes smaller, and increase the responsiveness as the difference becomes larger, according to the difference between the processed value and the processed value. An air-fuel ratio control device for an internal combustion engine, characterized in that:
JP60224217A 1985-10-07 1985-10-07 Air-fuel ratio control device for internal combustion engine Expired - Fee Related JP2503953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60224217A JP2503953B2 (en) 1985-10-07 1985-10-07 Air-fuel ratio control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60224217A JP2503953B2 (en) 1985-10-07 1985-10-07 Air-fuel ratio control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS6282242A true JPS6282242A (en) 1987-04-15
JP2503953B2 JP2503953B2 (en) 1996-06-05

Family

ID=16810349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60224217A Expired - Fee Related JP2503953B2 (en) 1985-10-07 1985-10-07 Air-fuel ratio control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2503953B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5724426A (en) * 1980-07-18 1982-02-09 Nippon Denso Co Ltd Control method of air-fuel ratio and its device
JPS58155229A (en) * 1982-03-12 1983-09-14 Nec Corp Speed governor for internal-combustion engine
JPS6050241A (en) * 1983-08-30 1985-03-19 Toyota Motor Corp Air-fuel ratio moderating control method for electronically controlled engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5724426A (en) * 1980-07-18 1982-02-09 Nippon Denso Co Ltd Control method of air-fuel ratio and its device
JPS58155229A (en) * 1982-03-12 1983-09-14 Nec Corp Speed governor for internal-combustion engine
JPS6050241A (en) * 1983-08-30 1985-03-19 Toyota Motor Corp Air-fuel ratio moderating control method for electronically controlled engine

Also Published As

Publication number Publication date
JP2503953B2 (en) 1996-06-05

Similar Documents

Publication Publication Date Title
JPS6134330A (en) Air-fuel ratio controller for internal-combustion engine
JPH05195840A (en) Electronically controlled fuel supply device for internal combustion engine
JP4252681B2 (en) Electronic controller for the formation of a fuel supply signal for an internal combustion engine
JPS6052301B2 (en) Air fuel ratio control device
US4520784A (en) Method of and apparatus for controlling fuel injection
JP3353416B2 (en) Fuel control device for internal combustion engine
JPS6282242A (en) Air-fuel ratio controller for internal combustion engine
JP3789597B2 (en) Engine idle rotation control device
US5765526A (en) Fuel supply control system for internal combustion engines
JPH0573907B2 (en)
JPS6282247A (en) Air-fuel ratio controller for internal combustion engine
JPH0759931B2 (en) Ignition timing control device for internal combustion engine
JP3966463B2 (en) Fuel injection device for internal combustion engine
JPS62203942A (en) Controller for internal combustion engine
JP2873504B2 (en) Engine fuel control device
JPH07180591A (en) Air-fuel ratio control device for engine
JP2917564B2 (en) Fuel injection control device for internal combustion engine
JPS6371539A (en) Controller for internal combustion engine
JP3116426B2 (en) Fuel injection amount control device for internal combustion engine
JPH08109843A (en) Fuel injection amount control device for internal combustion engine
JPS62157251A (en) Air-fuel ratio control device of internal combustion engine
JPS61108839A (en) Fuel injection control device of internal-combustion engine
JPH08158920A (en) Correcting control device during transition period of electronic fuel injection
JPS6287645A (en) Air-fuel ratio learning control device for internal combustion engine
JPH10169536A (en) Ignition timing controller for engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees