JPH07307612A - Plane antenna - Google Patents

Plane antenna

Info

Publication number
JPH07307612A
JPH07307612A JP9769094A JP9769094A JPH07307612A JP H07307612 A JPH07307612 A JP H07307612A JP 9769094 A JP9769094 A JP 9769094A JP 9769094 A JP9769094 A JP 9769094A JP H07307612 A JPH07307612 A JP H07307612A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
conductor
layer
dielectric
ground
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9769094A
Other languages
Japanese (ja)
Inventor
Yoshitaka Kanayama
Shinichiro Tsuda
信一郎 津田
佳貴 金山
Original Assignee
Sony Corp
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

PURPOSE:To improve design and to widen the range of an antenna by using a triplate line for which the upper and lower parts of a power feeding line is shielded by ground conductors through dielectric layers for power feeding and providing a radiation conductor smaller than an opening part through the dielectric layer on the upper layer of the opening part on the upper part ground conductor of the line. CONSTITUTION:This antenna is composed of a first layer for which the radiation conductor 11 is arranged above the dielectric layer 12, a second layer for which the ground conductor 13 is arranged above the dielectric layer 15 and a third layer constituted of the dielectric layer 17 provided with the power feeding line 16 on an upper surface and the ground conductor 18 of the lower surface. In this case, the shape of the radiation conductor 11 and the opening part 14 can be the various kinds of the shapes without being limited to a quadrangle, however, the size of the opening part 14 is selected to be the size for not influencing the edge effect of the radiation conductor 11. In this antenna, a radiation system is a microstrip antenna structure for which the radiation conductor 11 is arranged above the ground conductor 18 through the dielectric layers 12, 15 and 17 and the power feeding line 16 is shielded by the ground conductors 13 and 18 respectively through the dielectric layers 15 and 17 for a power feeding system. Thus, the design is improved and the range of antenna characteristics is widened.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は、各種無線装置に適用して好適な平面アンテナに関し、特にマイクロストリップアンテナに関する。 The present invention relates to relates to a suitable planar antenna applied to various wireless devices, and more particularly to microstrip antenna.

【0002】 [0002]

【従来の技術】マイクロストリップアンテナは薄形、軽量な平面アンテナであると共に、エッチング技術で容易に製作できるため、多くの分野で応用されている。 BACKGROUND ART Microstrip antennas thin, with a lightweight planar antenna, since it is possible to easily manufactured by etching technique has been applied in many fields. 特に、電磁結合型マイクロストリップアンテナは、給電の際に給電ピン等を用いない非接触型の平面アンテナであるために、アレー化に適した構造を有する。 In particular, the electromagnetic coupling microstrip antenna, for a non-contact type planar antenna without using the power supply pin or the like at the time of feeding, with a structure suitable for an array of.

【0003】電磁結合型の平面アンテナの一構成例として、トリプレート線路給電マイクロストリップアンテナの構成を図4に示す。 [0003] As one example of the configuration of the electromagnetic coupling type planar antenna, Figure 4 shows the structure of a triplate line feeding microstrip antenna. トリプレート線路給電マイクロストリップアンテナは、放射導体31がギャップ32を介して地導体33の中心に配置してある。 Triplate line feeding microstrip antenna, the radiation conductor 31 is disposed in the center of the ground conductor 33 through the gap 32. この場合、ギャップ32の幅gは、放射導体31の縁端効果(電磁界の漏れにより実際の放射体の寸法が大きくなる効果)に影響を与えない幅としてある。 In this case, the width g of the gap 32 is the width that does not affect the edge effect of the radiation conductor 31 (effect size of the actual radiator due to the leakage of the electromagnetic field increases). この放射導体31,地導体33の下に誘電体層34及び35が配され、両誘電体層34,35の間に給電線路37が配される。 The radiation conductor 31, the dielectric layer 34 and 35 below the ground conductor 33 is arranged, the feed line 37 between the two dielectric layers 34 and 35 are disposed. そして、誘電体層35の下に地導体36が配される。 The ground conductor 36 is disposed below the dielectric layer 35.

【0004】この図4に示すアンテナは、放射系は地導体36上に誘電体層34及び35を介して放射導体31 [0004] The antenna shown in FIG. 4, the radiation via a radiation system dielectric layers 34 and 35 on the ground conductor 36 is a conductor 31
を配置したマイクロストリップアンテナ構造として構成され、給電系は給電線路37からの不要放射を抑制するために、給電線路37をそれぞれ誘電体層34,35を介して地導体33,36で遮蔽したトリプレート線路構造として構成される。 Is configured as a microstrip antenna structure in which a bird feeding system in order to suppress unnecessary radiation from the feed line 37, which is shielded by the ground conductor 33 and 36 the feed line 37 via respective dielectric layers 34 and 35 configured as a plate line structure. なお、説明の便宜上、図面中では各層を分割して明記しているが、実際は各層を密着させて構成される(本明細書で以下に説明するアンテナの場合も同じ)。 For convenience of explanation, although stated by dividing each layer in the drawings, actually constituted by close contact with each layer (in the case of the antenna described herein below same).

