JPH07307612A - Plane antenna - Google Patents

Plane antenna

Info

Publication number
JPH07307612A
JPH07307612A JP9769094A JP9769094A JPH07307612A JP H07307612 A JPH07307612 A JP H07307612A JP 9769094 A JP9769094 A JP 9769094A JP 9769094 A JP9769094 A JP 9769094A JP H07307612 A JPH07307612 A JP H07307612A
Authority
JP
Japan
Prior art keywords
dielectric layer
antenna
layer
line
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9769094A
Other languages
Japanese (ja)
Inventor
Shinichiro Tsuda
信一郎 津田
Yoshitaka Kanayama
佳貴 金山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP9769094A priority Critical patent/JPH07307612A/en
Publication of JPH07307612A publication Critical patent/JPH07307612A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve design and to widen the range of an antenna by using a triplate line for which the upper and lower parts of a power feeding line is shielded by ground conductors through dielectric layers for power feeding and providing a radiation conductor smaller than an opening part through the dielectric layer on the upper layer of the opening part on the upper part ground conductor of the line. CONSTITUTION:This antenna is composed of a first layer for which the radiation conductor 11 is arranged above the dielectric layer 12, a second layer for which the ground conductor 13 is arranged above the dielectric layer 15 and a third layer constituted of the dielectric layer 17 provided with the power feeding line 16 on an upper surface and the ground conductor 18 of the lower surface. In this case, the shape of the radiation conductor 11 and the opening part 14 can be the various kinds of the shapes without being limited to a quadrangle, however, the size of the opening part 14 is selected to be the size for not influencing the edge effect of the radiation conductor 11. In this antenna, a radiation system is a microstrip antenna structure for which the radiation conductor 11 is arranged above the ground conductor 18 through the dielectric layers 12, 15 and 17 and the power feeding line 16 is shielded by the ground conductors 13 and 18 respectively through the dielectric layers 15 and 17 for a power feeding system. Thus, the design is improved and the range of antenna characteristics is widened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種無線装置に適用し
て好適な平面アンテナに関し、特にマイクロストリップ
アンテナに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a planar antenna suitable for application to various wireless devices, and more particularly to a microstrip antenna.

【0002】[0002]

【従来の技術】マイクロストリップアンテナは薄形、軽
量な平面アンテナであると共に、エッチング技術で容易
に製作できるため、多くの分野で応用されている。特
に、電磁結合型マイクロストリップアンテナは、給電の
際に給電ピン等を用いない非接触型の平面アンテナであ
るために、アレー化に適した構造を有する。
2. Description of the Related Art Microstrip antennas are thin and lightweight planar antennas, and can be easily manufactured by etching techniques, so that they are applied in many fields. In particular, the electromagnetically coupled microstrip antenna is a non-contact type planar antenna that does not use feeding pins or the like when feeding power, and thus has a structure suitable for arraying.

【0003】電磁結合型の平面アンテナの一構成例とし
て、トリプレート線路給電マイクロストリップアンテナ
の構成を図4に示す。トリプレート線路給電マイクロス
トリップアンテナは、放射導体31がギャップ32を介
して地導体33の中心に配置してある。この場合、ギャ
ップ32の幅gは、放射導体31の縁端効果(電磁界の
漏れにより実際の放射体の寸法が大きくなる効果)に影
響を与えない幅としてある。この放射導体31,地導体
33の下に誘電体層34及び35が配され、両誘電体層
34,35の間に給電線路37が配される。そして、誘
電体層35の下に地導体36が配される。
FIG. 4 shows the structure of a triplate line-fed microstrip antenna as an example of the structure of an electromagnetically coupled planar antenna. In the triplate line-fed microstrip antenna, the radiation conductor 31 is arranged at the center of the ground conductor 33 with a gap 32 interposed therebetween. In this case, the width g of the gap 32 is a width that does not affect the edge effect of the radiating conductor 31 (the effect of increasing the actual size of the radiator due to leakage of the electromagnetic field). Dielectric layers 34 and 35 are arranged under the radiation conductor 31 and the ground conductor 33, and a feeding line 37 is arranged between the dielectric layers 34 and 35. Then, the ground conductor 36 is arranged below the dielectric layer 35.

