JPH02284505A - Micro strip antenna - Google Patents

Micro strip antenna

Info

Publication number
JPH02284505A
JPH02284505A JP10458889A JP10458889A JPH02284505A JP H02284505 A JPH02284505 A JP H02284505A JP 10458889 A JP10458889 A JP 10458889A JP 10458889 A JP10458889 A JP 10458889A JP H02284505 A JPH02284505 A JP H02284505A
Authority
JP
Japan
Prior art keywords
conductor
radiation conductor
radiation
distance
microstrip antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10458889A
Other languages
Japanese (ja)
Inventor
Shinichi Nomoto
真一 野本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP10458889A priority Critical patent/JPH02284505A/en
Priority to EP90107766A priority patent/EP0394960A1/en
Publication of JPH02284505A publication Critical patent/JPH02284505A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0471Non-planar, stepped or wedge-shaped patch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna

Landscapes

  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

PURPOSE:To give a satisfactory electric characteristic for a wide frequency band by essentially making a distance between the confronting surfaces of a radiation conductor and a ground conductor in such a way that it becomes larger as approaching the peripheral part of the radiation conductor compared to the central part of the radiation conductor. CONSTITUTION:The distance of the confronting surfaces between the radiation conductor 12 and the ground conductor 13 is constituted in such a way that it essentially becomes wider as approaching the peripheral part of the radiation conductor 12 compared to the central part of the radiation conductor 12. Since the impedance of a part which a radio wave radiates comes near to that of free space, a Q factor in a resonance frequency can equivalently set small. Furthermore, an unnecessary high-order mode is prevented from being excited because the thickness of a dielectric board in the central part of the radiation conductor is small. Then, the reactance components of an input impedance viewed from a feeder 14 can be ignored. Thus, impedance matching that can easily make a band width maximum can be realized by selecting the position of a feeding point in optimum.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、誘電体を放射導体と接地導体とで挟み、放射
導体の給電点に電力を給電する給電線を取付けたマイク
ロストリップアンテナに関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a microstrip antenna in which a dielectric material is sandwiched between a radiation conductor and a ground conductor, and a feed line for feeding power is attached to a feed point of the radiation conductor. It is.

(従来の技術) アンテナの薄形化を主たる目的とするマイクロストリッ
プアンテナは、接地導体面上に薄い誘電体平板を介して
種々の形状の平板導体を重ねた構造の開放形平面回路共
振器を放射器として利用したもので、広く実用に供され
ている。放射導体の形状としては、実にさまざまなもの
が提案されており、代表的なものとして、円形、正方形
、長方形、3角形、5角形等がある。また、マイクロス
トリップアンテナの構成としては、給電点の位置や給電
方法、あるいは放射導体の一部を接地するか否か、その
接地方法等によりさまざまなバリエーションがある。
(Prior art) Microstrip antennas, whose main purpose is to make the antenna thinner, use an open planar circuit resonator with a structure in which flat conductors of various shapes are stacked on a ground conductor surface via a thin dielectric flat plate. It was used as a radiator and is widely used in practice. A wide variety of shapes have been proposed for the radiation conductor, with typical examples being circular, square, rectangular, triangular, and pentagonal. Furthermore, there are various configurations of microstrip antennas depending on the position of the feeding point, the feeding method, whether or not a part of the radiation conductor is grounded, and the grounding method.

第4図は、従来のマイクロストリップアンテナの構成と
その動作を説明するためのもので、同図(a)は模式図
、同図(b)は断面図である。
FIG. 4 is for explaining the configuration and operation of a conventional microstrip antenna, with FIG. 4(a) being a schematic diagram and FIG. 4(b) being a sectional view.