【0005】このアンテナは、放射導体31への給電は、給電線路37より電磁結合にて行ない、放射系と給電系の整合は、給電線路37の幅およびそのスタブ長l [0005] This antenna is feed to the radiation conductor 31 performs at from feed line 37 electromagnetic coupling, the alignment of the feed system and the radiation system, the width of the feed line 37 and its stub length l
3を調整して実現される。 It is achieved by adjusting the s 3. なお、その放射特性は、放射導体31の寸法a 31 ,b 31 、誘電体層34及び35の比誘電率、誘電体層34及び35の厚さh 31及びh 32が主なパラメータとして決定される。 Incidentally, the radiation characteristics, the dimensions a 31, b 31 of the radiation conductor 31, the dielectric constant of the dielectric layer 34 and 35, the thickness h 31 and h 32 of the dielectric layer 34 and 35 is determined as the main parameter that.

【0006】次に、同様な電磁結合型の平面アンテナの一構成例として、スロット結合マイクロストリップアンテナの構成を図5に示す。 [0006] Next, as an example of the configuration of the same electromagnetic coupling type planar antenna, Figure 5 shows the configuration of the slot-coupled microstrip antenna. このアンテナは、放射導体4 The antenna radiating conductor 4
1が誘電体層42の中心に配置してあると共に、誘電体層42の下層に地導体43を介して誘電体層45が配される。 1 together with is arranged at the center of the dielectric layer 42, dielectric layer 45 is disposed over the ground conductor 43 to the underlying dielectric layer 42. この場合、地導体43の中心に励振用スロット4 In this case, the excitation slot in the center of the ground conductor 43 4
4が設けてある。 4 is provided. さらに、誘電体層45の下層に給電線路46,誘電体層47,地導体48が配置されて構成される。 Further configured lower the feed line 46 of the dielectric layer 45, dielectric layer 47 and ground conductor 48 is arranged. この場合、励振用スロット44の幅waは放射導体41の1辺の長さa 41に比べ十分小さくしてある。 In this case, the width wa of the excitation slot 44 are sufficiently small compared to the length of one side a 41 of the radiation conductor 41.

【0007】このスロット結合マイクロストリップアンテナは、励振用スロット44の幅waが放射導体41の長さa 41に比べ十分小さいため、放射系は地導体43上に誘電体層42を介して放射導体41を配置したマイクロストリップアンテナ構造となり、給電系は給電線路4 [0007] The slot coupled microstrip antenna, the width wa of the excitation slot 44 is sufficiently smaller than the length a 41 of the radiation conductor 41, the radiation system radiating conductor with the dielectric layer 42 on the ground conductor 43 41 becomes a microstrip antenna structure in which the power supply system feeding line 4
6をそれぞれ誘電体層45,47を介して地導体43, Ground conductor 43 6 respectively through a dielectric layer 45, 47,
48で遮蔽したトリプレート線路構造となる。 A triplate line structure in which shielding 48. 放射導体41への給電は、給電線路46より励振用スロット44 The power supply to the radiation conductor 41, the excitation slot from the feed line 46 44
を介して電磁結合にて行ない、整合は、励振用スロット44の長さla及び幅wa、給電線路46の幅及びそのスタブ長ls 4を調整して実現される。 The carried in electromagnetic coupling through, alignment, length la and width wa of the excitation slot 44 is achieved by adjusting the width and the stub length ls 4 its feed line 46. なお、その放射特性は、放射導体41の寸法a 41 ,b 41 、誘電体層42 Incidentally, the radiation characteristics, the dimensions a 41, b 41 of the radiation conductor 41, the dielectric layer 42
の比誘電率、誘電体層42の厚さh 41が主なパラメータとして決定される。 The dielectric constant of the thickness h 41 of the dielectric layer 42 is determined as a main parameter.