【0004】この図4に示すアンテナは、放射系は地導
体36上に誘電体層34及び35を介して放射導体31
を配置したマイクロストリップアンテナ構造として構成
され、給電系は給電線路37からの不要放射を抑制する
ために、給電線路37をそれぞれ誘電体層34,35を
介して地導体33,36で遮蔽したトリプレート線路構
造として構成される。なお、説明の便宜上、図面中では
各層を分割して明記しているが、実際は各層を密着させ
て構成される(本明細書で以下に説明するアンテナの場
合も同じ)。
In the antenna shown in FIG. 4, the radiation system has a radiation conductor 31 on a ground conductor 36 via dielectric layers 34 and 35.
The power feeding system is configured as a microstrip antenna structure in which the power feeding line 37 is shielded by ground conductors 33 and 36 via dielectric layers 34 and 35, respectively, in order to suppress unnecessary radiation from the power feeding line 37. It is constructed as a plate line structure. Note that, for convenience of description, although the layers are shown separately in the drawings, the layers are actually in close contact with each other (the same applies to an antenna described below in this specification).

【0005】このアンテナは、放射導体31への給電
は、給電線路37より電磁結合にて行ない、放射系と給
電系の整合は、給電線路37の幅およびそのスタブ長l
3 を調整して実現される。なお、その放射特性は、放
射導体31の寸法a31,b31、誘電体層34及び35の
比誘電率、誘電体層34及び35の厚さh31及びh32
主なパラメータとして決定される。
In this antenna, the radiation conductor 31 is fed by electromagnetic coupling from the feeding line 37, and the matching between the radiation system and the feeding system is performed by the width of the feeding line 37 and its stub length l.
It is realized by adjusting s 3 . The radiation characteristics thereof are determined mainly by the dimensions a 31 , b 31 of the radiation conductor 31, the relative permittivities of the dielectric layers 34 and 35, and the thicknesses h 31 and h 32 of the dielectric layers 34 and 35. It

【0006】次に、同様な電磁結合型の平面アンテナの
一構成例として、スロット結合マイクロストリップアン
テナの構成を図5に示す。このアンテナは、放射導体4
1が誘電体層42の中心に配置してあると共に、誘電体
層42の下層に地導体43を介して誘電体層45が配さ
れる。この場合、地導体43の中心に励振用スロット4
4が設けてある。さらに、誘電体層45の下層に給電線
路46,誘電体層47,地導体48が配置されて構成さ
れる。この場合、励振用スロット44の幅waは放射導
体41の1辺の長さa41に比べ十分小さくしてある。
Next, FIG. 5 shows a configuration of a slot-coupled microstrip antenna as an example of a configuration of a similar electromagnetic coupling type planar antenna. This antenna has a radiating conductor 4
1 is arranged at the center of the dielectric layer 42, and the dielectric layer 45 is arranged below the dielectric layer 42 with the ground conductor 43 interposed therebetween. In this case, the excitation slot 4 is placed at the center of the ground conductor 43.
4 is provided. Further, a feed line 46, a dielectric layer 47, and a ground conductor 48 are arranged below the dielectric layer 45. In this case, the width wa of the excitation slot 44 is sufficiently smaller than the length a 41 of one side of the radiation conductor 41.

【0007】このスロット結合マイクロストリップアン
テナは、励振用スロット44の幅waが放射導体41の
長さa41に比べ十分小さいため、放射系は地導体43上
に誘電体層42を介して放射導体41を配置したマイク
ロストリップアンテナ構造となり、給電系は給電線路4
6をそれぞれ誘電体層45,47を介して地導体43,
48で遮蔽したトリプレート線路構造となる。放射導体
41への給電は、給電線路46より励振用スロット44
を介して電磁結合にて行ない、整合は、励振用スロット
44の長さla及び幅wa、給電線路46の幅及びその
スタブ長ls4を調整して実現される。なお、その放射
特性は、放射導体41の寸法a41,b41、誘電体層42
の比誘電率、誘電体層42の厚さh41が主なパラメータ
として決定される。
In this slot-coupled microstrip antenna, since the width wa of the excitation slot 44 is sufficiently smaller than the length a 41 of the radiating conductor 41, the radiating system is arranged on the ground conductor 43 via the dielectric layer 42. 41 has a microstrip antenna structure, and the feeding system is the feeding line 4
6 through the dielectric layers 45 and 47, respectively, to the ground conductor 43,
The triplate line structure is shielded by 48. Power is fed to the radiation conductor 41 from the feed line 46 through the excitation slot 44.
Matching is performed by electromagnetically coupling through, by adjusting the length la and width wa of the excitation slot 44, the width of the feed line 46 and its stub length Is 4 . The radiation characteristics are as follows: the dimensions a 41 , b 41 of the radiation conductor 41 and the dielectric layer 42.
And the thickness h 41 of the dielectric layer 42 are determined as main parameters.

