JPS6281712A - Liquid growth device - Google Patents

Liquid growth device

Info

Publication number
JPS6281712A
JPS6281712A JP22308485A JP22308485A JPS6281712A JP S6281712 A JPS6281712 A JP S6281712A JP 22308485 A JP22308485 A JP 22308485A JP 22308485 A JP22308485 A JP 22308485A JP S6281712 A JPS6281712 A JP S6281712A
Authority
JP
Japan
Prior art keywords
interpolation pipe
reactor tube
melt
reaction tube
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22308485A
Other languages
Japanese (ja)
Inventor
Masato Kondo
真人 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP22308485A priority Critical patent/JPS6281712A/en
Publication of JPS6281712A publication Critical patent/JPS6281712A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To contrive the improvement in characteristics of a grown film by preventing the mixing of Si included in a reactor tube into the grown film by providing an interpolation pipe composed of either of carbon and boron nitride or combination of those inside the reactor tube composed of SiO2 and arranging a substrate and a jig inside the interpolation pipe. CONSTITUTION:Inside a reactor tube 1 of SiO2, an interpolation pipe 4 composed either of carbon C and boron nitride BN or combination of those is provided and a substrate S used for growth and a jig composed C for holding a material, i.e., a melt M, i.e., a slide board 3 are arranged inside the interpolation pipe 4. The interpolation pipe 4 consists of inside the interpolation pipe 4. The interpolation pipe 4 consists of high-purity C or high-purity BN, e.g., polycrystalline BN (PBN) and it is of cylindrical form having the external diameter which can be inserted in the reactor tube 1 and the length which can involve a region to be heated by a heater 2. It is inserted in the reactor tube 1 and inside that, the slide board 3 is arranged. A thickness of about 2-3mm will do if the material to be used is compact. Also, a double structure comprising the outside of C and inside of BN is available.

Description

【発明の詳細な説明】 〔概要〕 化合物半導体または混晶半導体を成長させる液相成長装
置において、 二酸化シリコンでなる反応管の内側に炭素および窒化硼
素の何れか一方またはその組み合わせでなる内挿管を設
けることにより、 成長に際して反応管に含まれるシリコンが成長膜に混入
するのを防止し、更には成長原料に含まれるシリコンの
除去にも使用出来るようにしたものである。
[Detailed Description of the Invention] [Summary] In a liquid phase growth apparatus for growing compound semiconductors or mixed crystal semiconductors, an inner tube made of one or a combination of carbon and boron nitride is provided inside a reaction tube made of silicon dioxide. By providing this, it is possible to prevent the silicon contained in the reaction tube from being mixed into the grown film during growth, and it can also be used to remove silicon contained in the growth raw material.

〔産業上の利用分野〕[Industrial application field]

本発明は、化合物半導体または混晶半導体を成長させる
液相成長装置の構成に関す。
The present invention relates to the configuration of a liquid phase growth apparatus for growing a compound semiconductor or a mixed crystal semiconductor.

m−v族化合物半導体またはその混晶半導体を用いた電
子デバイス、例えば、ダブルへテロ接合型レーザ、アバ
ランシュホトダイオード、PINダイオードなどの光素
子や、電界効果トランジスタ、ガンダイオードなどの高
速能動素子においては、使用される半導体を液相成長に
よって形成する場合が多い。
In electronic devices using m-v group compound semiconductors or their mixed crystal semiconductors, for example, optical devices such as double heterojunction lasers, avalanche photodiodes, and PIN diodes, and high-speed active devices such as field effect transistors and Gunn diodes. , the semiconductors used are often formed by liquid phase growth.

この場合、特性の優れた成長膜を得るためには、不要な
不純物が混入するのを極力少なくすることが必要である
In this case, in order to obtain a grown film with excellent characteristics, it is necessary to minimize the incorporation of unnecessary impurities.

〔従来の技術〕[Conventional technology]

第3図は上記液相成長を行う液相成長装置の従来例の要
部側断面図である。
FIG. 3 is a sectional side view of a main part of a conventional example of a liquid phase growth apparatus that performs the liquid phase growth described above.

