JPS6281103A - Microstrip antenna - Google Patents

Microstrip antenna

Info

Publication number
JPS6281103A
JPS6281103A JP60220622A JP22062285A JPS6281103A JP S6281103 A JPS6281103 A JP S6281103A JP 60220622 A JP60220622 A JP 60220622A JP 22062285 A JP22062285 A JP 22062285A JP S6281103 A JPS6281103 A JP S6281103A
Authority
JP
Japan
Prior art keywords
conductor element
radiation
microstrip antenna
microstrip
radiation conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60220622A
Other languages
Japanese (ja)
Inventor
Tetsuo Haruyama
春山 鉄男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60220622A priority Critical patent/JPS6281103A/en
Publication of JPS6281103A publication Critical patent/JPS6281103A/en
Pending legal-status Critical Current

Links

Landscapes

  • Waveguide Aerials (AREA)

Abstract

PURPOSE:To obtain a broad band microstrip antenna by arranging a conductor element in parallel with a radiation conductor element between the radiation element and a ground conductor plate, feeding the conductor element through a microstrip line and connecting the conductor element and the radiation through the feeder. CONSTITUTION:A radiation conductor element 1 made of a circular open type plane circuit is constituted to the 1st dielectric base 11 sufficiently thin in comparison with the wavelength by etching. A ground conductor plate 3 is provided to one side of the 2nd dielectric base sufficiently thin in comparison with the wavelength, and a circular conductor element 13 and a microstrip line 14 are constituted similarly to the radiation conductor element 1 on the other side by etching or the like and the conductor element 13 and the radiation conductor element 1 are connected through a feeder 15 at a feeding point 16. The conductor element 13 is connected to the radiation conductor element 1 through the feeder 15 and they are fed, then the conductor element 13 acts like a reactance compensation circuit element so as to attain a broad band of microstrip antenna.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、直線偏波動作するマイクロストリップアン
テナに関し、特にインピーダンス特性の周波数特性に対
して導体素子を設けることによって広帯域化を図るマイ
クロストリップアンテナに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a microstrip antenna that operates with linearly polarized waves, and in particular to a microstrip antenna that aims to widen the band by providing a conductive element for the frequency characteristic of the impedance characteristic. Regarding.

〔従来の技術〕[Conventional technology]

不平衡平面回路共振器を利用したマイクロストリップア
ンテナは、一般に小型・el!で、かつ低姿勢である等
、多くの利点を有している反面、インピーダンス特性等
で、その周波数特性が広くとれないという難点を有して
いる。
Microstrip antennas using unbalanced planar circuit resonators are generally small and el! Although it has many advantages such as a low profile and a low profile, it has the disadvantage that its frequency characteristics cannot be widened due to impedance characteristics.

そのうち、第4図は、従来の円形マイクロストリップア
ンテナの一例を示す斜視図である。
FIG. 4 is a perspective view showing an example of a conventional circular microstrip antenna.

図中、(1)は円形の開放形平面回路による放射導体素
子、(2)は波長に比べて十分薄い誘電体基板(比誘電
率εr、厚さh)であり、(3)は接地導体板、(4)
はマイクロストリップ線路(5)より放射導体素子(1
)を給電する給電点である。
In the figure, (1) is a radiation conductor element made of a circular open planar circuit, (2) is a dielectric substrate (relative permittivity εr, thickness h) that is sufficiently thin compared to the wavelength, and (3) is a ground conductor. Board, (4)
is the radiation conductor element (1) from the microstrip line (5).
) is the power supply point that supplies power.

次に動作について説明する。マイクロストリツプ線路(
5)より入力し給電点(4)より給電すると、開放周辺
端(6)より電波が放射され、第4図に示す一例では直
線偏波として動作する。
Next, the operation will be explained. Microstrip line (
5) and when power is supplied from the feeding point (4), radio waves are radiated from the open peripheral end (6), and in the example shown in FIG. 4, operate as linearly polarized waves.

この共振器の基本モードの共振周波数f、は。The resonant frequency f of the fundamental mode of this resonator is.