【0008】[0008]

【発明が解決しようとする課題】ところで、マイクロス
トリップアンテナは、誘電体層が厚くなるにつれ、広帯
域特性を示すことが広く知られている。そこで、上述し
た図4に示すトリプレート線路給電マイクロストリップ
アンテナにおいて、広帯域化を図るために誘電体層の厚
み(h31+h32)を厚くすることが考えられるが、この
ように厚くすると、不可避的にトリプレート線路の厚さ
を厚くすることにつながり、その結果、トリプレート線
路内に高次モードを発生させ、伝送損失の増加の原因と
なる。さらに、トリプレート線路の構成には極めて低損
失な比誘電率が1に近い材料が望ましいために、放射導
体の小形化が困難である。また、スロット結合マイクロ
ストリップアンテナでは、トリプレート線路の上部地導
体がマイクロストリップアンテナの地導体となるため、
その帯域は誘電体層厚h41により決定され、同じ厚さの
誘電体基板で構成した従来のトリプレート給電マイクロ
ストリップアンテナより狭帯域となる。
By the way, it is widely known that the microstrip antenna exhibits wide band characteristics as the dielectric layer becomes thicker. Therefore, in the above described triplate line-fed microstrip antenna shown in FIG. 4, it is conceivable to increase the thickness (h 31 + h 32 ) of the dielectric layer in order to widen the band, but if it is increased in this way, it is unavoidable. This leads to an increase in the thickness of the triplate line, and as a result, a higher-order mode is generated in the triplate line, which causes an increase in transmission loss. Furthermore, it is difficult to reduce the size of the radiation conductor because a material having an extremely low loss and a relative dielectric constant close to 1 is desirable for the configuration of the triplate line. Also, in the slot-coupled microstrip antenna, the upper ground conductor of the triplate line becomes the ground conductor of the microstrip antenna.
The band is determined by the dielectric layer thickness h 41 , which is a narrower band than that of the conventional triplate-fed microstrip antenna composed of dielectric substrates having the same thickness.

【0009】本発明の目的は、良好に広帯域化を図るこ
とができる平面アンテナを提供することにある。
An object of the present invention is to provide a planar antenna that can achieve a wide band satisfactorily.

【0010】[0010]

【課題を解決するための手段】本発明は、例えば図1に
示すように、給電線路16の上下を誘電体層15,17
を介して地導体13,18で遮蔽したトリプレート線路
を給電に用いると共に、このトリプレート線路の上部地
導体13に開口部14を設け、開口部14の上層に誘電
体層12を介して放射導体11を配置し、開口部14を
放射導体11よりも大きくしたものである。
In the present invention, for example, as shown in FIG. 1, dielectric layers 15 and 17 are formed above and below a feed line 16.
The triplate line shielded by the ground conductors 13 and 18 via the power supply is used for power supply, the upper ground conductor 13 of the triplate line is provided with an opening 14, and the upper layer of the opening 14 is radiated via the dielectric layer 12. The conductor 11 is arranged and the opening 14 is made larger than the radiation conductor 11.

【0011】また、この場合に開口部14の上層の誘電
体層12として、給電線路層15,17と異なる誘電率
を有する誘電体層を用いたものである。
Further, in this case, as the dielectric layer 12 above the opening 14, a dielectric layer having a dielectric constant different from that of the feed line layers 15 and 17 is used.

【0012】さらに、それぞれの場合に開口部14の上
層の誘電体層12の厚さを、給電線路層15,17と異
なる厚さの誘電体層としたものである。
Further, in each case, the thickness of the dielectric layer 12 above the opening 14 is different from that of the feed line layers 15 and 17.

【0013】[0013]

【作用】本発明によると、給電線路であるトリプレート
線路の厚みを変えることなくアンテナ部の基板厚のみを
厚くすることができるため、従来のトリプレート線路給
電マイクロストリップアンテナ及びスロット結合マイク
ロストリップアンテナに比べ、アンテナの広帯域化が可
能である。
According to the present invention, only the substrate thickness of the antenna portion can be increased without changing the thickness of the triplate line which is the feed line. Therefore, the conventional triplate line feed microstrip antenna and slot-coupled microstrip antenna are used. Broadening of the antenna is possible compared to.

【0014】また、この場合に開口部の上層の誘電体層
として、給電線路層と異なる誘電率を有する誘電体層を
用いることで、より効果的に広帯域化を図ることができ
ると共に、高効率化が可能である。
Further, in this case, by using a dielectric layer having a dielectric constant different from that of the feed line layer as the dielectric layer above the opening, it is possible to more effectively widen the band and to increase the efficiency. Is possible.

【0015】さらに、それぞれの場合に開口部の上層の
誘電体層の厚さを、給電線路層と異なる厚さの誘電体層
とすることで、より効果的に広帯域化,高効率化を図る
ことができると共に、トリプレート線路内での高次モー
ドの発生を抑制でき、給電線路での損失の低減が可能で
ある。
Further, in each case, the thickness of the dielectric layer above the opening is made different from the thickness of the feed line layer, so that a wider band and higher efficiency can be achieved more effectively. In addition, it is possible to suppress the generation of higher-order modes in the triplate line and reduce the loss in the power feed line.