【0008】 [0008]

【発明が解決しようとする課題】ところで、マイクロストリップアンテナは、誘電体層が厚くなるにつれ、広帯域特性を示すことが広く知られている。 [SUMMARY OF THE INVENTION Incidentally, the microstrip antenna is, as the dielectric layer becomes thicker, widely known to exhibit a wide band characteristic. そこで、上述した図4に示すトリプレート線路給電マイクロストリップアンテナにおいて、広帯域化を図るために誘電体層の厚み(h 31 +h 32 )を厚くすることが考えられるが、このように厚くすると、不可避的にトリプレート線路の厚さを厚くすることにつながり、その結果、トリプレート線路内に高次モードを発生させ、伝送損失の増加の原因となる。 Therefore, in the triplate line feeding microstrip antenna shown in FIG. 4 described above, when it is considered to increase the thickness of the dielectric layer (h 31 + h 32) in order to widen the band, thus thicker, unavoidable to lead to increasing the thickness of the triplate line, as a result, to generate a high-order mode in the triplate line, causing an increase in transmission loss. さらに、トリプレート線路の構成には極めて低損失な比誘電率が1に近い材料が望ましいために、放射導体の小形化が困難である。 Further, very low-loss dielectric constant in the configuration of the triplate line is for the material close to 1 is desirable, it is difficult to miniaturization of the radiating conductor. また、スロット結合マイクロストリップアンテナでは、トリプレート線路の上部地導体がマイクロストリップアンテナの地導体となるため、 Further, the slot-coupled microstrip antenna, since the upper ground conductor of the triplate line is the ground conductor of the microstrip antenna,
その帯域は誘電体層厚h 41により決定され、同じ厚さの誘電体基板で構成した従来のトリプレート給電マイクロストリップアンテナより狭帯域となる。 The band is determined by the dielectric layer thickness h 41, a narrow band than conventional triplate feeding microstrip antenna with a dielectric substrate having the same thickness.

【0009】本発明の目的は、良好に広帯域化を図ることができる平面アンテナを提供することにある。 An object of the present invention is to provide a planar antenna which can achieve a better broadband.

【0010】 [0010]

【課題を解決するための手段】本発明は、例えば図1に示すように、給電線路16の上下を誘電体層15,17 SUMMARY OF THE INVENTION The present invention is, for example, as shown in FIG. 1, the upper and lower dielectric layers of the feed line 16 15, 17
を介して地導体13,18で遮蔽したトリプレート線路を給電に用いると共に、このトリプレート線路の上部地導体13に開口部14を設け、開口部14の上層に誘電体層12を介して放射導体11を配置し、開口部14を放射導体11よりも大きくしたものである。 With use in feeding the triplate line was blocked by the ground conductor 13, 18 via the an opening 14 provided in the upper ground conductor 13 of the triplate line, through the dielectric layer 12 on the upper layer of the opening 14 radiation the conductor 11 is arranged, in which the opening 14 is larger than the radiation conductor 11.

【0011】また、この場合に開口部14の上層の誘電体層12として、給電線路層15,17と異なる誘電率を有する誘電体層を用いたものである。 Further, as the upper layer of the dielectric layer 12 of the opening 14 in this case is one using a dielectric layer having a dielectric constant different from that of the feed line layers 15 and 17.

【0012】さらに、それぞれの場合に開口部14の上層の誘電体層12の厚さを、給電線路層15,17と異なる厚さの誘電体層としたものである。 Furthermore, one in which the thickness of the upper dielectric layer 12 of the opening 14 in each case, and a dielectric layer of a different thickness and the feed line layers 15 and 17.

【0013】 [0013]

【作用】本発明によると、給電線路であるトリプレート線路の厚みを変えることなくアンテナ部の基板厚のみを厚くすることができるため、従来のトリプレート線路給電マイクロストリップアンテナ及びスロット結合マイクロストリップアンテナに比べ、アンテナの広帯域化が可能である。 According to the present invention, it is possible to increase the only substrate thickness of the antenna portion without changing the thickness of the triplate line is the feed line, a conventional triplate line feeding microstrip antenna and the slot coupled microstrip antenna compared to, it is possible to band of the antenna.

【0014】また、この場合に開口部の上層の誘電体層として、給電線路層と異なる誘電率を有する誘電体層を用いることで、より効果的に広帯域化を図ることができると共に、高効率化が可能である。 Further, as the upper layer of the dielectric layer of the opening in this case, by using the dielectric layer having a dielectric constant different from that of the feed line layer, it is possible to more effectively broadband, high efficiency reduction is possible.

【0015】さらに、それぞれの場合に開口部の上層の誘電体層の厚さを、給電線路層と異なる厚さの誘電体層とすることで、より効果的に広帯域化,高効率化を図ることができると共に、トリプレート線路内での高次モードの発生を抑制でき、給電線路での損失の低減が可能である。 Furthermore, the thickness of the upper layer of the dielectric layer of the opening in each case, by a dielectric layer of a different thickness and the feed line layer, achieving more effective broadband, high efficiency it is possible, it is possible to suppress the generation of higher order modes in the triplate line, it is possible to reduce the loss in the feed line.

【0016】 [0016]

【実施例】以下、本発明の一実施例を図1及び図2を参照して説明する。 EXAMPLES Hereinafter, a description will be given of an embodiment of the present invention with reference to FIGS.