き、マイクロストリップアンテナの帯域BWは一般に、
  nw=(S−1)/ QJT−(sは定在波比)と
して与えられるから、帯域BWはqWにより決定される
。ここで、マイクロストリップアンテナのQ餉は、誘電
体基板(2)のε、に比例し、その基板厚さII K反
比例する。vj電体基叡(2)の誘電率e1が高くなる
とエネルギーが円形マイクロストリップアンテナの内部
にトラップされ、Q値が高くなり、放射効率が低下する
。したがって、放射効率を高め、@域を広くするために
は、低am率基叡を用いて、かつ基板厚さを厚くするこ
とが知られている。ところで、従来のように基板の厚さ
を厚くしたり、誘電率を低くしたりするなどしてマイク
ロストリップアンテナを広帯域化していった場合、マイ
クロストリップ線路(5)よりの放射する富力が増大し
てしまい、直線偏波を得る場合には。
The band BW of a microstrip antenna is generally
Since nw=(S-1)/QJT-(s is the standing wave ratio), the band BW is determined by qW. Here, the Q ratio of the microstrip antenna is proportional to ε of the dielectric substrate (2) and inversely proportional to the thickness of the substrate IIK. When the dielectric constant e1 of the vj electric substrate (2) increases, energy is trapped inside the circular microstrip antenna, the Q value increases, and the radiation efficiency decreases. Therefore, in order to increase the radiation efficiency and widen the @ region, it is known to use a low am ratio substrate and increase the substrate thickness. By the way, when microstrip antennas are made to have a wider band by increasing the thickness of the substrate or lowering the dielectric constant as in the past, the power radiated from the microstrip line (5) increases. If you want to obtain linearly polarized waves.

指向性等が劣化するというような不都合が生じる。This causes inconveniences such as deterioration of directivity and the like.

又、公課通信等においては、双方向通信が一般的であり
、所要帯域は通常896〜15%必要とされている。し
かし、基板の厚さを厚くしたりハニカム基板等を用いて
等価誘電率を1.1〜1.3  程度と低くして広帯域
化を図った場合でも所要帯域8%以上にわたって定在波
比が1,5以下になる特性は得られていない。
Furthermore, in public sector communications, etc., bidirectional communication is common, and the required bandwidth is usually 896% to 15%. However, even if the equivalent dielectric constant is lowered to about 1.1 to 1.3 by increasing the thickness of the substrate or by using a honeycomb substrate, etc., to achieve a wider band, the standing wave ratio will still be low over the required band of 8% or more. A characteristic of 1.5 or less has not been obtained.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のマイクロストリップアンテナは9以上のようにI
ll改されているので、公衆通1等のような所望帯域が
896以上にわたって@線偏波動作するアンテナとして
用いるには、インピーダンス特性の周波数特性の点で実
用上9反射特性が劣化するなどの問題点があった。また
、基板の厚さを犀(しなければならず、マイクロストリ
ップ線路からの放射電力が増大するため、指向性等の特
性が劣化するなどの問題点があった、 この発明は、上2のような問題点を解消するためになさ
れたもので、所望帯域が896以上にわたっても反射特
性を低くすることができるとともに。
Conventional microstrip antennas have I
ll has been revised, so in order to use it as an antenna that operates with @-line polarization over a desired band of 896 or more, such as on a public street 1st grade, it is necessary to have practical problems such as deterioration of 9 reflection characteristics in terms of frequency characteristics of impedance characteristics. There was a problem. In addition, the thickness of the substrate must be increased, which increases the radiation power from the microstrip line, resulting in problems such as deterioration of characteristics such as directivity. This was developed to solve these problems, and it is possible to lower the reflection characteristics even if the desired band is 896 or more.

マイクロス) IJツブ線路からの放射電力を低く押え
ることのできる直線偏波動作のマイクロストリップアン
テナを得ることを目的とする。
The purpose of this invention is to obtain a linearly polarized microstrip antenna that can suppress the radiation power from an IJ tube line to a low level.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るマイクロストリップアンテナは。 A microstrip antenna according to the present invention.