同図において、1は石英ガラスなど二酸化シリコン(S
i02)でなる円筒状の反応管、2は加熱用の抵抗線ヒ
ータ、3は高純度炭素でなり成長に用いる基板Sと原料
(メルト)Mを保持するためのスライドボートと称する
治具である。
In the figure, 1 is silicon dioxide (S) such as quartz glass.
i02), 2 is a resistance wire heater for heating, and 3 is a jig called a slide boat made of high-purity carbon and used to hold the substrate S and raw material (melt) M used for growth. .

半導体の成長は、基板Sとメルl−Mとをボート3に保
持させ、反応管1に高純度水素(H2)を流入させなが
ら成長温度(600〜900℃でメルトMは熔融液にな
る)に加熱し、ボート3の操作により基板SにメルトM
を接触させ、基板S上に半導体を膜状に析出させて行う
The semiconductor is grown by holding the substrate S and melt L-M in a boat 3, and by flowing high-purity hydrogen (H2) into the reaction tube 1 at a growth temperature (600 to 900°C, melt M becomes a molten liquid). and melt M onto the substrate S by operating the boat 3.
This is carried out by bringing the semiconductors into contact with each other and depositing a semiconductor in the form of a film on the substrate S.

ここで上記H2を流入させるのは、反応管1内の清浄度
を維持するためである。
The reason for flowing the above-mentioned H2 here is to maintain the cleanliness inside the reaction tube 1.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

成長対象となる半導体がIII−V族化合物半導体また
はその混晶半導体、例えば、ガリウム砒素(GaAs)
 、インジウム燐(InP) 、インジウムガリウム砒
素(InGaAs) 、インジウムガリウム砒素燐(I
nGaAsP)などの場合、成長膜に存在する残留不純
物には、硫黄(S)、シリコン(Si)、テルル(Te
)、亜鉛(Zn)、マグネシウム(Mg)などの元素が
あり、これらの元素は、メルI−Mにする、ガリウム(
Ga)、インジウム(In)、GaAs−、インジウム
砒素(InAs)、InPなどに混入してもたらされる
The semiconductor to be grown is a III-V compound semiconductor or a mixed crystal semiconductor thereof, such as gallium arsenide (GaAs).
, indium phosphide (InP), indium gallium arsenide (InGaAs), indium gallium arsenide phosphide (I
nGaAsP), residual impurities present in the grown film include sulfur (S), silicon (Si), and tellurium (Te).
), zinc (Zn), and magnesium (Mg);
Indium (Ga), indium (In), GaAs-, indium arsenide (InAs), InP, etc. are mixed therein.

上記元素のうち蒸気圧の高い、S % Tes Zn、
 Mg、などは、メルl−Mを成長に使用する前に真空
中で高温熱処理することにより除去することが可能であ
る。
Among the above elements, S % Tes Zn, which has a high vapor pressure,
Mg, etc. can be removed by subjecting Mel l-M to high temperature heat treatment in vacuum before using it for growth.

しかしながらSiは、蒸気圧が低いため上記方法では除
去することが困難であり、メル)Mに残って成長膜に混
入し不要な不純物である残留不純物となる。
However, since Si has a low vapor pressure, it is difficult to remove it by the above method, and it remains in the M (M) and becomes a residual impurity that is mixed into the grown film and is an unnecessary impurity.

更に、従来例で示した成長装置を用いた成長の際には、
反応管1の材料である5i02がH2によって還元され
、 5i02+ 2 H2→Si+ 2 H20の反応によ
って生じたSiがメルl−MのSi濃度を一層高める。
Furthermore, when growing using the growth apparatus shown in the conventional example,
5i02, which is the material of the reaction tube 1, is reduced by H2, and the Si generated by the reaction 5i02+ 2 H2→Si+ 2 H20 further increases the Si concentration of Mel l-M.

このことからSiが、成長膜における残留不純物の主体
となり、成長膜の特性を劣化させる残留不純物の低減を
困難にしている。
For this reason, Si is the main component of residual impurities in the grown film, making it difficult to reduce the residual impurities that degrade the characteristics of the grown film.

特に、In溶媒を用いた、InP 、 InGaAs、
 InGaAsP、の成長では、Siの偏析係数が非常
に大きい(約30)ため極めて大きな問題となる。
In particular, using In solvent, InP, InGaAs,
In the growth of InGaAsP, the segregation coefficient of Si is very large (approximately 30), which poses a very serious problem.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本発明による液相成長装置の一実施例の要部側
断面図である。
FIG. 1 is a sectional side view of a main part of an embodiment of a liquid phase growth apparatus according to the present invention.

