JPS62203942A - Controller for internal combustion engine - Google Patents
Controller for internal combustion engineInfo
- Publication number
- JPS62203942A JPS62203942A JP4807686A JP4807686A JPS62203942A JP S62203942 A JPS62203942 A JP S62203942A JP 4807686 A JP4807686 A JP 4807686A JP 4807686 A JP4807686 A JP 4807686A JP S62203942 A JPS62203942 A JP S62203942A
- Authority
- JP
- Japan
- Prior art keywords
- humidity
- air
- fuel ratio
- fuel
- fuel injection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 50
- 239000000446 fuel Substances 0.000 claims abstract description 172
- 238000002347 injection Methods 0.000 claims abstract description 70
- 239000007924 injection Substances 0.000 claims abstract description 70
- 230000007423 decrease Effects 0.000 claims abstract description 11
- 238000001514 detection method Methods 0.000 claims description 12
- 230000001934 delay Effects 0.000 claims 1
- 238000000034 method Methods 0.000 description 48
- 239000000498 cooling water Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- WRRSFOZOETZUPG-FFHNEAJVSA-N (4r,4ar,7s,7ar,12bs)-9-methoxy-3-methyl-2,4,4a,7,7a,13-hexahydro-1h-4,12-methanobenzofuro[3,2-e]isoquinoline-7-ol;hydrate Chemical compound O.C([C@H]1[C@H](N(CC[C@@]112)C)C3)=C[C@H](O)[C@@H]1OC1=C2C3=CC=C1OC WRRSFOZOETZUPG-FFHNEAJVSA-N 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000002828 fuel tank Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
Landscapes
- Electrical Control Of Ignition Timing (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
Description
【発明の詳細な説明】
発明の目的
[産業上の利用分野]
本発明は稀薄燃焼を行なう内燃機関の吸入空気の湿度が
変化した場合に有効な内燃機関の制御装置に関する。DETAILED DESCRIPTION OF THE INVENTION Object of the Invention [Field of Industrial Application] The present invention relates to a control device for an internal combustion engine that is effective when the humidity of intake air of an internal combustion engine that performs lean combustion changes.
[従来の技術]
従来より、外気の湿度変化に起因する内燃機関の異常燃
焼を防止するために、点火時期を制御するものが知られ
ている。例えば、
(1) 湿度検知手段により検知された外気湿度の増大
に応じて点火時期を進める「点火時期制御装置」 (特
公昭59−41021号公報)、(2) 吸入空気の湿
度を検出し、該検出した吸入空気湿度に応じて点火時期
制御を行なう「内燃機関の点火時期制御方法」 (特開
昭57−’105555号公報)等が提案されている。[Prior Art] Conventionally, methods for controlling ignition timing have been known in order to prevent abnormal combustion in internal combustion engines caused by changes in the humidity of outside air. For example, (1) an "ignition timing control device" that advances the ignition timing in accordance with an increase in outside air humidity detected by a humidity detection means (Japanese Patent Publication No. 59-41021); (2) detects the humidity of intake air; A ``method for controlling ignition timing of an internal combustion engine'' (Japanese Unexamined Patent Publication No. 105555/1983) has been proposed in which ignition timing is controlled in accordance with the detected intake air humidity.
これらは、湿度変化による燃焼温度の低下に起因して生
じるノッキング余裕進角の変動を補正して、ノッキング
余裕進角を小さくしてもノッキングの発生を防止できる
ように考案されたものである。These are designed to correct fluctuations in the knock margin advance angle that occur due to a decrease in combustion temperature due to changes in humidity, and to prevent the occurrence of knocking even if the knock margin advance angle is reduced.
ところで近年、燃費改善および排気特性向上を目的とし
て、内燃機関を理論空燃比より薄い稀薄空燃比にて燃焼
させる、所謂稀薄燃焼制御を行なうものも開発されてい
る。Incidentally, in recent years, for the purpose of improving fuel efficiency and exhaust characteristics, internal combustion engines have been developed that perform so-called lean combustion control in which combustion is performed in an internal combustion engine at a lean air-fuel ratio that is thinner than the stoichiometric air-fuel ratio.
[発明が解決しようとする問題点]
かかる従来技術には、以下のような問題がめった。すな
わち
(1〉 一般に、湿度と燃費、トルク変動、NOx排出
量とは第14図のような関係がある。同図に示すように
、湿度上昇に伴い燃費とトルク変動は増加し、一方、低
湿度時にはNOx排出量が多い。このような傾向は、上
述した稀薄燃焼制御時において、特に顕著に現われる。[Problems to be Solved by the Invention] The following problems arose in this prior art. In other words, (1) In general, there is a relationship between humidity, fuel efficiency, torque fluctuation, and NOx emissions as shown in Figure 14.As shown in the figure, as humidity increases, fuel efficiency and torque fluctuation increase; When the humidity is high, the amount of NOx emitted is large. This tendency is particularly noticeable during the lean combustion control described above.
ところで、稀薄燃焼制御においては、燃料噴射時期およ
び稀薄空燃比の設定が、その効果と密接に関係している
。By the way, in lean burn control, the setting of fuel injection timing and lean air-fuel ratio are closely related to its effectiveness.
そこで、上記両者の設定値は、上述したようにNOx排
出量の多い低湿度時にも排気特性を悪化させないように
、該低湿度時を前提とした一定値に定められていた。し
たがって、湿度の変化に応じて、燃料噴射時期や稀薄空
燃比の設定値が補正されないという問題点が必った。Therefore, both of the above set values have been set to constant values based on the low humidity conditions so as not to deteriorate the exhaust characteristics even in low humidity conditions when the amount of NOx emissions is large, as described above. Therefore, a problem arises in that the set values of the fuel injection timing and lean air-fuel ratio are not corrected in accordance with changes in humidity.
(2) また例えば、第15図に示すように、低湿度時
におけるNOx排出量の低減を目的として、燃料噴射時
期を吸気上死点(TDC)後20[℃A]近傍の一定値
に設定すると、同図に破線で示すように、湿度の上昇に
伴う燃費およびトルク変動の増加を招き、運転性能が低
下するという問題もあった。(2) For example, as shown in Figure 15, for the purpose of reducing NOx emissions during low humidity, the fuel injection timing is set to a constant value around 20 [°C] after intake top dead center (TDC). Then, as shown by the broken line in the same figure, there was a problem in that fuel consumption and torque fluctuations increased due to the increase in humidity, and driving performance deteriorated.
(3) ざらに例えば、第16図に示すように、低湿度
時におけるNOx排出量の低減を目的として、空燃比を
22近傍の値に設定すると、上記(2)の場合と同様に
、同図に破線で示すように、湿度上昇に伴い燃費、トル
ク変動が増加してしまうという問題点もあった。(3) For example, as shown in Figure 16, if the air-fuel ratio is set to a value around 22 for the purpose of reducing NOx emissions at low humidity, the same result will occur as in case (2) above. As shown by the broken line in the figure, there was also the problem that fuel consumption and torque fluctuations increased as humidity increased.