【0017】図1は本例のアンテナを示す図で、放射導体11が誘電体層12の上に配された第1層と、誘電体層15の上に地導体13が配された第2層と、給電線路16が上面に設けられた誘電体層17とその下面の地導体18で構成される第3層の計3層で構成される。 [0017] Figure 1 is a diagram showing the antenna of this embodiment, a first layer radiation conductor 11 is disposed on the dielectric layer 12, a second which is arranged, the ground conductor 13 on the dielectric layer 15 a layer composed of a total of three layers of the third layer composed of feed line 16 is provided on the upper surface and the dielectric layer 17 by the ground conductor 18 of the lower surface thereof. この場合、誘電体層15の上の地導体13には、四角形の開口部14が形成させてある。 In this case, the ground conductor 13 on the dielectric layer 15, the opening 14 of the square are then formed. なお、説明の便宜上、図中では各層を分割して明記しているが、実際は各層を密着させて構成される。 For convenience of explanation, although stated by dividing the respective layers in the figure, actually constituted by close contact with each layer.

【0018】ここで、放射導体11及び開口部14の形状は、図1に示した四角形のみならず各種形状において構成可能であるが、開口部14の大きさは、放射導体1 [0018] Here, the shape of the radiation conductor 11 and the opening 14 is the configurable in various shapes not square only shown in FIG. 1, the size of the opening 14, the radiation conductor 1
1の縁端効果に影響を与えない適切な大きさにする(少なくとも放射導体11よりも大きくする)必要がある。 To an appropriate size that does not affect the first edge effect (larger than at least the radiation conductor 11) needs.
例えば図1に示した四角形の開口部14の場合には、開口部14の寸法a 12 ,b 12には、放射導体11の縁端効果に影響を与えない次式〔数1〕式,〔数2〕式より求まる適切な寸法を用いる必要がある。 When the opening 14 of the square shown in FIG. 1, for example, the dimension a 12, b 12 of the opening 14, the following equation [Equation 1] expressions that do not affect the edge effect of the radiation conductor 11, [ it is necessary to use a proper size determined from the number 2] expression.

【0019】 [0019]

【数1】a 12 ≧a 11 +4h・ln2 / π [Number 1] a 12 ≧ a 11 + 4h · ln2 / π

【0020】 [0020]

【数2】b 12 ≧ b 11 +4h・ln 2 / π ただし、hはマイクロストリップアンテナの基板厚であり、図1の構成では3枚の誘電体層12,15,17の厚さ(即ちh=h 11 +h 12 +h 13 )となる。 [Number 2] b 12 ≧ b 11 + 4h · ln 2 / π However, h is the substrate thickness of the microstrip antenna, three dielectric layer thickness of 12,15,17 in the configuration of FIG. 1 (i.e. h = a h 11 + h 12 + h 13 ). また、 Also,
11 , b 11は、四角形の放射導体11の2辺の長さである(図1参照)。 a 11, b 11 are two sides of the length of the rectangular radiating conductor 11 (see FIG. 1).

【0021】このように構成される本例のアンテナは、 [0021] The antenna thus constituted the present example,
放射系は地導体18上に誘電体層12,15及び17を介して放射導体11を配置したマイクロストリップアンテナ構造となり、給電系は給電線路16をそれぞれ誘電体層15,17を介して地導体13,18で遮蔽したトリプレート線路構造となる。 Radiation system comprises a microstrip antenna structure in which the radiation conductor 11 via a dielectric layer 12, 15 and 17 on the ground conductor 18, the feed system ground conductor through the dielectric layers 15 and 17 the feed line 16, respectively a triplate line structure shielded by 13 and 18. なお、給電線路16に示すls 1は、給電線路16のスタブ長である。 Incidentally, ls 1 shown in feed line 16 is the stub length of the feed line 16.