図において、1は誘電体板、2は円形の放射導体、3は
接地導体、4は給電線、5は給電点である。マイクロス
トリップアンテナの動作は、放射導体2の上に設けられ
た給電点5に給電線4を介して電力を供給すると、放射
導体2と接地導体30間に電波が励振され、放射導体2
の周縁部分から空間に電波を放射するものである。
In the figure, 1 is a dielectric plate, 2 is a circular radiation conductor, 3 is a ground conductor, 4 is a power supply line, and 5 is a power supply point. The operation of the microstrip antenna is such that when power is supplied to the feed point 5 provided on the radiation conductor 2 via the feed line 4, radio waves are excited between the radiation conductor 2 and the ground conductor 30, and the radiation conductor 2
It radiates radio waves into space from the periphery of the

(発明が解決しようとする課題) マイクロストリップアンテナは、放射導体2と接地導体
3および放射導体2の周縁部分で囲まれる開放形平面回
路共振器を放射器として利用したものである。誘電体板
1の厚さを11、また電波の自由空間波長をんとすると
、共振周波数fにおけるQファクタば、はぼり、/71
.に反比例する。ここで、たとえば給電線からみた電圧
定在波比(VSWR)の要求値をρ(〉1)とし、f−
△fからf+△fまでの2△fなる周波数帯域幅でVS
WRがρ以下になるものとすると、比帯域幅BrとQと
の間には一般に なる関係が成立する。つまり、比帯域幅BrばQに反比
例し、よっ−てh/λにほぼ比例する。したかって、ア
ンテナを薄形にすることと広帯域な電気特性を実現する
こととは、相反する要求であって、従来のマイクロス1
〜リツプアンテナでは、般に励振周波数が共振周波数か
ら2〜5%以上ずれるとインピーダンス特性や指向性特
性、偏波特性などの電気特性が劣化するという問題点が
あった。
(Problems to be Solved by the Invention) A microstrip antenna uses a radiation conductor 2, a ground conductor 3, and an open planar circuit resonator surrounded by a peripheral portion of the radiation conductor 2 as a radiator. If the thickness of the dielectric plate 1 is 11, and the free space wavelength of the radio wave is taken, then the Q factor at the resonant frequency f is: /71
.. is inversely proportional to. Here, for example, let the required value of the voltage standing wave ratio (VSWR) seen from the feeder line be ρ (>1), and f-
VS with a frequency bandwidth of 2△f from △f to f+△f
Assuming that WR is equal to or less than ρ, a general relationship holds between the fractional bandwidth Br and Q. That is, the fractional bandwidth Br is inversely proportional to Q, and therefore approximately proportional to h/λ. Therefore, making the antenna thin and realizing broadband electrical characteristics are contradictory requirements, and the conventional micros 1
- Lip antennas generally have a problem in that when the excitation frequency deviates from the resonant frequency by 2 to 5% or more, electrical characteristics such as impedance characteristics, directivity characteristics, polarization characteristics, etc. deteriorate.

また、誘電体板の厚さhを単に大きくし広帯域化を図ろ
うとすると、不要な高次モードが励振されやすくなると
ともに、給電線からみた入力インピーダンスのりアクタ
ンス成分が大きくなり、インピーダンス整合をとること
が難しくなると言う欠点があった。
In addition, if an attempt is made to widen the band by simply increasing the thickness h of the dielectric plate, unnecessary higher-order modes are likely to be excited, and the actance component of the input impedance as seen from the feeder line increases, making it difficult to achieve impedance matching. The disadvantage was that it made it difficult.

本発明は、上述した従来技術の問題点を解決するために
なされたもので、広い周波数帯域にわたって、良好な電
気特性をもつマイクロストリップアンテナを提供するこ
とを目的とする。
The present invention was made in order to solve the problems of the prior art described above, and an object of the present invention is to provide a microstrip antenna having good electrical characteristics over a wide frequency band.