本発明は、吸入空気の湿度が変化した場合に、燃料噴射
時期もしくは空燃比の設定値の少なくとも一方を補正し
て稀薄燃焼制御を行なう内燃機関の制御装置の提供を目
的とする。An object of the present invention is to provide a control device for an internal combustion engine that performs lean combustion control by correcting at least one of the fuel injection timing and the air-fuel ratio set value when the humidity of intake air changes.
発明の構成
[問題点を解決するための手段]
上記問題を解決するためのなされた本発明は、第1図に
例示するように、
内燃機関M1の運転状態を検出する運転状態検出手段M
2と、
該検出された運転状態に応じて、燃料噴射時期および上
記内燃機関の空燃比を理論空燃比より稀薄な所定空燃比
とする燃料量を定めて出力する制御手段M3と、
を具備した内燃機関の制御装置において、さらに、上記
内燃機関M1の吸入空気の湿度を検出する湿度検出手段
M4と、
該検出された湿度に応じて上記燃料噴射時期もしくは所
定空燃比の少なくとも一方を変更する変更手段M5と、
を備えたとを特徴とする内燃機関の制御装置を要旨とす
るものである。Structure of the Invention [Means for Solving the Problems] The present invention, which has been made to solve the above problems, as illustrated in FIG.
2, and a control means M3 for determining and outputting a fuel injection timing and an amount of fuel to make the air-fuel ratio of the internal combustion engine a predetermined air-fuel ratio leaner than the stoichiometric air-fuel ratio, according to the detected operating state. The internal combustion engine control device further includes a humidity detection means M4 for detecting the humidity of intake air of the internal combustion engine M1, and a change for changing at least one of the fuel injection timing or the predetermined air-fuel ratio in accordance with the detected humidity. The gist of the present invention is a control device for an internal combustion engine, comprising: means M5;
運転状態検出手段M2とは、内燃機関M1の運転状態を
検出するものでおる。例えば、吸入空気の量または圧力
、内燃機関のMlの回転状態、冷却水温度、吸入空気温
度および排気中の残存酸素濃度等を検出する各種のセン
サにより実現できる。The operating state detection means M2 is for detecting the operating state of the internal combustion engine M1. For example, it can be realized by various sensors that detect the amount or pressure of intake air, the rotational state of Ml of the internal combustion engine, the cooling water temperature, the intake air temperature, the residual oxygen concentration in the exhaust gas, and the like.
制御手段M3とは、運転状態に応じて燃料噴射時期およ
び理論空燃比より稀薄な所定空燃比により燃焼を実現す
る燃料筒を定めて出力するものである。例えば、吸入空
気の量または圧力と回転速度とに基づいて上記燃料噴射
時期と基本燃料量を定め、さらに吸入空気温度、冷却水
温度、酸素濃度等に応じて上記基本燃料量を補正して燃
料筒を定めるよう構成することができる。The control means M3 determines and outputs fuel injection timing and fuel cylinders that achieve combustion at a predetermined air-fuel ratio leaner than the stoichiometric air-fuel ratio, depending on the operating state. For example, the above-mentioned fuel injection timing and basic fuel amount are determined based on the amount or pressure of intake air and the rotational speed, and the above-mentioned basic fuel amount is further corrected according to intake air temperature, cooling water temperature, oxygen concentration, etc. It can be configured to define a tube.
湿度検出手段M4とは、吸入空気の湿度を検出するもの
でおる。例えば、内燃機関M1の吸気管内の湿度を検出
するものでもよく、また例えば内燃機関M1の外気湿度
を測定して吸入空気の湿度を検出するものでもよい。検
出器としは、例えば、応答性の良好なサーミスタ湿度セ
ンサ、耐久性・信頼性の高いセラミック湿度センサ、ま
たは、セラミック感湿素子等、湿度に応じたアナログ信
号を出力するものにより実現できる。The humidity detection means M4 is for detecting the humidity of intake air. For example, the humidity in the intake pipe of the internal combustion engine M1 may be detected, or the humidity of the intake air may be detected by measuring the outside air humidity of the internal combustion engine M1. The detector can be realized by, for example, a thermistor humidity sensor with good response, a ceramic humidity sensor with high durability and reliability, or a ceramic humidity sensing element that outputs an analog signal depending on humidity.
変更手段M5とは、燃料噴射時期もしくは所定空燃比の
少なくとも一方を湿度に応じて変更するものでおる。例
えば、湿度上昇に応じて上記燃料噴射時期を遅らせ、一
方、湿度下降に応じて上記燃料噴射時期を進ませること
により実現できる。The changing means M5 changes at least one of the fuel injection timing and the predetermined air-fuel ratio depending on the humidity. For example, this can be achieved by delaying the fuel injection timing in response to an increase in humidity, and advancing the fuel injection timing in response to a decrease in humidity.
また例えば、湿度上昇に応じて上記所定空燃比をより濃
い側に変更し、一方、湿度下降に応じて上記所定空燃比
をより薄い側に変更するよう構成してもよい。ざらに例
えば、上記燃料噴射時期および所定空燃比を共に上記の
ように湿度に応じて変更するものでおってもよい。Further, for example, the predetermined air-fuel ratio may be changed to a richer side in response to an increase in humidity, and the predetermined air-fuel ratio may be changed to a leaner side in response to a fall in humidity. For example, both the fuel injection timing and the predetermined air-fuel ratio may be changed depending on the humidity as described above.
上記制御手段M3と変更手段M5とは、例えば各々独立
したディスクソートな論理回路により実現できる。また
例えば、周知のCPUを始めとしてROM、RAMおよ
びその他の周辺回路素子と共に論理演算回路として構成
され、予め定められた処理手順に従って上記両手段を実
現するものであってもよい。The control means M3 and the change means M5 can be realized, for example, by independent disk sort logic circuits. Alternatively, for example, it may be configured as a logic operation circuit together with a well-known CPU, ROM, RAM, and other peripheral circuit elements, and may realize both of the above means according to a predetermined processing procedure.
[作用]
本発明の内燃機関の制御装置は、第1図に例示するよう
に、運転状態検出手段M2の検出した内燃機関M1の運
、転状態に応じて、燃料噴射時期および理論空燃比より
稀薄な所定空燃比を実現する燃料量を制御手段M3が定
めて出力するに際し、湿度検出手段M4の検出した湿度
に応じて変更手段M5は上記燃料噴射時期もしくは所定
空燃比の少なくとも一方を変更するよう働く。[Operation] As illustrated in FIG. 1, the internal combustion engine control device of the present invention determines the fuel injection timing and the stoichiometric air-fuel ratio according to the operating state of the internal combustion engine M1 detected by the operating state detecting means M2. When the control means M3 determines and outputs the amount of fuel that achieves a lean predetermined air-fuel ratio, the changing means M5 changes at least one of the fuel injection timing or the predetermined air-fuel ratio according to the humidity detected by the humidity detection means M4. It works like that.
すなわら、稀薄燃焼制御時には、吸入空気の湿度の変化
に応じて、燃料噴射時期もしくは所定空燃比の少なくと
も一方が変更されるのである。That is, during lean combustion control, at least one of the fuel injection timing and the predetermined air-fuel ratio is changed in accordance with changes in the humidity of intake air.