放射導体素子と接地導体板の間に放射導体素子に平行な
導体素子を配置し、マイクロストリップ線路により導体
素子を給電し、給電線により導体素子と放射導体素子を
接続したものである。
A conductor element parallel to the radiation conductor element is arranged between the radiation conductor element and the ground conductor plate, power is supplied to the conductor element by a microstrip line, and the conductor element and the radiation conductor element are connected by a feeder line.

〔°作用〕[°action]

この発明に係るマイクロストリップアンテナは。 A microstrip antenna according to the present invention.

導体素子がりアクタンス補償回路素子として作用し、所
望帯域が896以上でも反射特性を低くすることができ
、マイクロストリップアンテナの広帯域化が図れる。
The conductive element acts as an actance compensation circuit element, and even if the desired band is 896 or more, the reflection characteristics can be lowered, and the microstrip antenna can have a wider band.

又、マイクロストリップ線路を放射導体素子と接地導体
板のMjに選定できるからマイクロストリップ線路の有
効基板厚さを薄くすることができ。
Furthermore, since the microstrip line can be selected for Mj of the radiation conductor element and the ground conductor plate, the effective substrate thickness of the microstrip line can be reduced.

マイクロストリップ線路からの放射電力を低く押えるこ
とができる。
The radiated power from the microstrip line can be kept low.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図(a)及び(blはこの発明の一実施例を示す図であ
り、第1図(励は斜視図、第1図(b)は断面図を示す
An embodiment of the present invention will be described below with reference to the drawings. 1st
Figures (a) and (bl) are views showing one embodiment of the present invention, in which Figure 1 (example) shows a perspective view, and Figure 1 (b) shows a sectional view.

図中、 +11. +31及び(61は第4図に示す従
来の円形マイクロストリップアンテナの一例と全く同じ
ものであり、 (111は、波長に比べて十分薄い第一
の誘電体基&(比誘電率ε、1.厚さり、 )で、 円
形の開放形平面回路による放射導体素子+11がエツチ
ング等により構成されている。fi3は、波長に比べて
十分薄い第2の誘電体基&(比誘1率εr21厚さh2
)であり、−面には接地導体板(3)が設けられて2つ
、他面の放射導体素子(1)側には9円形の導体素子α
Jとマイクロストリップ線路Iが同様にエツチング等に
より構成されてkす、給電、11i!Q5により導体素
子0と放射導体素子(!)が給電点aθの位置で接続し
ている、 第一の誘電体基板(111と第二の誘電体基板(13は
適当な手段により接着されており、一実施例では比誘電
率εr1t  εr2は2.2として設定し、又厚さは
h1+h2: 0.07λ0(λ0は中心周波数におけ
る自由空間波長)として設定し、厚さh2はマイクロス
トリップ線路より放射する電力を抑制できるよう適宜、
薄くして設定して用いた例を示している。
In the figure, +11. +31 and (61 are exactly the same as an example of the conventional circular microstrip antenna shown in FIG. 4, and (111 is the first dielectric base &(relative dielectric constant ε, 1. The radiation conductor element +11 is constructed by etching etc. using a circular open planar circuit with a thickness of . h2
), two ground conductor plates (3) are provided on the - side, and nine circular conductor elements α are provided on the radiation conductor element (1) side on the other side.
J and the microstrip line I are similarly constructed by etching, etc., and the power supply, 11i! The conductor element 0 and the radiation conductor element (!) are connected by Q5 at the feed point aθ, the first dielectric substrate (111) and the second dielectric substrate (13 are bonded together by appropriate means). , in one embodiment, the relative permittivity εr1t εr2 is set as 2.2, and the thickness is set as h1+h2: 0.07λ0 (λ0 is the free space wavelength at the center frequency), and the thickness h2 is the radiation from the microstrip line. As appropriate, so as to suppress the power consumption,
An example of using a thinner setting is shown.

上記のように構成されたこの発明によるマイクロス) 
IJツブアンテナの一実施例の動作について説明する。
(Micros according to this invention configured as described above)
The operation of one embodiment of the IJ tube antenna will be described.