(課題を解決するための手段) 上記目的を達成するために、本発明によるマイクロスト
リップアンテナは、放射導体と接地導体のそれぞれ向か
い合う表面の間の距離が一定でな(、実質的に放射導体
周縁部分に近くなるほどその距離が太き(なるように構
成したことを特徴とするものである。
(Means for Solving the Problems) In order to achieve the above object, the microstrip antenna according to the present invention has a microstrip antenna in which the distance between the opposing surfaces of the radiating conductor and the grounding conductor is not constant (substantially around the periphery of the radiating conductor). The feature is that the closer the distance is to the part, the wider the distance is.

(作用) 放射導体と接地導体のそれぞれ向かい合う間の距離が、
実質的に放射導体中心部分よりも放射導体周縁部分に近
い部分はど広くなるように構成すると、電波の放射する
部分のインピーダンスが自由空間のインピーダンスに近
(なるため、等測的に共振周波数におけるQファクタを
小さくする作用を有する。
(Function) The distance between the radiating conductor and the grounding conductor facing each other is
If the part near the radiating conductor's peripheral part is substantially wider than the central part of the radiating conductor, the impedance of the part where the radio waves radiate will be close to the impedance of free space, so It has the effect of reducing the Q factor.

さらに、基本モードの共振周波数fが周波数軸上の一点
ではな(、拡がりをもった周波数範囲に分布する作用を
有する。
Furthermore, the resonant frequency f of the fundamental mode is not distributed at one point on the frequency axis (but is distributed over a wide frequency range).

以下、本発明の実施例を図面を参照して説明する。Embodiments of the present invention will be described below with reference to the drawings.

(実施例1) 第1図は、本発明による第1の実施例であり、マイクロ
ストリップアンテナの断面図である。
(Example 1) FIG. 1 is a first example according to the present invention, and is a sectional view of a microstrip antenna.

図において、11は誘電体板、12は放射導体、13は
接地導体、14は給電線、15は給電点である。
In the figure, 11 is a dielectric plate, 12 is a radiation conductor, 13 is a ground conductor, 14 is a power supply line, and 15 is a power supply point.

本発明と従来との相違点は、放射導体12と接地導体1
3のそれぞれ向かい合う間の距離が、実質的に放射導体
12の中心部分よりも放射導体12の周縁部分に近い部
分はど広くなるように構成したことにある。
The difference between the present invention and the conventional one is that the radiation conductor 12 and the ground conductor 1
The distance between the radiating conductors 12 and 3 facing each other is substantially wider in a portion closer to the peripheral edge portion of the radiating conductor 12 than in a central portion of the radiating conductor 12.

即ち、本発明者は、放射導体12と接地導体]3との向
かい合う間の距離が、実質的に放射導体12の中心部分
よりも放射導体12の周縁部分に近い部分ほど広くなる
ように構成すると、電波の放射する部分のインピーダン
スが自由空間のインピーダンスに近くなるため、等測的
に共振周波数におけるQファクタを小さくすることがで
きると考えた。
That is, the present inventor proposed that the distance between the radiating conductor 12 and the grounding conductor] 3 is configured such that the distance between the radiating conductor 12 and the grounding conductor 3 is substantially wider at the portion closer to the periphery of the radiating conductor 12 than from the center portion of the radiating conductor 12. Since the impedance of the part where radio waves are radiated becomes close to the impedance of free space, it was thought that the Q factor at the resonant frequency could be reduced isometrically.

この効果は、従来技術において誘電体板の厚さを一様に
大きくした場合と同程度と考えられるが、本発明では放
射導体中心部分での誘電体板の厚さが小さいため、不要
な高次モードが励振されることはなく、また、給電線か
らみた人力インピーダンスのりアクタンス成分も無視で
きるから、給電点の位置を最適に選ぶことによって容易
に帯域幅を最大とするようなインピーダンス整合を実現
することができる。
This effect is considered to be on the same level as when the thickness of the dielectric plate is uniformly increased in the conventional technology, but in the present invention, the thickness of the dielectric plate at the center of the radiation conductor is small, so there is no unnecessary height. Since the next mode is not excited and the actance component of human impedance seen from the feed line can be ignored, impedance matching that maximizes the bandwidth can be easily achieved by optimally selecting the position of the feed point. can do.