【0016】[0016]

【実施例】以下、本発明の一実施例を図1及び図2を参
照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0017】図1は本例のアンテナを示す図で、放射導
体11が誘電体層12の上に配された第1層と、誘電体
層15の上に地導体13が配された第2層と、給電線路
16が上面に設けられた誘電体層17とその下面の地導
体18で構成される第3層の計3層で構成される。この
場合、誘電体層15の上の地導体13には、四角形の開
口部14が形成させてある。なお、説明の便宜上、図中
では各層を分割して明記しているが、実際は各層を密着
させて構成される。
FIG. 1 is a diagram showing an antenna of this example, in which a radiation conductor 11 is disposed on a dielectric layer 12 as a first layer and a dielectric layer 15 is disposed on a ground conductor 13 as a second layer. The third layer is composed of a layer, a dielectric layer 17 provided with the feed line 16 on the upper surface, and a ground conductor 18 on the lower surface, a total of three layers. In this case, a rectangular opening 14 is formed in the ground conductor 13 on the dielectric layer 15. Note that, for convenience of explanation, although each layer is shown in a divided manner in the drawing, in practice, each layer is configured to be in close contact.

【0018】ここで、放射導体11及び開口部14の形
状は、図1に示した四角形のみならず各種形状において
構成可能であるが、開口部14の大きさは、放射導体1
1の縁端効果に影響を与えない適切な大きさにする(少
なくとも放射導体11よりも大きくする)必要がある。
例えば図1に示した四角形の開口部14の場合には、開
口部14の寸法a12,b12には、放射導体11の縁端効
果に影響を与えない次式〔数1〕式,〔数2〕式より求
まる適切な寸法を用いる必要がある。
Here, the shape of the radiation conductor 11 and the opening 14 can be configured in various shapes other than the quadrangle shown in FIG. 1, but the size of the opening 14 is different.
It is necessary to have an appropriate size (at least larger than the radiation conductor 11) so as not to affect the edge effect of 1.
For example, in the case of the quadrangular opening 14 shown in FIG. 1, the dimensions a 12 and b 12 of the opening 14 have the following equations [Equation 1], [Equation 1] that do not affect the edge effect of the radiation conductor 11. It is necessary to use an appropriate size obtained from the formula 2].

【0019】[0019]

【数1】a12≧a11+4h・ln2 / π[Formula 1] a 12 ≧ a 11 + 4h · ln2 / π

【0020】[0020]

【数2】b12≧ b11+4h・ln 2 / π ただし、hはマイクロストリップアンテナの基板厚であ
り、図1の構成では3枚の誘電体層12,15,17の
厚さ(即ちh=h11+h12+h13)となる。また、
11, b11は、四角形の放射導体11の2辺の長さであ
る(図1参照)。
B 12 ≧ b 11 + 4h · ln 2 / π where h is the substrate thickness of the microstrip antenna, and in the configuration of FIG. 1, the thickness of the three dielectric layers 12, 15, 17 (that is, h = H 11 + h 12 + h 13 ). Also,
a 11 and b 11 are the lengths of two sides of the rectangular radiation conductor 11 (see FIG. 1).

【0021】このように構成される本例のアンテナは、
放射系は地導体18上に誘電体層12,15及び17を
介して放射導体11を配置したマイクロストリップアン
テナ構造となり、給電系は給電線路16をそれぞれ誘電
体層15,17を介して地導体13,18で遮蔽したト
リプレート線路構造となる。なお、給電線路16に示す
ls1 は、給電線路16のスタブ長である。
The antenna of this example configured as described above is
The radiating system has a microstrip antenna structure in which the radiating conductor 11 is arranged on the ground conductor 18 via the dielectric layers 12, 15 and 17, and the feeding system connects the feeding line 16 to the ground conductor via the dielectric layers 15 and 17, respectively. It becomes a triplate line structure shielded by 13 and 18. In addition, ls 1 shown in the power supply line 16 is a stub length of the power supply line 16.