上記問題点は、第1図に示される如く、5io2でなる
反応管1の内側に炭素(C)および窒化硼素(BN)の
何れか一方またはその組み合わせでなる内挿管4を有し
、成長に用いる基板Sと原料即ちメルトMを保持するた
めのCでなる治具即ちスライドボート3が内挿管4の内
側に配置される本発明の液相成長装置を使用することに
よって解決される。
The above problem is solved by having an inner tube 4 made of carbon (C) and boron nitride (BN) or a combination thereof inside the reaction tube 1 made of 5io2, as shown in FIG. This problem is solved by using the liquid phase growth apparatus of the present invention in which a jig or slide boat 3 made of C for holding the substrate S to be used and the raw material or melt M is placed inside the inner tube 4.

〔作用〕[Effect]

上記構成の液相成長装置は、内挿管4によりスライドボ
ート3が反応管1の内面から遮蔽されるため、反応管1
の材料である5iOzが反応管1内を流れるH2で還元
されてSiが発生したとしても、そのSiは、従来例の
如(ボート3に保持されているメル)Mの処へ回り込ん
でメルl−MのSi4度を高めることがなくなる。
In the liquid phase growth apparatus having the above configuration, since the slide boat 3 is shielded from the inner surface of the reaction tube 1 by the inner tube 4, the reaction tube 1
Even if 5iOz, which is the material of There is no need to increase the Si4 degree of l-M.

言うまでもなく内挿管4の材料であるCおよびBNは、
H2などのガスに対して化学的に安定で、高純度のもの
を使用すればそこから不純物が発生してメルトMに混入
する心配はない。
Needless to say, C and BN, which are the materials of the internal tube 4,
If a high-purity material that is chemically stable against gases such as H2 is used, there is no fear that impurities will be generated therefrom and mixed into the melt M.

従って本装置を使用すれば、成長膜に残留不純物として
入り込むStは、メル)Mに初期から含まれているSi
の分のみになり、従来例の装置を使用した場合より減少
する。
Therefore, if this device is used, St, which enters the grown film as a residual impurity, can be replaced by Si, which is included in the mel)M from the beginning.
This is less than when using the conventional device.

然も本装置は、成長の前にメルトMからそこに含まれて
いるSiを除去することにも使用することが出来る。
However, the present device can also be used to remove Si contained in the melt M before growth.

即ち、反応管1のSiがメルl−Mに入り込むことがな
くなったので、流入させるHzに少量の水(N20)ま
たは酸素(02)を添加して熱処理することにより、 Si+ 2 Hz 0−= 5i02+ 2 Hzまた
は  2H2+02−2H2゜ Si+2H20→ 5i02+2Hz なる反応が寄与してメルトMからSiが除去される。
That is, since the Si in the reaction tube 1 no longer enters the mel l-M, by adding a small amount of water (N20) or oxygen (02) to the inflow Hz and heat-treating it, Si+ 2 Hz 0-= The reaction 5i02+2Hz or 2H2+02-2H2°Si+2H20→5i02+2Hz contributes to the removal of Si from the melt M.

かくして、脱Siを行ったメルトMを用い本装置で成長
を行えば、成長膜に入り込むStは大幅に減少して残留
不純物の少ない即ち特性の優れた成長膜を得ることが可
能になる。
Thus, if growth is performed using this apparatus using the melt M from which Si has been removed, the amount of St that enters the grown film is significantly reduced, making it possible to obtain a grown film with few residual impurities, that is, with excellent properties.

〔実施例〕〔Example〕

以下、第1図および他の実施例を示した第2図の要部側
断面図を用い、実施例について説明する。
Embodiments will be described below with reference to FIG. 1 and a side sectional view of a main part in FIG. 2 showing another embodiment.

第1図に示す液相成長装置は、第3図図示従来例の装置
に内挿管4を付加したものである。
The liquid phase growth apparatus shown in FIG. 1 is the same as the conventional apparatus shown in FIG. 3, with an internal tube 4 added thereto.