さらに本発明者は、共振周波数を決定する放射導体と接
地導体とで囲まれた空間(共振器)の物理的構造を、段
階的または連続的に変化させることによって共振点を周
波数軸上の一点ではなく、ある拡がりをもった範囲に分
布するようにすることができると考えた。
Furthermore, the present inventor has determined that the resonance point can be set at a single point on the frequency axis by changing stepwise or continuously the physical structure of the space (resonator) surrounded by the radiation conductor and the ground conductor that determines the resonance frequency. Instead, we thought it would be possible to distribute them over a certain range.

そこで、実施例1では、放射導体12の厚さを階段状に
構成することにより、放射導体12と接地導体13との
向かい合う間の距離が、実質的に放射導体12の中心部
分よりも放射導体12の周縁部分に近い部分はど広(な
るようにしたものである。なお、第1図では放射導体1
2の厚さを階段状に変化させているが、接地導体13の
厚さを階段状に構成してもよい。
Therefore, in the first embodiment, by configuring the thickness of the radiation conductor 12 in a stepped manner, the distance between the radiation conductor 12 and the ground conductor 13 facing each other is substantially longer than the central portion of the radiation conductor 12. The part near the periphery of the radiation conductor 12 is wide.
Although the thickness of the ground conductor 13 is changed stepwise, the thickness of the ground conductor 13 may be changed stepwise.

(実施例2) 第2図(a)から(d)は、本発明による第2の実施例
であり、マイクロストリップアンテナの断面図である。
(Embodiment 2) FIGS. 2(a) to 2(d) show a second embodiment of the present invention, and are cross-sectional views of a microstrip antenna.

実施例1と異なる点は、放射導体と前記接地導体13の
それぞれ向かい合う表面の間の距離が、連続的に変化す
るように構成したことにある。
The difference from the first embodiment is that the distance between the opposing surfaces of the radiation conductor and the ground conductor 13 is configured to change continuously.

具体的な構成として、第2図(a)では、接地導体13
側における放射導体22の表面が、円錐面の一部から構
成することにより、連続的に変化させたものである。
As a specific configuration, in FIG. 2(a), the ground conductor 13
The surface of the radiation conductor 22 on the side is made of a part of a conical surface, so that it changes continuously.

第2図(b)では、放射導体32の表面を球面の一部か
ら構成したものである。
In FIG. 2(b), the surface of the radiation conductor 32 is constructed from a part of a spherical surface.

第2図(C)では、第2図(a)とは逆に接地導体23
の放射導体12側の表面を、円錐面の一部から構成した
ものである。
In Fig. 2(C), the ground conductor 23 is opposite to Fig. 2(a).
The surface on the side of the radiation conductor 12 is constructed from a part of a conical surface.

第2図(d)は、第2図(b)とは逆に接地導体33の
放射導体12側の表面を球面の一部から構成したもので
ある。
In FIG. 2(d), contrary to FIG. 2(b), the surface of the grounding conductor 33 on the radiation conductor 12 side is constructed from a part of a spherical surface.

上述のように、実施例2は放射導体12と接地導体13
とのうち、一方の導体表面が円錐面もしくは球面の一部
から構成し、他方の導体表面を平板で構成することによ
り、放射導体12と接地導体13との向かい合う間の距
離が、実質的に放射導体12の中心部分よりも放射導体
12の周縁部分に近い部分はど連続的に広くなるように
したものである。
As mentioned above, the second embodiment has a radiation conductor 12 and a ground conductor 13.
By forming one conductor surface from a part of a conical or spherical surface and forming the other conductor surface from a flat plate, the distance between the radiating conductor 12 and the grounding conductor 13 facing each other can be substantially reduced. The portion closer to the periphery of the radiation conductor 12 than the center portion of the radiation conductor 12 is made to be continuously wider.