第2図は、この発明によるマイクロストリップアンテナ
の動作を説明するための図であり、第1図(al及び(
blに示すこの発明によるマイクロストリップアンテナ
の一例を示す図において。
FIG. 2 is a diagram for explaining the operation of the microstrip antenna according to the present invention, and FIG.
In the figure showing an example of the microstrip antenna according to the present invention shown in bl.

導体素子a3を装荷しない場合に、給電点aeを放射導
体素子+11の開放周辺端(6)から直線偏波の動径方
向にオフセットした距離dの効果をスミスチャート上に
示したものである。上記、距離dを放射導体素子(1)
の中心方向に近づけるに従って、インピーダンス特性の
周波数特性は少くなり、第一〇誘電体基板a1+と第二
の誘電体基板aZの厚さを適宜設定することにより、は
ぼ、誘導性サセプタンスの動作と同様な作用になること
が実験的にわかった。
The effect of the distance d by which the feeding point ae is offset in the radial direction of the linearly polarized wave from the open peripheral end (6) of the radiation conductor element +11 is shown on the Smith chart when the conductor element a3 is not loaded. Above, the distance d is the radiation conductor element (1)
The frequency characteristic of the impedance characteristic decreases as it approaches the center of It was experimentally found that the effect was similar.

第3図は、この発明によるマイクロストリップアンテナ
の動作を説明するための図であり、W、1図(a) f
6よび(b)に示すこの発明の一実施例を示す図におい
て、給電点Iを適宜に設定し、導体素子0の効果をスミ
スチャート上に示したものである。
FIG. 3 is a diagram for explaining the operation of the microstrip antenna according to the present invention.
In the drawings showing an embodiment of the present invention shown in FIGS. 6 and 6(b), the feeding point I is appropriately set and the effect of conductive element 0 is shown on the Smith chart.

(イ)は導体素子a3を装荷しないマイクロストリップ
アンテナの特性、(ロ)は導体素子へ3を装荷したマイ
クロストリップアンテナの特性を示している、これらを
比較すれば、明らかに導体素子0を給電線αりを介して
放射導体素子(1)に接続して給電することにより、導
体素子a3かりアクタンス補償回路素子として作用し、
マイクロストリップアンテナの広帯域化が図れるもので
あり、帯域13%にわたり定在波比1.5以下が実験的
に得られている。
(a) shows the characteristics of a microstrip antenna not loaded with conductive element a3, and (b) shows the characteristics of a microstrip antenna with conductive element a3 loaded.If you compare these, it is clear that conductive element 0 is used. By connecting and supplying power to the radiation conductor element (1) via the electric wire α, the conductor element a3 acts as an actance compensation circuit element,
This allows the microstrip antenna to have a wider band, and a standing wave ratio of 1.5 or less has been experimentally obtained over a 13% band.

又、従来はマイクロストリップ線路Iを放射導体素子(
1)と(1一平面上に構成していたが、この発明による
とマイクロストリップ線路Iを第二〇誘電体基板α2上
に配設できるから、マイクロストリップ線路α少を構成
する有効基版淳さを薄くすることができ、マイクロスト
リップ線路0からの放射電力を低く押えることができる
In addition, conventionally, the microstrip line I was connected to a radiating conductor element (
1) and (1) were constructed on one plane, but according to the present invention, the microstrip line I can be arranged on the 20th dielectric substrate α2, so the effective substrate length constituting the microstrip line α is reduced. The thickness of the microstrip line 0 can be made thinner, and the power radiated from the microstrip line 0 can be kept low.

なお、上官e実施例では導体素子0を円形として示した
が特に形状に限定されるものでなく、方形又は正方形等
リアクタンス補償回路素子として作用すれは任意形状で
もよい。
Although the conductive element 0 is shown as circular in the embodiment, it is not limited to a particular shape, and may be of any shape, such as a rectangle or a square, which acts as a reactance compensation circuit element.