【0022】このように構成されるトリプレート線路給
電平面アンテナの反射損の周波数特性を、図2に示す。
図2において、実線で示す特性が本例のアンテナの特性
で、破線で示す特性が従来例のアンテナ(図4に示すア
ンテナ)の特性である。同図より、VSWRが2.0 以下の帯
域は、従来例が2.3 %であるのに対し、本例では3.4%
となり、広帯域化が図られていることが確認できる。な
お、従来例では放射導体31の2辺の大きさa31=b31
= 23.0mm,ギャップ32の幅g = 1.5 mm,各誘電体層の
厚みh31=h32=0.8mm とした場合の特性値であり、本
例のアンテナでは放射導体11の2辺の長さa11=b11
= 23.0mm , 開口部14の2辺の長さa 12=b12=27.0
mm,誘電体層12,15,17の厚さh11=h12=h12
=0.8mmである。
A triplate line feeder configured as described above
The frequency characteristic of the reflection loss of the electric plane antenna is shown in FIG.
In FIG. 2, the characteristic indicated by the solid line is the characteristic of the antenna of this example.
The characteristic indicated by the broken line is the antenna of the conventional example (the antenna shown in FIG.
Antenna) characteristics. From the figure, it can be seen that VSWR is 2.0 or less.
The area is 3.4% in this example, compared with 2.3% in the conventional example.
Therefore, it can be confirmed that the band is widened. Na
In the conventional example, the size a of the two sides of the radiation conductor 31 is a.31= B31
= 23.0 mm, width of gap 32 g = 1.5 mm, for each dielectric layer
Thickness h31= H32= 0.8mm is the characteristic value when
In the example antenna, the length a of two sides of the radiation conductor 11 is11= B11
= 23.0 mm, the length a of the two sides of the opening 14 12= B12= 27.0
mm, thickness h of the dielectric layers 12, 15, 1711= H12= H12
= 0.8 mm.

【0023】なお、本例のアンテナの場合には、上層の
誘電体層12として、トリプレート線路を構成する誘電
体層15,17と異なる誘電率の誘電体層を使用するこ
とで、より特性の改善を行うことができる。例えば、上
層の誘電体層12として、誘電体層15,17よりも低
誘電率な材料を用いた場合、より広帯域かつ高効率な特
性が得られる。また、上層の誘電体層12として、誘電
体層15,17よりも高誘電率な材料を用いた場合、放
射導体11の小形化が実現される。
In the case of the antenna of this example, by using as the upper dielectric layer 12 a dielectric layer having a dielectric constant different from that of the dielectric layers 15 and 17 forming the triplate line, it is possible to further improve the characteristics. Can be improved. For example, when a material having a lower dielectric constant than the dielectric layers 15 and 17 is used as the upper dielectric layer 12, a wider band and higher efficiency characteristics can be obtained. Further, when a material having a higher dielectric constant than the dielectric layers 15 and 17 is used as the upper dielectric layer 12, the radiation conductor 11 can be downsized.

【0024】次に、本発明の平面アンテナの他の実施例
を、図3を参照して説明する。本例の場合には、その基
本的構成は図1の例と同様であり、放射導体21が誘電
体層22の上に配された第1層と、誘電体層25の上に
地導体23が配された第2層と、給電線路26が上面に
設けられた誘電体層27とその下面の地導体28で構成
される第3層の計3層で構成される。この場合、誘電体
層25の上の地導体23には、四角形の開口部24が形
成させてある。
Next, another embodiment of the planar antenna of the present invention will be described with reference to FIG. In the case of this example, the basic configuration is the same as that of the example of FIG. 1, and the radiation conductor 21 is arranged on the first layer on the dielectric layer 22, and the ground conductor 23 on the dielectric layer 25. Is arranged, and the feed line 26 is composed of a dielectric layer 27 provided on the upper surface and a third layer composed of a ground conductor 28 on the lower surface, a total of three layers. In this case, a square opening 24 is formed in the ground conductor 23 on the dielectric layer 25.

【0025】そして本例においては、上層の誘電体層2
2の厚さh21を、トリプレート線路の誘電体層25,2
7の厚さh22,h23と異なる厚さの誘電体層とする。ま
た、スタブ長ls2 の給電線路26に、その幅を細くし
たλg /4整合回路29を挿入する。これにより、給電
系と放射系の結合が弱くなる際の整合を可能にしてい
る。この構造において、トリプレート線路の誘電体層2
5,27の厚さを最適に設計することにより、給電線路
での損失を抑制することができ、アレー化に適した構造
であると共に、広帯域な特性を得ることができる。
In this example, the upper dielectric layer 2
2 has a thickness h 21 of the dielectric layers 25, 2 of the triplate line.
7. The dielectric layer has a thickness different from the thicknesses h 22 and h 23 of FIG. Further, a λg / 4 matching circuit 29 having a narrow width is inserted in the feed line 26 having the stub length ls 2 . This enables matching when the coupling between the feeding system and the radiation system becomes weak. In this structure, the dielectric layer 2 of the triplate line is used.
By optimally designing the thicknesses of 5, 27, it is possible to suppress the loss in the feed line, and it is possible to obtain a wide band characteristic while having a structure suitable for forming an array.