【0022】このように構成されるトリプレート線路給電平面アンテナの反射損の周波数特性を、図2に示す。 [0022] The frequency characteristic of reflection loss of the thus constituted triplate line feeding the planar antenna, shown in FIG.
図2において、実線で示す特性が本例のアンテナの特性で、破線で示す特性が従来例のアンテナ(図4に示すアンテナ)の特性である。 2, a characteristic of the characteristic shown by the solid line of this example the antenna, the characteristics indicated by a broken line is a characteristic of the antenna of the prior art (antenna shown in FIG. 4). 同図より、VSWRが2.0 以下の帯域は、従来例が2.3 %であるのに対し、本例では3.4% From the figure, VSWR is 2.0 or less bandwidth, whereas the prior art is 2.3%, in this example 3.4%
となり、広帯域化が図られていることが確認できる。 Next, that broadband is achieved can be confirmed. なお、従来例では放射導体31の2辺の大きさa 31 =b 31 In the conventional example of two sides of the radiation conductor 31 size a 31 = b 31
= 23.0mm,ギャップ32の幅g = 1.5 mm,各誘電体層の厚みh 31 =h 32 =0.8mm とした場合の特性値であり、本例のアンテナでは放射導体11の2辺の長さa 11 =b 11 = 23.0 mm, width g = 1.5 mm of the gap 32, the characteristic value when the thickness h 31 = h 32 = 0.8mm of the dielectric layers, two sides the length of the radiation conductor 11 in the antenna of this example a 11 = b 11
= 23.0mm , 開口部14の2辺の長さa = 23.0 mm, 2 sides of length a of the opening 14 12 =b 12 =27.0 12 = b 12 = 27.0
mm,誘電体層12,15,17の厚さh 11 =h 12 =h 12 mm, the thickness of the dielectric layer 12,15,17 h 11 = h 12 = h 12
=0.8mmである。 = It is 0.8mm.

【0023】なお、本例のアンテナの場合には、上層の誘電体層12として、トリプレート線路を構成する誘電体層15,17と異なる誘電率の誘電体層を使用することで、より特性の改善を行うことができる。 [0023] In the case of the antenna of the present example, as the upper layer of the dielectric layer 12, by using the dielectric layer with a different dielectric constant dielectric layers 15 and 17 constituting the triplate line, more characteristics it is possible to carry out the improvements. 例えば、上層の誘電体層12として、誘電体層15,17よりも低誘電率な材料を用いた場合、より広帯域かつ高効率な特性が得られる。 For example, as the upper layer of the dielectric layer 12, the case of using a low dielectric constant material than dielectric layers 15 and 17, more broadband and high-efficiency characteristics can be obtained. また、上層の誘電体層12として、誘電体層15,17よりも高誘電率な材料を用いた場合、放射導体11の小形化が実現される。 Further, as the upper layer of the dielectric layer 12, when using a high dielectric constant material than dielectric layers 15 and 17, miniaturization of the radiation conductor 11 is realized.

【0024】次に、本発明の平面アンテナの他の実施例を、図3を参照して説明する。 Next, another embodiment of the planar antenna of the present invention will be described with reference to FIG. 本例の場合には、その基本的構成は図1の例と同様であり、放射導体21が誘電体層22の上に配された第1層と、誘電体層25の上に地導体23が配された第2層と、給電線路26が上面に設けられた誘電体層27とその下面の地導体28で構成される第3層の計3層で構成される。 In the case of this example, the basic structure is the same as the example of FIG. 1, a first layer radiation conductor 21 is disposed on the dielectric layer 22, the ground conductor 23 on the dielectric layer 25 and a second layer is arranged, consists of a total of three layers of the third layer composed of the feed line 26 is provided on an upper surface the dielectric layer 27 and its lower surface of the ground conductor 28. この場合、誘電体層25の上の地導体23には、四角形の開口部24が形成させてある。 In this case, the ground conductor 23 on the dielectric layer 25, the opening 24 of the square are then formed.

【0025】そして本例においては、上層の誘電体層2 [0025] Then, in this embodiment, the upper layer of the dielectric layer 2
2の厚さh 21を、トリプレート線路の誘電体層25,2 The second thickness h 21, the dielectric layer of the triplate line 25,2
7の厚さh 22 ,h 23と異なる厚さの誘電体層とする。 Thickness h 22, h 23 and different thicknesses of 7 and a dielectric layer. また、スタブ長ls 2の給電線路26に、その幅を細くしたλg /4整合回路29を挿入する。 Furthermore, the feed line 26 of the stub length ls 2, inserting the lambda] g / 4 matching circuit 29 that narrow the width. これにより、給電系と放射系の結合が弱くなる際の整合を可能にしている。 This makes it possible alignment when the coupling of the radiation system and the feeding system weakens. この構造において、トリプレート線路の誘電体層2 In this structure, the triplate line dielectric layer 2
5,27の厚さを最適に設計することにより、給電線路での損失を抑制することができ、アレー化に適した構造であると共に、広帯域な特性を得ることができる。 By optimally designing the thicknesses of 5, 27, it is possible to suppress the loss in the feeder line, with a structure suitable for an array of, it is possible to obtain a wide band characteristic.

【0026】なお、この図3に示すように上層の誘電体層の厚さを、トリプレート線路の誘電体層の厚さと変える場合においても、上述したように誘電率を変えるようにしても良いことは勿論である。 [0026] Incidentally, the thickness of the upper layer of the dielectric layer as shown in FIG. 3, in the case of changing the thickness of the dielectric layer of the triplate line also may be changed dielectric constant as described above it is a matter of course.