また、上記実施例では、導体素子αjを1個として説明
したが、上記導体素子0に加えて、導体素子a3と放射
導体素子+11との間に空気層又は誘電体層を挾んで過
当な間隔で平行に複数個装荷してもよく、上記実施例の
効果がさらに改善できることが推測される。
In addition, in the above embodiment, the conductor element αj was explained as one piece, but in addition to the conductor element 0, an air layer or a dielectric layer is interposed between the conductor element a3 and the radiating conductor element +11 to create an excessive interval. It is presumed that the effect of the above embodiment can be further improved by loading a plurality of them in parallel.

また、上記実施例では、@電体の厚さを0.07λ。。In the above embodiment, the thickness of the electric body is 0.07λ. .

比誘電率を2.2としたが、特に限定されるものでな(
、誘電体基板としてハニカム基板等を用いても同1様の
効果が得られる。
Although the relative dielectric constant was set to 2.2, it is not particularly limited (
Similar effects can also be obtained by using a honeycomb substrate or the like as the dielectric substrate.

さらに、上記実施例では9円形の放射導体素子の場合に
ついて説明したが、だ円形の放射導体素子でも同様の効
果が得られる。
Furthermore, in the above embodiment, the case of a nine-circular radiation conductor element was described, but the same effect can be obtained with an oval radiation conductor element.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば導体素子を放射導体素
子と接地導体板の間に平行に配置し、マイクロストリッ
プ線路により導体素子を給電し。
As described above, according to the present invention, the conductor element is arranged in parallel between the radiation conductor element and the ground conductor plate, and power is supplied to the conductor element by the microstrip line.

給電線により導体素子と放射導体素子を接続して構成し
たので、小型・軽量、かつ低姿勢であるという利点を損
うことな(、帯域の拡大を図ること ゛ができるので反
射特性のすぐれたものが得られる。
Since the conductor element and the radiation conductor element are connected by a feeder line, it is possible to expand the band without losing the advantages of being small, lightweight, and low profile. You can get something.

また、指向特性等の特性で安定した直線偏波動作のもの
が得られる効果がある。
Further, there is an effect that linearly polarized wave operation with stable characteristics such as directivity characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(al及び(blはこの発明の一実施例を示す図
。 第2図と第3図はこの発明の一実施例の動作をスミスチ
ャートで説明するための図、第4図は従来の円形マイク
ロストリップアンテナの一例を示す斜視図である。 図において、(1)は放射導体素子、(31は接地導体
板、(6)は開放周辺端、 allは第一の誘電体基板
、鰺は第二の誘電体基板、 (13は導体素子、 (1
41はマイクロス) IJツブ線路、a!3は給電線、
aeは給電点である、 なお、各図中同一符号は同一または相当部分を示す。
Figure 1 (al and (bl) are diagrams showing one embodiment of the present invention. Figures 2 and 3 are diagrams for explaining the operation of one embodiment of the present invention using Smith charts, and Figure 4 is a conventional diagram. 1 is a perspective view showing an example of a circular microstrip antenna. In the figure, (1) is a radiation conductor element, (31 is a ground conductor plate, (6) is an open peripheral end, all is a first dielectric substrate, is the second dielectric substrate, (13 is the conductive element, (1
41 is Micros) IJ Tsubu line, a! 3 is the power supply line,
ae is a power feeding point. Note that the same reference numerals in each figure indicate the same or equivalent parts.

Claims (2)