【0026】なお、この図3に示すように上層の誘電体
層の厚さを、トリプレート線路の誘電体層の厚さと変え
る場合においても、上述したように誘電率を変えるよう
にしても良いことは勿論である。
Even when the thickness of the upper dielectric layer is changed from the thickness of the dielectric layer of the triplate line as shown in FIG. 3, the dielectric constant may be changed as described above. Of course.

【0027】[0027]

【発明の効果】以上説明したように、本発明によれば以
下の効果が得られる。 ・ 放射系、給電系を独立して設計できるため、大幅に
設計性が改善される。 ・ 給電線路であるトリプレート線路の基板厚に関係な
く、アンテナ部の基板厚を厚くすることができるため、
アンテナの広帯域化が実現できる。
As described above, according to the present invention, the following effects can be obtained.・ Because the radiation system and the power feeding system can be designed independently, the designability is greatly improved.・ Because the substrate thickness of the antenna part can be made large regardless of the substrate thickness of the triplate line that is the feed line,
Wide band of the antenna can be realized.

【0028】また、開口部の上層の誘電体層として、給
電線路層と異なる誘電率を有する誘電体層を用いること
で、以下の効果が得られる。 ・ 従来と比較して、上層の誘電体層に低誘電率な材料
を用いた場合、アンテナの広帯域化、高効率化が実現さ
れる。 ・ 従来と比較して、上層の誘電体層に高誘電率な材料
を用いた場合、放射導体の小形化が実現される。
By using a dielectric layer having a dielectric constant different from that of the feed line layer as the dielectric layer above the opening, the following effects can be obtained. -Compared with the conventional method, when a material having a low dielectric constant is used for the upper dielectric layer, the antenna has a wider band and higher efficiency.・ Compared with the conventional technology, when a material with a high dielectric constant is used for the upper dielectric layer, the radiation conductor can be made smaller.

【0029】さらに、開口部の上層の誘電体層の厚さ
を、給電線路層と異なる厚さの誘電体層とすることで、
以下の効果が得られる。 ・ トリプレート線路内での高次モードの発生を抑制で
き、給電線路での損失の低減が可能となる。
Further, by making the thickness of the upper dielectric layer of the opening portion different from that of the feed line layer,
The following effects can be obtained. -The occurrence of higher-order modes in the triplate line can be suppressed and the loss in the power supply line can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例によるトリプレート線路給電
平面アンテナを示す分解斜視図である。
FIG. 1 is an exploded perspective view showing a triplate line-fed planar antenna according to an embodiment of the present invention.

【図2】一実施例によるトリプレート線路給電平面アン
テナの反射損の周波数特性を示す特性図である。
FIG. 2 is a characteristic diagram showing a frequency characteristic of reflection loss of a triplate line-fed planar antenna according to an example.

【図3】本発明の他の実施例によるトリプレート線路給
電平面アンテナを示す分解斜視図である。
FIG. 3 is an exploded perspective view showing a triplate line-fed planar antenna according to another embodiment of the present invention.

【図4】従来のトリプレート線路給電平面アンテナの一
例を示す分解斜視図である。
FIG. 4 is an exploded perspective view showing an example of a conventional triplate line feed plane antenna.

【図5】従来のスロット結合平面アンテナの一例を示す
分解斜視図である。
FIG. 5 is an exploded perspective view showing an example of a conventional slot-coupled plane antenna.

【符号の説明】[Explanation of symbols]

11,21 放射導体 12,15,17,22,25,27 誘電体層 13,18,23,28 地導体 14,24 開口部 16,26 給電線路 29 λg /4整合回路 11,21 Radiation conductor 12,15,17,22,25,27 Dielectric layer 13,18,23,28 Ground conductor 14,24 Opening 16,26 Feed line 29 λg / 4 matching circuit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 給電線路の上下を誘電体層を介して地導
体で遮蔽したトリプレート線路を給電に用いると共に、 上記トリプレート線路の上部地導体に開口部を設け、該
開口部の上層に誘電体層を介して放射導体を配置し、 上記開口部を上記放射導体よりも大きくした平面アンテ
ナ。
1. A triplate line in which the upper and lower sides of a feed line are shielded by a ground conductor through a dielectric layer is used for power feeding, and an opening is provided in an upper ground conductor of the triplate line, and an upper layer is formed on the opening. A planar antenna in which a radiation conductor is arranged via a dielectric layer and the opening is larger than the radiation conductor.
【請求項2】 上記開口部の上層の誘電体層として、給
電線路層と異なる誘電率を有する誘電体層を用いた請求
項1記載の平面アンテナ。
2. The planar antenna according to claim 1, wherein a dielectric layer having a dielectric constant different from that of the feed line layer is used as the dielectric layer above the opening.
【請求項3】 上記開口部の上層の誘電体層の厚さを、
給電線路層と異なる厚さの誘電体層とした請求項1又は
請求項2記載の平面アンテナ。
3. The thickness of the dielectric layer above the opening is
The planar antenna according to claim 1 or 2, wherein the dielectric layer has a thickness different from that of the feed line layer.
JP9769094A 1994-05-11 1994-05-11 Plane antenna Pending JPH07307612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9769094A JPH07307612A (en) 1994-05-11 1994-05-11 Plane antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9769094A JPH07307612A (en) 1994-05-11 1994-05-11 Plane antenna