従って本発明の内燃機関の制御装置は、稀薄燃焼制御時
に吸入空気の湿度が変化しても、内燃機関M1の燃焼状
態を好適に制御するよう動く。以上のように本発明の各
構成要素が作用することにより、本発明の技術的課題が
解決される。Therefore, the internal combustion engine control device of the present invention operates to suitably control the combustion state of the internal combustion engine M1 even if the humidity of the intake air changes during lean combustion control. The technical problems of the present invention are solved by each component of the present invention acting as described above.
[実施例]
次に、本発明の好適な一実施例を図面に基づいて詳細に
説明する。本発明の一実施例のシステム構成を第2図に
示ず。[Example] Next, a preferred example of the present invention will be described in detail based on the drawings. A system configuration of an embodiment of the present invention is not shown in FIG.
エンジン1は、シリンダ2、ピストン3、シリンダヘッ
ド4から形成されて点゛火プラグ5を有する燃焼室6を
備えた気筒を4個連設している。The engine 1 has four cylinders that are formed of a cylinder 2, a piston 3, and a cylinder head 4 and each cylinder is provided with a combustion chamber 6 having an ignition plug 5.
エンジン1の吸気系統は、上記燃焼室6に連通ずる吸気
管7、吸入空気の脈動を吸収するサージタンク8、吸入
空気量を調節するスロットルバルブ9、吸入空気を浄化
するエアクリーナ10から構成されている。The intake system of the engine 1 is composed of an intake pipe 7 that communicates with the combustion chamber 6, a surge tank 8 that absorbs pulsation of intake air, a throttle valve 9 that adjusts the amount of intake air, and an air cleaner 10 that purifies the intake air. There is.
一方、エンジン1の排気系統は、上記燃焼室6に連通す
る排気管11、排気中の有害成分を浄化する三元触媒1
2を備えている。On the other hand, the exhaust system of the engine 1 includes an exhaust pipe 11 that communicates with the combustion chamber 6, and a three-way catalyst 1 that purifies harmful components in the exhaust gas.
2.
エンジン1の燃料系統は、図示しない燃料タンク、フュ
ーエルポンプを備え、各気筒の吸気ポート近傍に各気筒
毎に配設された燃料噴射弁13に燃料を供給する。該燃
料噴射弁13は、各気筒の吸気行程に対応して燃料を噴
射する。The fuel system of the engine 1 includes a fuel tank and a fuel pump (not shown), and supplies fuel to a fuel injection valve 13 disposed for each cylinder near the intake port of each cylinder. The fuel injection valve 13 injects fuel corresponding to the intake stroke of each cylinder.
またエンジン1の点火系統は、点火に必要な高電圧を出
力するイグナイタ14、図示しないクランク軸に連動し
て上記イグナイタ14で発生した高電圧を各気筒の点火
プラグ5に分配供給するディストリビュータ15から構
成される。The ignition system of the engine 1 includes an igniter 14 that outputs the high voltage necessary for ignition, and a distributor 15 that distributes the high voltage generated by the igniter 14 to the spark plugs 5 of each cylinder in conjunction with a crankshaft (not shown). configured.
エンジン1は検出器として、吸気管7に配設さ 。The engine 1 is installed in the intake pipe 7 as a detector.
れて吸入空気圧力を検出する吸気管内圧力センサ21、
エアクリーナ10内に配設されて吸入空気温度を検出す
る吸気温センサ22、吸気管7に配設されて吸入空気の
湿度を計測する湿度センサ23、スロットルバルブ9に
連動してその湿度を検出するスロットルポジションセン
サ24、シリンダブロックの冷却水系統に配設されて冷
却水温度を検出する水温センサ25、排気管11に配設
されて排気中の残存酸素濃度を検出しアナログ信号とし
て出力する酸素濃度センサ26、排気温度を検出する排
気温センサ27を備える。an intake pipe pressure sensor 21 for detecting intake air pressure;
An intake air temperature sensor 22 is disposed inside the air cleaner 10 to detect the intake air temperature, a humidity sensor 23 is disposed in the intake pipe 7 to measure the humidity of the intake air, and the humidity is detected in conjunction with the throttle valve 9. A throttle position sensor 24, a water temperature sensor 25 installed in the cooling water system of the cylinder block to detect the cooling water temperature, and an oxygen concentration installed in the exhaust pipe 11 to detect the residual oxygen concentration in the exhaust and output it as an analog signal. A sensor 26 and an exhaust temperature sensor 27 for detecting exhaust temperature are provided.
また、上記ディストリビュータ15内部には、そのカム
シャフトの1/24回転毎に、即ちクランク角○°から
30°の整数倍毎に回転角信号を出力する回転速度セン
サを兼ねた回転角センサ28、上記ディストリビュータ
15のカムシャフトの1回転毎に、即ち図示しないクラ
ンク軸の2回転毎に基準信号を1回出力する気筒判別セ
ンサ29が配設されている。Further, inside the distributor 15, there is a rotation angle sensor 28 which also serves as a rotation speed sensor that outputs a rotation angle signal every 1/24 revolution of the camshaft, that is, every integer multiple of the crank angle ○° to 30°. A cylinder discrimination sensor 29 is provided that outputs a reference signal once for each rotation of the camshaft of the distributor 15, that is, for every two rotations of the crankshaft (not shown).
上記各センサの検出信号は電子制御装置(以下単にEC
Uとよ、!;o)30に入力され、該ECU3Oはエン
ジン1を制御する。The detection signals of each of the above sensors are transmitted by the electronic control unit (hereinafter simply EC).
U! ;o) is input to 30, and the ECU 3O controls the engine 1.
次に上記ECU3Oの構成を第3図に基づいて説明する
。ECU3Oは、CPU30a、ROM30b、RAM
30c、バックアップRAM30dを中心に論理演算回
路として構成され、コモンバス30eを介して入出カポ
−1〜30f、3(E、出力ポート30hに接続されて
外部との入出力を行なう。Next, the configuration of the ECU 3O will be explained based on FIG. 3. ECU3O is CPU30a, ROM30b, RAM
30c and a backup RAM 30d as a central logic operation circuit, and are connected to input/output ports 1 to 30f and 3 (E and output port 30h) via a common bus 30e to perform input/output with the outside.
ECtJ30は、既)ホした各センサの出力信号のバッ
ファ30 i 、30J、30に、30m、30n、3
0p、各センサの出力信号をCPU30aに選択的に出
力するマルチプレクサ30q、アナログ信号をディジタ
ル信号に変換するA/D変換器30rを備え、これらの
信号は入出力ポート30fを介してCPU30aに入力
される。The ECtJ30 has buffers 30i, 30J, 30 for the output signals of the sensors 30m, 30n, 3
0p, a multiplexer 30q that selectively outputs the output signal of each sensor to the CPU 30a, and an A/D converter 30r that converts an analog signal into a digital signal, and these signals are input to the CPU 30a via an input/output port 30f. Ru.
またECU3Oは、排気温センサ27の出力信号のバッ
ファ’30S、気筒判別センサ29と回転角センサー2
8との出力信号の波形を整形する波形整形回路301を
備え、これらの信号は入出力ポート30C]を介してC
PU30aに入力される。In addition, the ECU 3O is a buffer '30S for the output signal of the exhaust temperature sensor 27, a cylinder discrimination sensor 29, and a rotation angle sensor 2.