(実施例3) 第3図は本発明による第3の実施例であり、マイクロス
トリップアンテナの断面図である。
(Embodiment 3) FIG. 3 shows a third embodiment of the present invention, and is a sectional view of a microstrip antenna.

実施例3は、放射導体32及び接地導体33の双方がそ
れぞれ向かい合う側の表面を、球面もしくは円錐面(図
示せず)の一部から構成したものである。
In the third embodiment, the opposing surfaces of both the radiation conductor 32 and the ground conductor 33 are formed from a part of a spherical surface or a conical surface (not shown).

第5図は本発明によるマイクロストリップアンテナの製
造工程を示す。
FIG. 5 shows the manufacturing process of a microstrip antenna according to the present invention.

はじめに、同図(a)に示すごとく、誘電体板11の表
面をほぼ球面をもち中心軸の回りに回転するグラインダ
100により削りとり、第5図(b)の構造を得る。
First, as shown in FIG. 5(a), the surface of the dielectric plate 11 is ground down using a grinder 100 having a substantially spherical surface and rotating around a central axis to obtain the structure shown in FIG. 5(b).

次に削りとられた表面に蒸着技術などにより導体膜22
を生成し、第5図(C)の構造を得る。
Next, a conductor film 22 is formed on the scraped surface using vapor deposition technology or the like.
is generated to obtain the structure shown in FIG. 5(C).

次に線102にそって、導体膜の不要部分をカットして
第5図(C)の構造を得る。
Next, unnecessary portions of the conductor film are cut along line 102 to obtain the structure shown in FIG. 5(C).

最後に導体膜22に給電線14を結合する。Finally, the power supply line 14 is coupled to the conductor film 22.

なお、上記工程の適当な段階で、誘電体板11の裏面に
接地導体13を設けるものとする(例えば蒸着)。
Note that the ground conductor 13 is provided on the back surface of the dielectric plate 11 at an appropriate stage in the above process (for example, by vapor deposition).

(発明の効果) 以上のように、本発明は放射導体12と接地導体13の
それぞれ向かい合う表面の間の距離が、実質的に放射導
体12の周縁部分に近(になるほど大きくなるように構
成することにより、マイクロストリップアンテナの利点
を太き(損なうことなく、電気特性の広帯域化を図るこ
とができる。
(Effects of the Invention) As described above, the present invention is configured such that the distance between the opposing surfaces of the radiation conductor 12 and the ground conductor 13 increases as the distance substantially approaches the peripheral edge of the radiation conductor 12. By doing so, it is possible to increase the electrical characteristics over a wide band without sacrificing the advantages of the microstrip antenna.

放射導体12と接地導体13のそれぞれ向かい合う表面
の間の距離を、連続的に変化するように構成することに
より、比較的簡単な製造工程によって、マイクロストリ
ップアンテナを実現することができる。
By configuring the distance between the opposing surfaces of the radiation conductor 12 and the ground conductor 13 to vary continuously, a microstrip antenna can be realized through a relatively simple manufacturing process.

放射導体12と接地導体13のそれぞれ向かい合う表面
の間の距離を、階段状に変化するように構成することに
より、任意の厚さの導体を作製することができる。
By configuring the distance between the opposing surfaces of the radiation conductor 12 and the ground conductor 13 to vary stepwise, a conductor of arbitrary thickness can be produced.

放射導体12及び接地導体13のうち少なくとも一方が
、円錐面または球面の一部で構成することにより、比較
的簡単な製造工程によって、マイクロストリップアンテ
ナを実現することができる。
By configuring at least one of the radiation conductor 12 and the ground conductor 13 as a part of a conical surface or a spherical surface, a microstrip antenna can be realized through a relatively simple manufacturing process.