Publications (1)

Publication Number Publication Date
JPH07307612A true JPH07307612A (en) 1995-11-21

Family

ID=14198956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9769094A Pending JPH07307612A (en) 1994-05-11 1994-05-11 Plane antenna

Country Status (1)

Country Link
JP (1) JPH07307612A (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10335926A (en) * 1997-06-05 1998-12-18 Mitsubishi Electric Corp Antenna system
JP2003298339A (en) * 2002-01-30 2003-10-17 Kyocera Corp Stacked dielectric antenna
JP2004349928A (en) * 2003-05-21 2004-12-09 Denki Kogyo Co Ltd Polarized wave antenna assembly
JP2005101923A (en) * 2003-09-25 2005-04-14 Advanced Telecommunication Research Institute International Planar array antenna device
JP2005536134A (en) * 2002-08-14 2005-11-24 アンテノヴァ・リミテッド Electrically small-bandwidth derivative antenna
US7340286B2 (en) 2003-10-09 2008-03-04 Lk Products Oy Cover structure for a radio device
US8847833B2 (en) 2009-12-29 2014-09-30 Pulse Finland Oy Loop resonator apparatus and methods for enhanced field control
US8866689B2 (en) 2011-07-07 2014-10-21 Pulse Finland Oy Multi-band antenna and methods for long term evolution wireless system
US8988296B2 (en) 2012-04-04 2015-03-24 Pulse Finland Oy Compact polarized antenna and methods
US9123990B2 (en) 2011-10-07 2015-09-01 Pulse Finland Oy Multi-feed antenna apparatus and methods
US9203154B2 (en) 2011-01-25 2015-12-01 Pulse Finland Oy Multi-resonance antenna, antenna module, radio device and methods
US9246210B2 (en) 2010-02-18 2016-01-26 Pulse Finland Oy Antenna with cover radiator and methods
US9350081B2 (en) 2014-01-14 2016-05-24 Pulse Finland Oy Switchable multi-radiator high band antenna apparatus
US9406998B2 (en) 2010-04-21 2016-08-02 Pulse Finland Oy Distributed multiband antenna and methods
WO2016120863A1 (en) * 2015-01-26 2016-08-04 Radar Obstacle Detection Ltd. Radio frequency antenna
US9450291B2 (en) 2011-07-25 2016-09-20 Pulse Finland Oy Multiband slot loop antenna apparatus and methods
US9461371B2 (en) 2009-11-27 2016-10-04 Pulse Finland Oy MIMO antenna and methods
US9484619B2 (en) 2011-12-21 2016-11-01 Pulse Finland Oy Switchable diversity antenna apparatus and methods
US9531058B2 (en) 2011-12-20 2016-12-27 Pulse Finland Oy Loosely-coupled radio antenna apparatus and methods
US9590308B2 (en) 2013-12-03 2017-03-07 Pulse Electronics, Inc. Reduced surface area antenna apparatus and mobile communications devices incorporating the same
US9634383B2 (en) 2013-06-26 2017-04-25 Pulse Finland Oy Galvanically separated non-interacting antenna sector apparatus and methods
US9647338B2 (en) 2013-03-11 2017-05-09 Pulse Finland Oy Coupled antenna structure and methods
US9673507B2 (en) 2011-02-11 2017-06-06 Pulse Finland Oy Chassis-excited antenna apparatus and methods
US9680212B2 (en) 2013-11-20 2017-06-13 Pulse Finland Oy Capacitive grounding methods and apparatus for mobile devices
US9722308B2 (en) 2014-08-28 2017-08-01 Pulse Finland Oy Low passive intermodulation distributed antenna system for multiple-input multiple-output systems and methods of use
US9761951B2 (en) 2009-11-03 2017-09-12 Pulse Finland Oy Adjustable antenna apparatus and methods
US9906260B2 (en) 2015-07-30 2018-02-27 Pulse Finland Oy Sensor-based closed loop antenna swapping apparatus and methods
US9917346B2 (en) 2011-02-11 2018-03-13 Pulse Finland Oy Chassis-excited antenna apparatus and methods
US9948002B2 (en) 2014-08-26 2018-04-17 Pulse Finland Oy Antenna apparatus with an integrated proximity sensor and methods
US9973228B2 (en) 2014-08-26 2018-05-15 Pulse Finland Oy Antenna apparatus with an integrated proximity sensor and methods
US9979078B2 (en) 2012-10-25 2018-05-22 Pulse Finland Oy Modular cell antenna apparatus and methods
US10069209B2 (en) 2012-11-06 2018-09-04 Pulse Finland Oy Capacitively coupled antenna apparatus and methods
US10079428B2 (en) 2013-03-11 2018-09-18 Pulse Finland Oy Coupled antenna structure and methods
JPWO2019026595A1 (en) * 2017-07-31 2020-07-02 株式会社村田製作所 Antenna module and communication device