A waveform shaping circuit 301 is provided to shape the waveform of the output signal from the input/output port 30C.
It is input to PU30a.
ざらにECU3Oは、第1〜第4気筒の各燃料噴QJ弁
13a、13b、13c、13dおよびイグナイタ14
に駆動電流を通電する駆動回路30u、30V、30W
、30X、30yを備え、CPU30aは出力ポート3
0hを介して上記各駆動回路30u、30v、30w、
30x、30yに制御信号を出力する。また、ECU3
Oは調時を行なうタイマ302を有し、出力ポート30
h内には予め設定された時刻と上記タイマ302の語時
とか一致した時にCPU30aに割込み信号を出力する
コンベアレジスタも配設されている。In general, the ECU 3O controls each fuel injection QJ valve 13a, 13b, 13c, 13d of the first to fourth cylinders and the igniter 14.
Drive circuit 30u, 30V, 30W that applies drive current to
, 30X, and 30y, and the CPU 30a is the output port 3.
The respective drive circuits 30u, 30v, 30w,
Control signals are output to 30x and 30y. Also, ECU3
O has a timer 302 for timing, and output port 30
A conveyor register that outputs an interrupt signal to the CPU 30a when a preset time coincides with the word time of the timer 302 is also disposed within h.
次に、上記ECU3Qにより実行される処理を第4図、
第6図、第9図、第10図の各フローチャートに基づい
て説明する。第4図は点火時期算出処理を、第6図は燃
料噴射制御量算出処理を、第9図は燃料噴射開始処理を
、第10図は燃料噴射終了処理を各々示し、以下この順
で説明する。Next, the processing executed by the ECU 3Q is shown in FIG.
This will be explained based on the flowcharts shown in FIGS. 6, 9, and 10. Fig. 4 shows the ignition timing calculation process, Fig. 6 shows the fuel injection control amount calculation process, Fig. 9 shows the fuel injection start process, and Fig. 10 shows the fuel injection end process, which will be explained in this order below. .
まず、点火時期算出処理を第4図のフローチャー1〜に
基づいて説明する。ステップ100では吸気管内圧力P
Mと回転速度Neとに基づいてマツプに従い基本点火時
期θBSEを算出する処理が行なわれる。続くステップ
110では湿度センサ23により吸入空気の湿度PWを
検出する処理が行なわれる。次にステップ120に進み
、上記湿度PWに基づいて点火時期補正値θPWを算出
する処理か行なわれる。ここで、湿度PWと点火時期補
正値θPWとの間には第5図に示すような関係がある。First, the ignition timing calculation process will be explained based on flowchart 1 to FIG. 4. In step 100, the intake pipe internal pressure P
A process is performed to calculate the basic ignition timing θBSE according to a map based on M and the rotational speed Ne. In the following step 110, the humidity sensor 23 detects the humidity PW of the intake air. Next, the process proceeds to step 120, where a process of calculating an ignition timing correction value θPW based on the humidity PW is performed. Here, there is a relationship as shown in FIG. 5 between the humidity PW and the ignition timing correction value θPW.
すなわち、湿度上昇に伴い点火時期は進角側に補正され
る。ECU3Oは第5図に示すようなマツプを予めRO
M30b内に記憶しており、該マツプに従って湿度PW
から点火時期補正値θPWを算出する。続くステップ1
30では、吸気管内圧力PMが700[mmHQ]以上
であるか否かが判定され、肯定判断されると、高負荷状
態にあるものとしてステップ140に進み、ノッキング
防止のために点火時期補正値θPWを値Oに設定した後
、ステップ150に進む。一方、上記ステップ130で
吸気管内圧力PMが700[mrTIHC]]未満でお
ると判定された場合は、ステップ150に進む。ステッ
プ150では、基本点火時期θBSEに点火時期補正値
θPWを加算補正して点火時期θを算出する処理が行な
われた後、rNEXTJへ扱ける。以後、本点火時期算
出処理は、各気筒の点火に応じて、繰り返して実行され
る。なお、吸気管内圧力PM、回転速度Ne、湿度PW
により点火時期θを規定した3次元マツプに基づいて、
直接点火時期θを算出してもよい。このよ゛うに算出す
る場合には、弾出精度か向上する。That is, the ignition timing is corrected to the advanced side as the humidity increases. The ECU3O has prepared the RO map as shown in Fig. 5 in advance.
It is stored in M30b, and the humidity PW is determined according to the map.
The ignition timing correction value θPW is calculated from Next step 1
At step 30, it is determined whether or not the intake pipe internal pressure PM is 700 [mmHQ] or more. If the determination is affirmative, the process proceeds to step 140 as a high load state, and the ignition timing correction value θPW is set to prevent knocking. After setting the value O to the value O, the process proceeds to step 150. On the other hand, if it is determined in step 130 that the intake pipe internal pressure PM is less than 700 [mrTIHC], the process proceeds to step 150. In step 150, the ignition timing θ is calculated by adding and correcting the ignition timing correction value θPW to the basic ignition timing θBSE, and then it can be handled to rNEXTJ. Thereafter, this ignition timing calculation process is repeatedly executed in accordance with the ignition of each cylinder. In addition, the intake pipe internal pressure PM, rotational speed Ne, and humidity PW
Based on the three-dimensional map that defines the ignition timing θ,
The ignition timing θ may be calculated directly. When calculating in this way, the ejection accuracy is improved.
次に、燃料噴射制御量算出処理を第6図のフローチャー
トに基づいて説明する。本燃料噴射制御量算出処理は、
各気筒の吸気上死点前60[’CA]毎に繰り返して実
行される。ステップ200では、吸気管内圧力PMと回
転速度Neとに基づいて、マツプに従い基本燃料噴射時
間TPを算出する処理が行なわれる。続くステップ21
0では、吸気管内圧力PMと回転速度Neと冷却水温度
THWとに基づいて、マツプに従い稀薄空燃比補正係数
KLEANを算出する処理が行なわれる。ここで、例え
ば稀薄空燃比補正係数KLEANが値0.8と求まると
、理論空燃比の値14.8を上記8薄空燃比補正係数K
LEANで除した値18.5が基本目標空燃比となる。Next, the fuel injection control amount calculation process will be explained based on the flowchart of FIG. This fuel injection control amount calculation process is as follows:
This process is repeated every 60 ['CA] before the intake top dead center of each cylinder. In step 200, a process is performed to calculate the basic fuel injection time TP according to a map based on the intake pipe internal pressure PM and the rotational speed Ne. Next step 21
0, a process is performed to calculate the lean air-fuel ratio correction coefficient KLEAN according to a map based on the intake pipe internal pressure PM, rotational speed Ne, and cooling water temperature THW. For example, if the lean air-fuel ratio correction coefficient KLEAN is found to be 0.8, the stoichiometric air-fuel ratio value 14.8 is converted to the 8 lean air-fuel ratio correction coefficient KLEAN.
The value 18.5 divided by LEAN becomes the basic target air-fuel ratio.