内挿管4は、高純度Cまたは高純度BN例えば多結晶B
N(PBN)を材料にし、反応管1に挿入できる外径、
ヒータ2で加熱される領域を包含する長さを有する円筒
形で、反応管1内に挿入されて内部にスライドボート3
が配置される。厚さは、用いる材料が緻密であれば2〜
3朋程度で良い。−また外側を上記C1内側を上記BN
にした二層構造であっても良い。
The inner tube 4 is made of high purity C or high purity BN, such as polycrystalline B.
Made of N (PBN), the outer diameter can be inserted into the reaction tube 1,
It has a cylindrical shape with a length that includes the area heated by the heater 2, and is inserted into the reaction tube 1 and has a slide boat 3 inside.
is placed. The thickness is 2~2 if the material used is dense.
About 3 friends is enough. - Also, the outside is the above C1 and the inside is the above BN
It may have a two-layer structure.

この装置による成長膜の形成は、従来例の場合と同様で
ある。そしてその際の内挿管4の作用は先に述べた如く
である。
Formation of a grown film using this apparatus is the same as in the conventional example. The function of the internal intubation tube 4 at that time is as described above.

また、この装置を用いてメルトMからSiを除去するに
は、ポート2にメルl−Mだけを保持させ、反応管1に
流入させるHzに少量のN20または02を添加し、メ
ルl−M内のSiが十分に熔解する温度例えば600〜
700℃程度に加熱して数10時間保持すれば良い。
In addition, in order to remove Si from melt M using this device, only melt l-M is held in port 2, a small amount of N20 or 02 is added to the Hz flowing into reaction tube 1, and melt l-M is The temperature at which the Si in the
It is sufficient to heat it to about 700°C and hold it for several tens of hours.

ちなみに、従来例の装置を使用した場合(メルトMの脱
Siを行わず)と上記実施例の装置を使用した場合(メ
ルトMの脱Siを行う)とをInPの成長について比較
した結果は、後者による成長膜のキャリア濃度が前者よ
り約1桁低く、77Kにおける移動度が約2倍である。
By the way, the results of comparing the growth of InP when using the conventional apparatus (without removing Si from the melt M) and when using the apparatus according to the above embodiment (when removing Si from the melt M) are as follows. The carrier concentration of the film grown by the latter is about one order of magnitude lower than the former, and the mobility at 77K is about twice as high.

第2図に示す液相成長装置は、第1図図示装置における
内挿管4の内外が完全に仕切られるようにしたものであ
る。
The liquid phase growth apparatus shown in FIG. 2 is the same as the apparatus shown in FIG. 1, in which the inside and outside of the inner tube 4 are completely partitioned off.

即ち、反応管1の形状を変更し内挿管4の長さを反応管
1に揃えることにより、内挿管4がその内外を仕切り、
該内外の間でガスの流通が出来ないようになっている。
That is, by changing the shape of the reaction tube 1 and aligning the length of the inner tube 4 with the reaction tube 1, the inner tube 4 partitions the inside and outside of the tube,
Gas cannot flow between the inside and outside.

これに伴い、ガスの流入は内挿管4の内外で独立して行
うことが出来るようにしである。
Accordingly, gas can be inflowed into and out of the internal tube 4 independently.

内挿管4の内側には先の実施例と同様にHzを流入させ
るが、外側には不活性ガス例えば窒素(N2)またはア
ルゴン(Ar)などを流入させて反応管lのSiO2が
H2反応しないようにするのが望ましい。
Hz is allowed to flow into the inside of the inner tube 4 as in the previous embodiment, but an inert gas such as nitrogen (N2) or argon (Ar) is flowed into the outside so that the SiO2 in the reaction tube 1 does not react with H2. It is desirable to do so.

かくすることにより、反応管1のSiがメルトMに入り
込むのを完全に防ぐことが出来る。
By doing so, it is possible to completely prevent Si in the reaction tube 1 from entering the melt M.