従って、本発明は航空無線や自動車無線等の移動体通信
用アンテナなどのように薄形のアンテナを必要とする場
合に広く適用可能であり、その効果が極めて大である。
Therefore, the present invention is widely applicable to cases where a thin antenna is required, such as antennas for mobile communication such as aviation radio and automobile radio, and its effects are extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるマイクロストリップアンテナの実
施例の断面図、 第2図(a)〜(d)は本発明による他の実施例のマイ
クロストリップアンテナの断面図、第3図は本発明によ
る他の実施例のマイクロストリップアンテナの断面図、 第4図(a)〜(b)は従来のマイクロストリップアン
テナを示すもので、同図(a)は模式図、同図(b)は
断面図である。 第5図は本発明によるマイクロストリップアンテナの製
造工程を示す図である。 1.11・・・誘電体板、 2、12.22.32・・・放射導体、3、13.23
.33・・・接地導体、4.14・・・給電線、 5.15・・・給電点。
FIG. 1 is a sectional view of an embodiment of a microstrip antenna according to the present invention, FIGS. 2(a) to (d) are sectional views of another embodiment of a microstrip antenna according to the present invention, and FIG. 3 is a sectional view of an embodiment of a microstrip antenna according to the present invention. 4(a) to 4(b) show a conventional microstrip antenna; FIG. 4(a) is a schematic diagram, and FIG. 4(b) is a sectional view. It is. FIG. 5 is a diagram showing the manufacturing process of a microstrip antenna according to the present invention. 1.11... Dielectric plate, 2, 12.22.32... Radiation conductor, 3, 13.23
.. 33...Grounding conductor, 4.14...Power supply line, 5.15...Power supply point.

Claims (4)

【特許請求の範囲】[Claims] (1)波長に比べて薄い板状の誘電体を放射導体と接地
導体とで挟み、該放射導体の給電点に電力を給電する給
電線を取付けたマイクロストリップアンテナにおいて、 前記放射導体と前記接地導体のそれぞれ向かい合う表面
の間の距離が実質的に前記放射導体の中心部分よりも前
記放射導体の周縁部分に近いほど大きいことを特徴とす
るマイクロストリップアンテナ。
(1) In a microstrip antenna in which a plate-shaped dielectric thinner than the wavelength is sandwiched between a radiation conductor and a ground conductor, and a feed line for feeding power is attached to a feed point of the radiation conductor, the radiation conductor and the ground A microstrip antenna characterized in that the distance between respective opposing surfaces of the conductors is substantially greater closer to a peripheral portion of the radiating conductor than to a central portion of the radiating conductor.
(2)前記放射導体と前記接地導体のそれぞれ向かい合
う表面の間の距離が、連続的に変化するように構成され
ていることを特徴する請求項1記載のマイクロストリッ
プアンテナ。
(2) The microstrip antenna according to claim 1, wherein the distance between opposing surfaces of the radiation conductor and the ground conductor is configured to vary continuously.
(3)前記放射導体と前記接地導体のそれぞれ向かい合
う表面の間の距離が、階段状に変化するように構成され
ていることを特徴する請求項1記載のマイクロストリッ
プアンテナ。
(3) The microstrip antenna according to claim 1, wherein the distance between opposing surfaces of the radiation conductor and the ground conductor is configured to vary stepwise.
(4)前記放射導体及び前記接地導体のうち少なくとも
一方が、円錐面または球面の一部で構成されていること
を特徴とする請求項1記載のマイクロストリップアンテ
ナ。
(4) The microstrip antenna according to claim 1, wherein at least one of the radiation conductor and the ground conductor is formed of a part of a conical surface or a spherical surface.
JP10458889A 1989-04-26 1989-04-26 Micro strip antenna Pending JPH02284505A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10458889A JPH02284505A (en) 1989-04-26 1989-04-26 Micro strip antenna
EP90107766A EP0394960A1 (en) 1989-04-26 1990-04-24 A microstrip antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10458889A JPH02284505A (en) 1989-04-26 1989-04-26 Micro strip antenna