次にステップ220に進み、湿度センサ23から吸入空
気の湿度PWを検出する処理が行なわれる。続くステッ
プ230では、上記湿度PWがら空燃比補正値Kを算出
する処理が行なわれる。ここで湿度PWと空燃比補正値
にとの間には、第7図に示すような関係がある。Next, the process proceeds to step 220, where a process of detecting the humidity PW of the intake air from the humidity sensor 23 is performed. In the following step 230, a process of calculating an air-fuel ratio correction value K from the humidity PW is performed. Here, there is a relationship between the humidity PW and the air-fuel ratio correction value as shown in FIG.
すなわら、湿度上昇に伴い空燃比補正値には増加する。In other words, the air-fuel ratio correction value increases as the humidity increases.
ECU3Oは、第7図に示すようなマツプを予めROM
30b内に記憶しており、該マツプに従って湿度PWか
ら空燃比補正値Kを算出する。The ECU3O has a map shown in Fig. 7 stored in the ROM in advance.
30b, and calculates the air-fuel ratio correction value K from the humidity PW according to the map.
ここで、例えば空燃比補正値Kが値1.1と求まると、
上述した基本目標空燃比の値18.5を上記空燃比補正
値にで除した値16.8が目標空燃比となる。次にステ
ップ240に進み、実燃料噴射時間TAUを次式(1)
のように算出する処理が行なわれる。Here, for example, if the air-fuel ratio correction value K is found to be 1.1,
The value 16.8 obtained by dividing the above-mentioned basic target air-fuel ratio value 18.5 by the above-mentioned air-fuel ratio correction value becomes the target air-fuel ratio. Next, proceed to step 240, and calculate the actual fuel injection time TAU using the following formula (1).
The calculation process is performed as follows.
TAU=TPxKLEANxKXC・・・(1)但し、
補正係数Cは、冷却水温度THW、吸入空気温度THA
、空燃比フィードバック補正係数FAF等から定まる係
数である。TAU=TPxKLEANxKXC...(1) However,
The correction coefficient C is based on the cooling water temperature THW and the intake air temperature THA.
, the air-fuel ratio feedback correction coefficient FAF, etc.
続くステップ250では、吸気管内圧力PMと回転速度
Neとからマツプに従って基本燃料噴射時期をクランク
角度として求め、ざらに該クランク角度を時間に変換し
て基本燃料噴射時期TINJを算出する処理が行なわれ
る。次にステップ260に進み、湿度PMから燃料噴射
時期補正値Δ丁を算出する処理が行なわれる。ここで湿
度PMと燃料噴射時期補正値のクランク角表示値ΔAと
の間には、第8図に示すような関係がある。すなわち、
湿度上昇に伴い燃料噴射時期は遅角側に補正される。E
CU3Oは第8図に示すようなマツプを予めROM30
b内に記憶しており、湿度PWに応じて上記マツプに従
い、まず燃料噴射時期補正値のクランク角表示値ΔAを
算出し、ざらにこの値を時間に変換した燃料噴射時期補
正値Δ丁に換算する。続くステップ270では燃料噴射
開始時刻INJONを次式(2〉のように算出する処理
が行なわれる。In the subsequent step 250, the basic fuel injection timing is determined as a crank angle according to the map from the intake pipe internal pressure PM and the rotational speed Ne, and the basic fuel injection timing TINJ is calculated by roughly converting the crank angle into time. . Next, the process proceeds to step 260, where a process of calculating a fuel injection timing correction value Δt from the humidity PM is performed. Here, there is a relationship as shown in FIG. 8 between the humidity PM and the crank angle display value ΔA of the fuel injection timing correction value. That is,
As the humidity increases, the fuel injection timing is corrected to the retarded side. E
CU3O stores a map as shown in Fig. 8 in advance in ROM30.
According to the above map according to the humidity PW, first calculate the crank angle display value ΔA of the fuel injection timing correction value, and roughly convert this value into the fuel injection timing correction value ΔT. Convert. In the following step 270, a process is performed to calculate the fuel injection start time INJON according to the following equation (2>).
I NJON=TIMER十TI NJ+Δ丁・・・(
2)但し、値TIMERはタイマ3ozの計時している
現在の時刻でおる。I NJON=TIMER 10 TI NJ+Δ1...(
2) However, the value TIMER is the current time measured by the timer 3oz.
次にステップ280に進み、燃料噴射開始時刻INJO
Nを出力ポート30hのコンベアレジスタにセットした
後、rNEXTJへ扱ける。以後、本燃料噴射制御量算
出処理は、上述した実行条件が成立する毎に繰り返して
実行される。Next, the process proceeds to step 280, where the fuel injection start time INJO is determined.
After setting N in the conveyor register of output port 30h, it can be handled to rNEXTJ. Thereafter, this fuel injection control amount calculation process is repeatedly executed every time the above-described execution condition is satisfied.
次に燃料噴射開始処理を第9図のフローチャートに基づ
いて説明する。本燃料噴射開始処理は、上述したように
コンベアレジスタにセットされた燃料噴射開始時刻とタ
イマ30zの計時値とが一致した時に割り込んで実行さ
れる。ステップ300では、吸気行程を迎えた気筒に対
応する燃料噴射弁13を開弁する処理が行なわれる。続
くステップ310では、燃料噴射終了時刻INJOFF
を次式(3)のように算出する処理が行なわれる。Next, the fuel injection start process will be explained based on the flowchart of FIG. As described above, this fuel injection start process is interrupted and executed when the fuel injection start time set in the conveyor register and the timed value of the timer 30z match. In step 300, a process is performed to open the fuel injection valve 13 corresponding to the cylinder that has reached the intake stroke. In the following step 310, the fuel injection end time INJOFF is determined.
A process is performed to calculate as shown in the following equation (3).
INJOFF=TIMER+TAU ・・・(3)
但し、値TIMERはタイマ30zの計時している現在
の時刻でおる。INJOFF=TIMER+TAU...(3)
However, the value TIMER is the current time measured by the timer 30z.
次にステップ320に進み、燃料噴射終了時刻INJO
FFを出力ポート30hのコンベアレジスタにセットし
た後、−量水燃料噴射開始処理を終了する。以後、本燃
料噴射開始処理は、上述した起動条件成立時に、割り込
んで実行される。Next, the process proceeds to step 320, where the fuel injection end time INJO
After setting the FF to the conveyor register of the output port 30h, the - amount water fuel injection start process is completed. Thereafter, the present fuel injection start process is interrupted and executed when the above-mentioned starting condition is satisfied.
次に、燃料噴射終了処理を第10図のフローチャートに
基づいて説明する。本燃料噴射終了処理は、上述したよ
うにコンベアレジスタにセットされた。燃料噴射終了時
刻とタイマ302の計時値とが一致した時に割り込んで
実行される。ステップ400では、上述した燃料噴射開
始処理で開弁じた燃料噴射弁13を閉弁する処理が行な
われた後、−量水燃料噴射終了処理を終了する。以後、
本燃料噴射終了処理は、上述した起動条件成立毎に、割
り込んで実行される。Next, the fuel injection termination process will be explained based on the flowchart of FIG. 10. This fuel injection termination process was set in the conveyor register as described above. The process is interrupted and executed when the fuel injection end time and the timed value of the timer 302 match. In step 400, after a process is performed to close the fuel injection valve 13 that was opened in the above-described fuel injection start process, the -amount water fuel injection end process is ended. From then on,
This fuel injection termination process is interrupted and executed every time the above-mentioned starting condition is satisfied.