【0027】 [0027]

【発明の効果】以上説明したように、本発明によれば以下の効果が得られる。 As described in the foregoing, the following advantages are provided according to the present invention. ・ 放射系、給電系を独立して設計できるため、大幅に設計性が改善される。 · Radiation system, it is possible to design independently feeding system, greatly design is improved. ・ 給電線路であるトリプレート線路の基板厚に関係なく、アンテナ部の基板厚を厚くすることができるため、 - Regardless of the substrate thickness of the triplate line is the feed line, it is possible to increase the substrate thickness of the antenna portion,
アンテナの広帯域化が実現できる。 Antenna of broadband can be realized.

【0028】また、開口部の上層の誘電体層として、給電線路層と異なる誘電率を有する誘電体層を用いることで、以下の効果が得られる。 Further, as the upper layer of the dielectric layer of the opening, by using the dielectric layer having a dielectric constant different from that of the feed line layer, the following effects can be obtained. ・ 従来と比較して、上層の誘電体層に低誘電率な材料を用いた場合、アンテナの広帯域化、高効率化が実現される。 - as compared with the conventional case of using a low dielectric constant material on the upper layer of the dielectric layer, band of the antenna, high efficiency can be realized. ・ 従来と比較して、上層の誘電体層に高誘電率な材料を用いた場合、放射導体の小形化が実現される。 - as compared with the conventional case of using a high dielectric constant material on the upper layer of the dielectric layer, miniaturization of the radiating conductor is realized.

【0029】さらに、開口部の上層の誘電体層の厚さを、給電線路層と異なる厚さの誘電体層とすることで、 Furthermore, the thickness of the upper layer of the dielectric layer of the opening, by a dielectric layer of a different thickness and the feed line layer,
以下の効果が得られる。 The following effects can be obtained. ・ トリプレート線路内での高次モードの発生を抑制でき、給電線路での損失の低減が可能となる。 · It is possible to suppress the generation of higher order modes in the triplate line in, it becomes possible to reduce the loss in the feed line.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の一実施例によるトリプレート線路給電平面アンテナを示す分解斜視図である。 1 is an exploded perspective view showing a triplate line feeding the planar antenna according to an embodiment of the present invention.

【図2】一実施例によるトリプレート線路給電平面アンテナの反射損の周波数特性を示す特性図である。 2 is a characteristic diagram showing a frequency characteristic of reflection loss of the triplate line feeding the planar antenna according to one embodiment.

【図3】本発明の他の実施例によるトリプレート線路給電平面アンテナを示す分解斜視図である。 3 is an exploded perspective view showing a triplate line feeding the planar antenna according to another embodiment of the present invention.

【図4】従来のトリプレート線路給電平面アンテナの一例を示す分解斜視図である。 4 is an exploded perspective view showing an example of a conventional triplate line feeding the planar antenna.

【図5】従来のスロット結合平面アンテナの一例を示す分解斜視図である。 5 is an exploded perspective view showing an example of a conventional slot coupled planar antenna.

【符号の説明】 DESCRIPTION OF SYMBOLS

11,21 放射導体 12,15,17,22,25,27 誘電体層 13,18,23,28 地導体 14,24 開口部 16,26 給電線路 29 λg /4整合回路 11 and 21 radiating conductor 12,15,17,22,25,27 dielectric layer 13,18,23,28 ground conductor 14, 24 opening 16, 26 feed line 29 lambda] g / 4 matching circuit

Claims (3)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 給電線路の上下を誘電体層を介して地導体で遮蔽したトリプレート線路を給電に用いると共に、 上記トリプレート線路の上部地導体に開口部を設け、該開口部の上層に誘電体層を介して放射導体を配置し、 上記開口部を上記放射導体よりも大きくした平面アンテナ。 1. A with using triplate line the top and bottom of feedline shielded by grounding conductor through the dielectric layer to the feeding, the opening provided in the upper ground conductor of the triplate line, the upper layer of the opening the radiation conductor is disposed through the dielectric layer, the planar antenna of the opening is larger than the radiating conductor.
  2. 【請求項2】 上記開口部の上層の誘電体層として、給電線路層と異なる誘電率を有する誘電体層を用いた請求項1記載の平面アンテナ。 Wherein the dielectric layer of the upper layer of the opening, the planar antenna according to claim 1, wherein using a dielectric layer having a dielectric constant different from that of the feed line layer.
  3. 【請求項3】 上記開口部の上層の誘電体層の厚さを、 The 3. A thickness of the upper dielectric layer of the opening,
    給電線路層と異なる厚さの誘電体層とした請求項1又は請求項2記載の平面アンテナ。 Claim 1 or claim 2 planar antenna according to the feeding line layer different from the thickness of the dielectric layer.
JP9769094A 1994-05-11 1994-05-11 Plane antenna Pending JPH07307612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9769094A JPH07307612A (en) 1994-05-11 1994-05-11 Plane antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9769094A JPH07307612A (en) 1994-05-11 1994-05-11 Plane antenna