Publications (1)

Publication Number Publication Date
JPH02284505A true JPH02284505A (en) 1990-11-21

Family

ID=14384596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10458889A Pending JPH02284505A (en) 1989-04-26 1989-04-26 Micro strip antenna

Country Status (2)

Country Link
EP (1) EP0394960A1 (en)
JP (1) JPH02284505A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005269366A (en) * 2004-03-19 2005-09-29 Mitsubishi Electric Corp Antenna device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5453752A (en) * 1991-05-03 1995-09-26 Georgia Tech Research Corporation Compact broadband microstrip antenna
US5313216A (en) * 1991-05-03 1994-05-17 Georgia Tech Research Corporation Multioctave microstrip antenna
EP0614578A4 (en) * 1991-11-26 1995-05-10 Georgia Tech Res Inst Compact broadband microstrip antenna.
USH1460H (en) * 1992-04-02 1995-07-04 The United States Of America As Represented By The Secretary Of The Air Force Spiral-mode or sinuous microscrip antenna with variable ground plane spacing
GB2303968B (en) * 1995-08-03 1999-11-10 Nokia Mobile Phones Ltd Antenna
US5694136A (en) * 1996-03-13 1997-12-02 Trimble Navigation Antenna with R-card ground plane
EP0806810A3 (en) * 1996-05-07 1998-04-08 Ascom Tech Ag Antenna formed of a strip-like resonance element over a base plate
US5986615A (en) * 1997-09-19 1999-11-16 Trimble Navigation Limited Antenna with ground plane having cutouts
FR2818811A1 (en) * 2000-12-26 2002-06-28 France Telecom COMPACT PAD PRINTED ANTENNA
JP3420232B2 (en) * 2001-11-16 2003-06-23 日本アンテナ株式会社 Composite antenna
WO2006136843A1 (en) * 2005-06-23 2006-12-28 Bae Systems Plc Improvements in or relating to antennas

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3618107A (en) * 1970-03-09 1971-11-02 Itt Broadband discone antenna having auxiliary cone
US4835540A (en) * 1985-09-18 1989-05-30 Mitsubishi Denki Kabushiki Kaisha Microstrip antenna
US4835538A (en) * 1987-01-15 1989-05-30 Ball Corporation Three resonator parasitically coupled microstrip antenna array element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005269366A (en) * 2004-03-19 2005-09-29 Mitsubishi Electric Corp Antenna device

Also Published As

Publication number Publication date
EP0394960A1 (en) 1990-10-31

Similar Documents

Publication Publication Date Title
EP2923414A2 (en) Miniaturized patch antenna
GB2402552A (en) Broadband dielectric resonator antenna system
JPH07307612A (en) Plane antenna
EP1196962B1 (en) Tuneable spiral antenna
JP4364439B2 (en) antenna
JPH02284505A (en) Micro strip antenna
JPH03151702A (en) Plane array antenna
CN113540810A (en) Microstrip slot coupling super-surface antenna with open rectangular ring loaded
JP3026171B2 (en) Antenna device
JPH04122107A (en) Microstrip antenna
Chavali et al. Wideband designs of regular shape microstrip antennas using modified ground plane
JP2020031395A (en) Antenna device
JPS5829204A (en) Microstrip antenna loaded with variable capacity active element
JPH0586681B2 (en)
JPH02168703A (en) Plane antenna and its production
JPH07307613A (en) Circular polarized wave microstrip antenna
US6965348B2 (en) Broadband antenna structures
JP2785825B2 (en) Planar antenna
JP2565108B2 (en) Planar antenna
JP3187853B2 (en) Spiral antenna and array antenna using this antenna
JP2003087050A (en) Slot-type bowtie antenna device, and constituting method therefor
JPH0555820A (en) Annular plane antenna
JPH09232856A (en) Planar antenna
JPH05129823A (en) Microstrip antenna
JPH04170804A (en) Microstrip antenna