なお本実施例において、エンジン1が内燃機関M1に、
吸気管内圧力センサ21と吸気温センサ22と水温セン
サ25と酸素濃度センサ26と回転角センサ28と気筒
判別センサ29とが運転状態検出手段M2に該当する。Note that in this embodiment, the engine 1 is replaced by the internal combustion engine M1,
The intake pipe pressure sensor 21, the intake air temperature sensor 22, the water temperature sensor 25, the oxygen concentration sensor 26, the rotation angle sensor 28, and the cylinder discrimination sensor 29 correspond to the operating state detection means M2.
また、ECU3Oと該ECU3Oにより実行される処理
(ステップ200.210,250.280>が制御手
段M3として機能する。さらに、湿度センサ23が湿度
検出手段M4に該当し、ECU3Oと該ECU3Oによ
り実行される処理(ステップ230,240.260,
270>が変更手段M5として機能する。Further, the ECU 3O and the processes executed by the ECU 3O (steps 200.210, 250.280> function as the control means M3. Furthermore, the humidity sensor 23 corresponds to the humidity detection means M4, and the processes executed by the ECU 3O and the processes executed by the ECU 3O function as the control means M3. processing (steps 230, 240, 260,
270> functions as the changing means M5.
以上説明したように本実施例は、吸入空気の湿度上昇に
伴い、点火時期を進角させ、理論空燃比より稀薄側に設
定された基本目標空燃比をより濃い側に補正し、ざらに
燃料噴射時期を遅らせるように構成されている。このた
め、湿度上昇に伴う燃費低下を防止し、しかもNOx排
出量を安定化させることができる。すなわち、第11図
に示すように、湿度PW1においては、該湿度PWIに
応じた点火時期に設定されるため、燃費は値a1となり
、NOx排出量は値C1となる。やがて外気状態の変化
により湿度PW1から湿度PW2まで湿度上昇が発生す
る。この場合、点火時期を同一に8々定していると、燃
費は同図に実線で、NOx排出量は二点鎖線で各々示す
ように変化する。As explained above, in this embodiment, as the humidity of intake air increases, the ignition timing is advanced, and the basic target air-fuel ratio, which is set on the leaner side than the stoichiometric air-fuel ratio, is corrected to the richer side, thereby roughly increasing the fuel consumption. It is configured to delay the injection timing. Therefore, it is possible to prevent a decrease in fuel efficiency due to an increase in humidity, and to stabilize the amount of NOx emissions. That is, as shown in FIG. 11, when the humidity is PW1, the ignition timing is set according to the humidity PWI, so the fuel consumption is a value a1, and the NOx emission amount is a value C1. Eventually, due to a change in the outside air condition, the humidity increases from the humidity PW1 to the humidity PW2. In this case, if the ignition timing is set at the same 8 times, the fuel consumption changes as shown by the solid line in the figure, and the NOx emission amount changes as shown by the two-dot chain line.
このため、湿度上昇に伴い燃費は値a1から値a2まで
増大してしまう。しかし、本実施例では湿度上昇に伴い
点火時期を進角補正する。これにより、燃費は同図に破
線で、NOx排出量は一点鎖線で各々示すように変化す
る。したがって、湿度PW1から湿度PW2まで湿度が
上昇しても、燃費は値a1から値a3と低下し、一方、
NOx排出量は値C1のままに維持されるのである。な
お、高負荷時(吸気管内圧力PMが700 Cmmhg
1以上)の場合には点火時期を進角させないので、ノッ
キング発生を防止できる。Therefore, as the humidity increases, the fuel consumption increases from the value a1 to the value a2. However, in this embodiment, the ignition timing is advanced as the humidity increases. As a result, the fuel consumption changes as shown by the broken line in the figure, and the NOx emission amount changes as shown by the dashed line. Therefore, even if the humidity increases from humidity PW1 to humidity PW2, the fuel efficiency decreases from value a1 to value a3;
The NOx emission amount is maintained at the value C1. In addition, at high load (intake pipe pressure PM is 700 Cmmhg
1 or more), the ignition timing is not advanced, so knocking can be prevented.
また、第12図に示すように、低湿度時には燃費、トル
ク変動、NOx排出量は、空燃比に応じて各々実線で示
すように変化する。このような低湿度時には、NOx排
出量の低減を目的として空燃比は値22近傍に設定され
る。このため、燃費は値a11、トルク変動は値b11
、NOx排出量は値C11となる。一方高湿度時には、
燃費、トルク変動、NOx排出量は、空燃比に応じて破
線で示すように変化する。このため、高湿度時にお・い
ても空燃比を値22近傍に設定していると、燃費は値a
12まで、トルク変動は値b12まで増加してしまう。Further, as shown in FIG. 12, when the humidity is low, the fuel consumption, torque fluctuation, and NOx emission amount change as shown by solid lines according to the air-fuel ratio. At such low humidity times, the air-fuel ratio is set to a value around 22 for the purpose of reducing NOx emissions. Therefore, the fuel consumption is the value a11, and the torque fluctuation is the value b11.
, the NOx emission amount becomes the value C11. On the other hand, when the humidity is high,
Fuel consumption, torque fluctuation, and NOx emissions change as shown by the broken line depending on the air-fuel ratio. Therefore, even in high humidity, if the air-fuel ratio is set around 22, the fuel consumption will be around the value a.
12, the torque fluctuation increases to the value b12.
しかし、本実施例では湿度上昇に伴い空燃比を値22近
傍から例えば濃い側の値20近傍に補正する。したがっ
て、湿度が上昇しても燃費は値a13に、トルク変動は
値b13になり、低湿度時と同程度もしくはそれより低
下する。またNOx排出量は値C13となり、やはり低
湿度時と同等の値に維持できる。さらに、第13図に示
すように、低湿度時には燃費、トルク変動、NOx排出
量は、燃料噴射時期に応じて各々実線で示すように変化
する。このような低湿度時には、NOx排出量の低減を
目的として、燃料噴射時期は吸気上死点(TDC>(多
15[’CA]近傍の値に設定されている。このため、
燃費は値a21、トルク変動は値b21、NOx排出量
は値C21となる。一方、高湿度時には、燃費、トルク
変動、NOx排出量は、燃料噴射時期に応じて破線で示
すように変化する。このため、高湿度時においても燃料
噴射時期を吸気上死点後15[”CA]近傍の値に設定
していると、燃費は値a22まで、トルク変動は1ia
b22まで増加してしまう。However, in this embodiment, as the humidity increases, the air-fuel ratio is corrected from a value around 22 to, for example, a value around 20 on the rich side. Therefore, even if the humidity increases, the fuel consumption will be a value a13 and the torque fluctuation will be a value b13, which will be the same level or lower than when the humidity is low. Further, the NOx emission amount becomes a value C13, which can be maintained at the same value as when the humidity is low. Further, as shown in FIG. 13, when the humidity is low, the fuel consumption, torque fluctuation, and NOx emission amount change as shown by solid lines depending on the fuel injection timing. At times of such low humidity, the fuel injection timing is set to a value close to intake top dead center (TDC>(TDC>15 ['CA]) for the purpose of reducing NOx emissions.