Publications (1)

Publication Number Publication Date
JPH07307612A true true JPH07307612A (en) 1995-11-21

Family

ID=14198956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9769094A Pending JPH07307612A (en) 1994-05-11 1994-05-11 Plane antenna

Country Status (1)

Country Link
JP (1) JPH07307612A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7340286B2 (en) 2003-10-09 2008-03-04 Lk Products Oy Cover structure for a radio device
US8847833B2 (en) 2009-12-29 2014-09-30 Pulse Finland Oy Loop resonator apparatus and methods for enhanced field control
US8866689B2 (en) 2011-07-07 2014-10-21 Pulse Finland Oy Multi-band antenna and methods for long term evolution wireless system
US8988296B2 (en) 2012-04-04 2015-03-24 Pulse Finland Oy Compact polarized antenna and methods
US9123990B2 (en) 2011-10-07 2015-09-01 Pulse Finland Oy Multi-feed antenna apparatus and methods
US9203154B2 (en) 2011-01-25 2015-12-01 Pulse Finland Oy Multi-resonance antenna, antenna module, radio device and methods
US9246210B2 (en) 2010-02-18 2016-01-26 Pulse Finland Oy Antenna with cover radiator and methods
US9350081B2 (en) 2014-01-14 2016-05-24 Pulse Finland Oy Switchable multi-radiator high band antenna apparatus
US9406998B2 (en) 2010-04-21 2016-08-02 Pulse Finland Oy Distributed multiband antenna and methods
WO2016120863A1 (en) * 2015-01-26 2016-08-04 Radar Obstacle Detection Ltd. Radio frequency antenna
US9450291B2 (en) 2011-07-25 2016-09-20 Pulse Finland Oy Multiband slot loop antenna apparatus and methods
US9461371B2 (en) 2009-11-27 2016-10-04 Pulse Finland Oy MIMO antenna and methods
US9484619B2 (en) 2011-12-21 2016-11-01 Pulse Finland Oy Switchable diversity antenna apparatus and methods
US9531058B2 (en) 2011-12-20 2016-12-27 Pulse Finland Oy Loosely-coupled radio antenna apparatus and methods
US9590308B2 (en) 2013-12-03 2017-03-07 Pulse Electronics, Inc. Reduced surface area antenna apparatus and mobile communications devices incorporating the same
US9634383B2 (en) 2013-06-26 2017-04-25 Pulse Finland Oy Galvanically separated non-interacting antenna sector apparatus and methods
US9647338B2 (en) 2013-03-11 2017-05-09 Pulse Finland Oy Coupled antenna structure and methods
US9673507B2 (en) 2011-02-11 2017-06-06 Pulse Finland Oy Chassis-excited antenna apparatus and methods
US9680212B2 (en) 2013-11-20 2017-06-13 Pulse Finland Oy Capacitive grounding methods and apparatus for mobile devices
US9722308B2 (en) 2014-08-28 2017-08-01 Pulse Finland Oy Low passive intermodulation distributed antenna system for multiple-input multiple-output systems and methods of use
US9761951B2 (en) 2009-11-03 2017-09-12 Pulse Finland Oy Adjustable antenna apparatus and methods
US9906260B2 (en) 2015-07-30 2018-02-27 Pulse Finland Oy Sensor-based closed loop antenna swapping apparatus and methods
US9917346B2 (en) 2011-02-11 2018-03-13 Pulse Finland Oy Chassis-excited antenna apparatus and methods
US9948002B2 (en) 2014-08-26 2018-04-17 Pulse Finland Oy Antenna apparatus with an integrated proximity sensor and methods
US9973228B2 (en) 2014-08-26 2018-05-15 Pulse Finland Oy Antenna apparatus with an integrated proximity sensor and methods
US9979078B2 (en) 2012-10-25 2018-05-22 Pulse Finland Oy Modular cell antenna apparatus and methods