【特許請求の範囲】[Claims] (1)波長に比べて薄い誘電体基板上に、円形又はだ円
形の開放形平面回路による放射導体素子を設け、上記放
射導体素子をマイクロストリップ線路により給電して構
成されるマイクロストリップアンテナにおいて、放射導
体素子と接地導体板の間に、放射導体素子に平行な導体
素子を配置し、マイクロストリップ線路により導体素子
を給電し、給電線により導体素子と放射導体素子とを接
続して構成したことを特徴とするマイクロストリップア
ンテナ。
(1) A microstrip antenna configured by providing a circular or oval open planar circuit radiation conductor element on a dielectric substrate thinner than the wavelength, and feeding power to the radiation conductor element by a microstrip line, A conductor element parallel to the radiation conductor element is arranged between the radiation conductor element and the ground conductor plate, power is supplied to the conductor element by a microstrip line, and the conductor element and the radiation conductor element are connected by a feed line. microstrip antenna.
(2)前記放射導体素子に平行な導体素子に加えて、一
個あるいは複数個の導体素子を空気層もしくは誘電体層
を挾んで配設されたものである特許請求の範囲第(1)
項記載のマイクロストリップアンテナ。
(2) In addition to the conductor element parallel to the radiation conductor element, one or more conductor elements are arranged with an air layer or a dielectric layer in between.
Microstrip antenna as described in section.
JP60220622A 1985-10-03 1985-10-03 Microstrip antenna Pending JPS6281103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60220622A JPS6281103A (en) 1985-10-03 1985-10-03 Microstrip antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60220622A JPS6281103A (en) 1985-10-03 1985-10-03 Microstrip antenna

Publications (1)

Publication Number Publication Date
JPS6281103A true JPS6281103A (en) 1987-04-14

Family

ID=16753856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60220622A Pending JPS6281103A (en) 1985-10-03 1985-10-03 Microstrip antenna

Country Status (1)

Country Link
JP (1) JPS6281103A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6455605A (en) * 1987-08-26 1989-03-02 Nippon Denso Co State output device for control system
JPH0286206U (en) * 1988-12-20 1990-07-09
US5659337A (en) * 1991-09-19 1997-08-19 Fanuc Ltd. Message display system for programmable controller
JP2011233965A (en) * 2010-04-23 2011-11-17 Kantatsu Co Ltd Patch antenna

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5593305A (en) * 1979-01-09 1980-07-15 Nippon Telegr & Teleph Corp <Ntt> Microstrip antenna
JPS56715A (en) * 1979-06-18 1981-01-07 Nippon Telegr & Teleph Corp <Ntt> Antenna for automobile

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5593305A (en) * 1979-01-09 1980-07-15 Nippon Telegr & Teleph Corp <Ntt> Microstrip antenna
JPS56715A (en) * 1979-06-18 1981-01-07 Nippon Telegr & Teleph Corp <Ntt> Antenna for automobile

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6455605A (en) * 1987-08-26 1989-03-02 Nippon Denso Co State output device for control system
JPH0286206U (en) * 1988-12-20 1990-07-09
US5659337A (en) * 1991-09-19 1997-08-19 Fanuc Ltd. Message display system for programmable controller
JP2011233965A (en) * 2010-04-23 2011-11-17 Kantatsu Co Ltd Patch antenna

Similar Documents

Publication Publication Date Title
US5307075A (en) Directional microstrip antenna with stacked planar elements
US6133882A (en) Multiple parasitic coupling to an outer antenna patch element from inner patch elements
US4835540A (en) Microstrip antenna
US6034637A (en) Double resonant wideband patch antenna and method of forming same
JPH1093332A (en) Dual resonance inverted-f shape antenna
JP2002517925A (en) antenna
JP2002530982A (en) Broadband small slow wave antenna
US20040021605A1 (en) Multiband antenna for mobile devices
TW457741B (en) Planar sleeve dipole antenna
JP3628668B2 (en) Multi-frequency dipole antenna device
JPS6141205A (en) Antenna for wide-band transmission line
US20020027527A1 (en) High gain printed loop antenna
JPH0344443B2 (en)
JP3006867B2 (en) Broadband planar antenna
JP3030590B2 (en) Flat antenna
JPH02284505A (en) Micro strip antenna
JP3280716B2 (en) Microstrip antenna
JPS6281103A (en) Microstrip antenna
JP3022817B2 (en) Multi-frequency array antenna
JPH0629723A (en) Plane antenna
JPH10247807A (en) Dielectric antenna
JP3064395B2 (en) Microstrip antenna
JP3068149B2 (en) Microstrip array antenna
JP2565108B2 (en) Planar antenna
JPS6281102A (en) Microstrip antenna