The fuel consumption is a value a21, the torque fluctuation is a value b21, and the NOx emission amount is a value C21. On the other hand, when humidity is high, fuel efficiency, torque fluctuations, and NOx emissions change as shown by the broken line depending on the fuel injection timing. Therefore, even in high humidity conditions, if the fuel injection timing is set to a value close to 15 ["CA] after intake top dead center, the fuel consumption will reach the value a22, and the torque fluctuation will decrease to 1ia.
It increases to b22.
しかし、本実施例では湿度上昇に伴い燃料噴射時期を例
えば吸気上死点後30 [’CA]近傍の値まで遅らせ
る。したがって、湿度が上昇しても燃費は値a23に、
トルク変動は値b23になり、低湿度時と同程度の値と
なる。またNOx排出量は値023となり、やはり低湿
度時と同程度の値に維持できる。However, in this embodiment, as the humidity increases, the fuel injection timing is delayed, for example, to a value near 30 ['CA] after intake top dead center. Therefore, even if the humidity increases, the fuel consumption will remain at the value a23,
The torque fluctuation becomes a value b23, which is about the same value as when the humidity is low. Further, the NOx emission amount becomes a value of 023, which can be maintained at the same value as when the humidity is low.
上)ホしたような効果により、湿度が変動しても燃費を
低下せることなく、運転性能を良好に保ら、しかもNO
X排出量を増加させないで稀薄燃焼制御を行なうことが
できる。Above) Due to the effects mentioned above, even if the humidity fluctuates, fuel efficiency does not decrease and driving performance is maintained in good condition.
Lean burn control can be performed without increasing the amount of X emissions.
なお、本実施例の燃料噴射制御量算出処理では、稀薄空
燃比補正係数KLEANの値にかかわらず、空燃比補正
値Kを算出している。しかし、例えば、第17図に示す
燃料噴射制御量算出処理により、稀薄空燃比補正係数K
LEANの値が1.0以上の場合には、空燃比補正値K
を一定(1,0)としてもよい(ステップ522,52
5>。ここで、稀薄空燃比補正係数KLEANの値は、
第18図に示すように、高負荷状態において1.0以上
となる。このような比較的濃い空燃比による燃焼状態に
おいては、既述したようにNOX排出量およびトルク変
動は共に小さい。したがって、空燃比補正値Kを1.0
として燃料噴射量の増量を行なわないことにより、燃料
消費率を向上させられる。In addition, in the fuel injection control amount calculation process of this embodiment, the air-fuel ratio correction value K is calculated regardless of the value of the lean air-fuel ratio correction coefficient KLEAN. However, for example, by the fuel injection control amount calculation process shown in FIG.
If the value of LEAN is 1.0 or more, the air-fuel ratio correction value K
may be constant (1, 0) (steps 522, 52
5>. Here, the value of the lean air-fuel ratio correction coefficient KLEAN is:
As shown in FIG. 18, it becomes 1.0 or more in a high load state. In such a combustion state with a relatively rich air-fuel ratio, both the NOx emission amount and the torque fluctuation are small, as described above. Therefore, the air-fuel ratio correction value K is set to 1.0.
By not increasing the fuel injection amount, the fuel consumption rate can be improved.
また、本実施例の燃料噴射制御量算出処理では、空燃比
補正値Kを湿度PWに基づいて算出した。Furthermore, in the fuel injection control amount calculation process of this embodiment, the air-fuel ratio correction value K was calculated based on the humidity PW.
しかし、例えば、空燃比補正値Kを、吸気管内圧力PM
、回転速度Neおよび湿度PWからなる3次元マツプに
基づいて算出すると、より一層精度が向上する。However, for example, if the air-fuel ratio correction value K is
, rotational speed Ne, and humidity PW, the accuracy is further improved.
以上本発明の実施例について説明したが、本発明はこの
ような実施例に何等限定されるものではなく、本発明の
要旨を逸脱しない範囲内において種々なる態様で実施し
得ることは勿論である。Although the embodiments of the present invention have been described above, the present invention is not limited to these embodiments in any way, and it goes without saying that it can be implemented in various forms without departing from the gist of the present invention. .
発明の効果
以上詳記したように本発明の内燃機関の制御装置は、湿
度検出手段の検出した湿度に応じて燃料噴射時期もしく
は理論空燃比より稀薄側に設定された所定空燃比を変更
手段が変更するよう構成されている。このため、稀薄燃
焼制御時に吸入空気の湿度が変化しても、燃費の低下を
防止すると共に、機関出力を安定させることができると
いう優れた効果を奏する。Effects of the Invention As detailed above, the control device for an internal combustion engine of the present invention has a means for changing the fuel injection timing or a predetermined air-fuel ratio set to the leaner side than the stoichiometric air-fuel ratio in accordance with the humidity detected by the humidity detecting means. configured to change. Therefore, even if the humidity of the intake air changes during lean combustion control, it is possible to prevent a decrease in fuel efficiency and to stabilize the engine output, which is an excellent effect.
また、吸入空気の湿度の変化による排気特性の悪化を抑
制することが可能となる。Furthermore, it is possible to suppress deterioration of exhaust characteristics due to changes in the humidity of intake air.
さらに、上記各効果に伴い、外気状態に応じて、稀薄燃
焼を行なう内燃機関の燃焼状態を最適に制御できる。Furthermore, along with the above effects, the combustion state of the internal combustion engine that performs lean combustion can be optimally controlled depending on the outside air state.
第1図は本発明の内容を概念的に例示した基本的構成図
、第2図は本発明の一実施例のシステム構成図、第3図
は同じくその電子制御装置ら構成を説明するためのブロ
ック図、第4図は同じくその制御を示すフローチャート
、第5図は同じくそのマツプを示すグラフ、第6図は同
じくその制御を示すフローチャート、第7図、第8図は
同じくそのマツプを示すグラフ、第9図、第10図は同
じくその制御を示すフローチャート、第11図〜第13
図は同じくその効果を示すグラフ、第14図〜第16図
は湿度変化に対応した諸特性量の変化を示すグラフ、第
17図はその他の実施例を示すフローチャート、第18
図は同じくそのマツプを示すグラフである。
Ml・・・内燃機関
M2・・・運転状態検出手段
M3・・・制御手段
M4・・・湿度検出手段
M5・・・変更手段
1・・・エンジン
21・・・吸気管内圧力センサ
23・・・湿度センサ
28・・・回転角センサ
30・・・電子制御装置(ECU)
30 a ・CP UFIG. 1 is a basic configuration diagram conceptually illustrating the contents of the present invention, FIG. 2 is a system configuration diagram of an embodiment of the present invention, and FIG. 3 is a diagram for explaining the configuration of the electronic control device. 4 is a flowchart showing the control, FIG. 5 is a graph showing the map, FIG. 6 is a flowchart showing the control, and FIGS. 7 and 8 are graphs showing the map. , FIGS. 9 and 10 are flowcharts showing the same control, and FIGS. 11 to 13.