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7340286B2 (en) 2003-10-09 2008-03-04 Lk Products Oy Cover structure for a radio device
US9761951B2 (en) 2009-11-03 2017-09-12 Pulse Finland Oy Adjustable antenna apparatus and methods
US9461371B2 (en) 2009-11-27 2016-10-04 Pulse Finland Oy MIMO antenna and methods
US8847833B2 (en) 2009-12-29 2014-09-30 Pulse Finland Oy Loop resonator apparatus and methods for enhanced field control
US9246210B2 (en) 2010-02-18 2016-01-26 Pulse Finland Oy Antenna with cover radiator and methods
US9406998B2 (en) 2010-04-21 2016-08-02 Pulse Finland Oy Distributed multiband antenna and methods
US9203154B2 (en) 2011-01-25 2015-12-01 Pulse Finland Oy Multi-resonance antenna, antenna module, radio device and methods
US9917346B2 (en) 2011-02-11 2018-03-13 Pulse Finland Oy Chassis-excited antenna apparatus and methods
US9673507B2 (en) 2011-02-11 2017-06-06 Pulse Finland Oy Chassis-excited antenna apparatus and methods
US8866689B2 (en) 2011-07-07 2014-10-21 Pulse Finland Oy Multi-band antenna and methods for long term evolution wireless system
US9450291B2 (en) 2011-07-25 2016-09-20 Pulse Finland Oy Multiband slot loop antenna apparatus and methods
US9123990B2 (en) 2011-10-07 2015-09-01 Pulse Finland Oy Multi-feed antenna apparatus and methods
US9531058B2 (en) 2011-12-20 2016-12-27 Pulse Finland Oy Loosely-coupled radio antenna apparatus and methods
US9484619B2 (en) 2011-12-21 2016-11-01 Pulse Finland Oy Switchable diversity antenna apparatus and methods
US9509054B2 (en) 2012-04-04 2016-11-29 Pulse Finland Oy Compact polarized antenna and methods
US8988296B2 (en) 2012-04-04 2015-03-24 Pulse Finland Oy Compact polarized antenna and methods
US9979078B2 (en) 2012-10-25 2018-05-22 Pulse Finland Oy Modular cell antenna apparatus and methods
US9647338B2 (en) 2013-03-11 2017-05-09 Pulse Finland Oy Coupled antenna structure and methods
US9634383B2 (en) 2013-06-26 2017-04-25 Pulse Finland Oy Galvanically separated non-interacting antenna sector apparatus and methods
US9680212B2 (en) 2013-11-20 2017-06-13 Pulse Finland Oy Capacitive grounding methods and apparatus for mobile devices
US9590308B2 (en) 2013-12-03 2017-03-07 Pulse Electronics, Inc. Reduced surface area antenna apparatus and mobile communications devices incorporating the same
US9350081B2 (en) 2014-01-14 2016-05-24 Pulse Finland Oy Switchable multi-radiator high band antenna apparatus
US9948002B2 (en) 2014-08-26 2018-04-17 Pulse Finland Oy Antenna apparatus with an integrated proximity sensor and methods
US9973228B2 (en) 2014-08-26 2018-05-15 Pulse Finland Oy Antenna apparatus with an integrated proximity sensor and methods
US9722308B2 (en) 2014-08-28 2017-08-01 Pulse Finland Oy Low passive intermodulation distributed antenna system for multiple-input multiple-output systems and methods of use
US9899741B2 (en) 2015-01-26 2018-02-20 Rodradar Ltd. Radio frequency antenna
WO2016120863A1 (en) * 2015-01-26 2016-08-04 Radar Obstacle Detection Ltd. Radio frequency antenna
US9906260B2 (en) 2015-07-30 2018-02-27 Pulse Finland Oy Sensor-based closed loop antenna swapping apparatus and methods

Similar Documents

Publication Publication Date Title
Gazit Improved design of the Vivaldi antenna
Pozar Microstrip antennas
US4719470A (en) Broadband printed circuit antenna with direct feed
US6492953B2 (en) Wideband meander line loaded antenna
Herscovici New considerations in the design of microstrip antennas
US4083046A (en) Electric monomicrostrip dipole antennas
US4766440A (en) Triple frequency U-slot microstrip antenna
US5594455A (en) Bidirectional printed antenna
US4843403A (en) Broadband notch antenna
US5675345A (en) Compact antenna with folded substrate
US4072951A (en) Notch fed twin electric micro-strip dipole antennas
US4054874A (en) Microstrip-dipole antenna elements and arrays thereof
US3995277A (en) Microstrip antenna
US4130822A (en) Slot antenna
US4197544A (en) Windowed dual ground plane microstrip antennas
US5619216A (en) Dual polarization common aperture array formed by waveguide-fed, planar slot array and linear short backfire array
US4291311A (en) Dual ground plane microstrip antennas
US5892486A (en) Broad band dipole element and array
US7589686B2 (en) Small ultra wideband antenna having unidirectional radiation pattern
US6281843B1 (en) Planar broadband dipole antenna for linearly polarized waves
US6317094B1 (en) Feed structures for tapered slot antennas
US6087988A (en) In-line CP patch radiator
US4291312A (en) Dual ground plane coplanar fed microstrip antennas
US6087989A (en) Cavity-backed microstrip dipole antenna array
US5319377A (en) Wideband arrayable planar radiator