この装置は、先の実施例の装置と同様にメルトMからの
Si除去にも使用出来、先の実施例の装置と同様または
それ以上の効果を得ることが出来る。
This device can also be used to remove Si from the melt M in the same way as the device in the previous embodiment, and can obtain effects similar to or better than the device in the previous embodiment.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の構成によれば、化合物半導
体または混晶半導体を成長させる液相成長装置において
、反応管に含まれるSiが成長膜に混入するのを防止し
、更には成長原料に含まれるSiの除去にも使用可能に
なり、成長膜の特性向上を可能にさせる効果がある。
As explained above, according to the configuration of the present invention, in a liquid phase growth apparatus for growing a compound semiconductor or a mixed crystal semiconductor, Si contained in the reaction tube is prevented from being mixed into the grown film, and furthermore, Si contained in the reaction tube is prevented from being mixed into the growth film. It can also be used to remove Si contained therein, and has the effect of making it possible to improve the characteristics of the grown film.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の要部側断面図、第2図は本
発明の他の実施例の要部側断面図、第3図は従来例の要
部側断面図、である。 図において、 1は反応管、 2はヒータ、 3はスライドボート(治具)、 4は内挿管、 Mはメルト(原料)、 Sは基板、である。
FIG. 1 is a side sectional view of a main part of an embodiment of the present invention, FIG. 2 is a side sectional view of a main part of another embodiment of the present invention, and FIG. 3 is a side sectional view of a main part of a conventional example. . In the figure, 1 is a reaction tube, 2 is a heater, 3 is a slide boat (jig), 4 is an internal tube, M is a melt (raw material), and S is a substrate.

Claims (1)

【特許請求の範囲】[Claims] 二酸化シリコンでなる反応管(1)の内側に炭素および
窒化硼素の何れか一方またはその組み合わせでなる内挿
管(4)を有し、成長に用いる基板(S)と原料(M)
を保持するための炭素でなる治具(3)が該内挿管(4
)の内側に配置されることを特徴とする液相成長装置。
A reaction tube (1) made of silicon dioxide has an inner tube (4) made of one or a combination of carbon and boron nitride, and a substrate (S) and a raw material (M) used for growth.
A jig (3) made of carbon for holding the inner tube (4)
) A liquid phase growth apparatus characterized in that it is placed inside a.
JP22308485A 1985-10-07 1985-10-07 Liquid growth device Pending JPS6281712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22308485A JPS6281712A (en) 1985-10-07 1985-10-07 Liquid growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22308485A JPS6281712A (en) 1985-10-07 1985-10-07 Liquid growth device

Publications (1)

Publication Number Publication Date
JPS6281712A true JPS6281712A (en) 1987-04-15

Family

ID=16792586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22308485A Pending JPS6281712A (en) 1985-10-07 1985-10-07 Liquid growth device

Country Status (1)

Country Link
JP (1) JPS6281712A (en)

Similar Documents

Publication Publication Date Title
US3994755A (en) Liquid phase epitaxial process for growing semi-insulating GaAs layers
JPS6281712A (en) Liquid growth device
US3397094A (en) Method of changing the conductivity of vapor deposited gallium arsenide by the introduction of water into the vapor deposition atmosphere
US3290181A (en) Method of producing pure semiconductor material by chemical transport reaction using h2s/h2 system
US4028147A (en) Liquid phase epitaxial process for growing semi-insulating GaAs layers
CA1234036A (en) Lpe growth on group iii-v compound semiconductor substrates containing phosphorus
US3530011A (en) Process for epitaxially growing germanium on gallium arsenide
JPH04160100A (en) Method for epitaxial-growing iii-v compound semiconductor
US4032950A (en) Liquid phase epitaxial process for growing semi-insulating gaas layers
US3900363A (en) Method of making crystal
US4729968A (en) Hydride deposition of phosporus-containing semiconductor materials avoiding hillock formation
JP2599767B2 (en) Solution growth equipment
Plaskett The Synthesis of Bulk GaP from Ga Solutions
CA1313107C (en) Growth of semi-insulating indium phosphide by liquid phase epitaxy
JPS5912639B2 (en) crystal growth method
JPS61134014A (en) Vapor growth method for plural mixed crystal iii-v group compound semiconductor
JPS63108730A (en) Method of annealing iii-v compound semiconductor
JPS6386422A (en) Vapor growth method for iii-v compound semiconductor
JPS5818919A (en) Vapor growth method of compound semiconductor
JPS6242517A (en) Semiconductor vapor processing
JPS6049624A (en) Semiinsulative compound semiconductor and manufacture thereof
JPH0360800B2 (en)
JPH0610085B2 (en) Method for purifying indium solution using indium as solvent
JPS61276316A (en) Manufacture of semiconductor device
JPS5919917B2 (en) epitaxial epitaxy