The figure is a graph similarly showing the effect, Figures 14 to 16 are graphs showing changes in various characteristic quantities corresponding to changes in humidity, Figure 17 is a flowchart showing other examples, and Figure 18 is a graph showing the effect.
The figure is also a graph showing the map. Ml... Internal combustion engine M2... Operating state detection means M3... Control means M4... Humidity detection means M5... Changing means 1... Engine 21... Intake pipe internal pressure sensor 23... Humidity sensor 28...Rotation angle sensor 30...Electronic control unit (ECU) 30 a ・CPU
Claims (1)
、 該検出された運転状態に応じて、燃料噴射時期および上
記内燃機関の空燃比を理論空燃比より稀薄な所定空燃比
とする燃料量を定めて出力する制御手段と、 を具備した内燃機関の制御装置において、 さらに、上記内燃機関の吸入空気の湿度を検出する湿度
検出手段と、 該検出された湿度に応じて上記燃料噴射時期もしくは所
定空燃比の少なくとも一方を変更する変更手段と、 を備えたとを特徴とする内燃機関の制御装置。 2 上記変更手段が、湿度上昇に応じて上記燃料噴射時
期を遅らせ、一方、湿度下降に応じて上記燃料噴射時期
を進ませる特許請求の範囲第1項に記載の内燃機関の制
御装置。 3 上記変更手段が、湿度上昇に応じて上記所定空燃比
をより濃い側に変更し、一方、湿度下降に応じて上記所
定空燃比をより薄い側に変更する特許請求の範囲第1項
に記載の内燃機関の制御装置。[Scope of Claims] 1. Operating state detection means for detecting the operating state of the internal combustion engine; and, in accordance with the detected operating state, adjusting the fuel injection timing and the air-fuel ratio of the internal combustion engine to a predetermined air-fuel ratio leaner than the stoichiometric air-fuel ratio. A control device for an internal combustion engine, comprising: a control device that determines and outputs a fuel amount as a fuel ratio; and a humidity detection device that detects humidity of intake air of the internal combustion engine; A control device for an internal combustion engine, comprising: changing means for changing at least one of the fuel injection timing or the predetermined air-fuel ratio. 2. The control device for an internal combustion engine according to claim 1, wherein the changing means delays the fuel injection timing in response to an increase in humidity, and advances the fuel injection timing in response to a decrease in humidity. 3. Claim 1, wherein the changing means changes the predetermined air-fuel ratio to a richer side in response to an increase in humidity, and changes the predetermined air-fuel ratio to a leaner side in response to a decrease in humidity. Control equipment for internal combustion engines.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4807686A JPH0670385B2 (en) | 1986-03-03 | 1986-03-03 | Control device for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4807686A JPH0670385B2 (en) | 1986-03-03 | 1986-03-03 | Control device for internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62203942A true JPS62203942A (en) | 1987-09-08 |
JPH0670385B2 JPH0670385B2 (en) | 1994-09-07 |
Family
ID=12793250
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4807686A Expired - Lifetime JPH0670385B2 (en) | 1986-03-03 | 1986-03-03 | Control device for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0670385B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999000592A1 (en) * | 1997-06-28 | 1999-01-07 | Volkswagen Aktiengesellschaft | Method and device for regulating internal combustion engines |
JP2013529274A (en) * | 2010-05-06 | 2013-07-18 | エフピーティ モトーレンフォアシュンク アクチェンゲゼルシャフト | Method and apparatus for monitoring a humidity sensor in a combustion engine, using oxygen measurement of other sensors in the engine such as NOx, lambda, and / or oxygen sensors |
JPWO2017130527A1 (en) * | 2016-01-27 | 2018-09-27 | 日立オートモティブシステムズ株式会社 | Internal combustion engine control device |
-
1986
- 1986-03-03 JP JP4807686A patent/JPH0670385B2/en not_active Expired - Lifetime
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999000592A1 (en) * | 1997-06-28 | 1999-01-07 | Volkswagen Aktiengesellschaft | Method and device for regulating internal combustion engines |
JP2013529274A (en) * | 2010-05-06 | 2013-07-18 | エフピーティ モトーレンフォアシュンク アクチェンゲゼルシャフト | Method and apparatus for monitoring a humidity sensor in a combustion engine, using oxygen measurement of other sensors in the engine such as NOx, lambda, and / or oxygen sensors |
US9772273B2 (en) | 2010-05-06 | 2017-09-26 | Fpt Motorenforschung Ag | Method and device for monitoring a humidity sensor in a combustion engine, using oxygen measurement of other sensors in the engine, such as NOx, lambda and/or oxygen sensors |
JPWO2017130527A1 (en) * | 2016-01-27 | 2018-09-27 | 日立オートモティブシステムズ株式会社 | Internal combustion engine control device |
CN108699980A (en) * | 2016-01-27 | 2018-10-23 | 日立汽车系统株式会社 | Combustion engine control |
US20190024600A1 (en) * | 2016-01-27 | 2019-01-24 | Hitachi Automotive Systems, Ltd. | Internal combustion engine control apparatus |
US10677183B2 (en) | 2016-01-27 | 2020-06-09 | Hitachi Automotive Systems, Ltd. | Internal combustion engine control apparatus |
CN108699980B (en) * | 2016-01-27 | 2021-06-18 | 日立汽车系统株式会社 | Control device for internal combustion engine |
Also Published As
Publication number | Publication date |
---|---|
JPH0670385B2 (en) | 1994-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7087609B2 (en) | Engine control unit | |
JPS6340268B2 (en) | ||
JPS6134330A (en) | Air-fuel ratio controller for internal-combustion engine | |
US5664544A (en) | Apparatus and method for control of an internal combustion engine | |
US5156128A (en) | Apparatus for controlling variation in torque of internal combustion engine | |
US20180094616A1 (en) | Control device for internal combustion engine | |
US5016595A (en) | Air-fuel ratio control device for internal combustion engine | |
US4727841A (en) | System for controlling internal combustion engine using knocking and overtemperature preventing fuel correction | |
JPS59136544A (en) | Control apparatus for intenal-combustion engine | |
JPS62203942A (en) | Controller for internal combustion engine | |
US20110320107A1 (en) | Fuel Injection Control Device for Engine | |
JPS61169666A (en) | Ignition timing control device in internal-combustion engine | |
JPH0730734B2 (en) | Control device for internal combustion engine | |
JPH0734924A (en) | Injection quantity controller of internal combustion engine | |
JPS63106365A (en) | Method of controlling ignition timing of internal combustion engine | |
JPH0339183B2 (en) | ||
JP2559782Y2 (en) | Ignition timing control device for internal combustion engine | |
JPH11229930A (en) | Internal combustion engine controller | |
JPH0759931B2 (en) | Ignition timing control device for internal combustion engine | |
JP2884836B2 (en) | Engine ignition timing control device | |
JPS6125930A (en) | Control of fuel injection amount of internal-combustion engine | |
JP2684885B2 (en) | Fuel injection amount control device for internal combustion engine | |
JPH0240082A (en) | Ignition timing controller for internal combustion engine | |
JPS61185646A (en) | Control device for internal-combustion engine | |
JPH09280086A (en) | Engine combustion controller |