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10335926A (en) * 1997-06-05 1998-12-18 Mitsubishi Electric Corp Antenna system
JP2003298339A (en) * 2002-01-30 2003-10-17 Kyocera Corp Stacked dielectric antenna
JP2005536134A (en) * 2002-08-14 2005-11-24 アンテノヴァ・リミテッド Electrically small-bandwidth derivative antenna
JP2004349928A (en) * 2003-05-21 2004-12-09 Denki Kogyo Co Ltd Polarized wave antenna assembly
JP2005101923A (en) * 2003-09-25 2005-04-14 Advanced Telecommunication Research Institute International Planar array antenna device
US7340286B2 (en) 2003-10-09 2008-03-04 Lk Products Oy Cover structure for a radio device
US9761951B2 (en) 2009-11-03 2017-09-12 Pulse Finland Oy Adjustable antenna apparatus and methods
US9461371B2 (en) 2009-11-27 2016-10-04 Pulse Finland Oy MIMO antenna and methods
US8847833B2 (en) 2009-12-29 2014-09-30 Pulse Finland Oy Loop resonator apparatus and methods for enhanced field control
US9246210B2 (en) 2010-02-18 2016-01-26 Pulse Finland Oy Antenna with cover radiator and methods
US9406998B2 (en) 2010-04-21 2016-08-02 Pulse Finland Oy Distributed multiband antenna and methods
US9203154B2 (en) 2011-01-25 2015-12-01 Pulse Finland Oy Multi-resonance antenna, antenna module, radio device and methods
US9917346B2 (en) 2011-02-11 2018-03-13 Pulse Finland Oy Chassis-excited antenna apparatus and methods
US9673507B2 (en) 2011-02-11 2017-06-06 Pulse Finland Oy Chassis-excited antenna apparatus and methods
US8866689B2 (en) 2011-07-07 2014-10-21 Pulse Finland Oy Multi-band antenna and methods for long term evolution wireless system
US9450291B2 (en) 2011-07-25 2016-09-20 Pulse Finland Oy Multiband slot loop antenna apparatus and methods
US9123990B2 (en) 2011-10-07 2015-09-01 Pulse Finland Oy Multi-feed antenna apparatus and methods
US9531058B2 (en) 2011-12-20 2016-12-27 Pulse Finland Oy Loosely-coupled radio antenna apparatus and methods
US9484619B2 (en) 2011-12-21 2016-11-01 Pulse Finland Oy Switchable diversity antenna apparatus and methods
US9509054B2 (en) 2012-04-04 2016-11-29 Pulse Finland Oy Compact polarized antenna and methods
US8988296B2 (en) 2012-04-04 2015-03-24 Pulse Finland Oy Compact polarized antenna and methods
US9979078B2 (en) 2012-10-25 2018-05-22 Pulse Finland Oy Modular cell antenna apparatus and methods
US10069209B2 (en) 2012-11-06 2018-09-04 Pulse Finland Oy Capacitively coupled antenna apparatus and methods
US9647338B2 (en) 2013-03-11 2017-05-09 Pulse Finland Oy Coupled antenna structure and methods
US10079428B2 (en) 2013-03-11 2018-09-18 Pulse Finland Oy Coupled antenna structure and methods
US9634383B2 (en) 2013-06-26 2017-04-25 Pulse Finland Oy Galvanically separated non-interacting antenna sector apparatus and methods
US9680212B2 (en) 2013-11-20 2017-06-13 Pulse Finland Oy Capacitive grounding methods and apparatus for mobile devices
US9590308B2 (en) 2013-12-03 2017-03-07 Pulse Electronics, Inc. Reduced surface area antenna apparatus and mobile communications devices incorporating the same
US9350081B2 (en) 2014-01-14 2016-05-24 Pulse Finland Oy Switchable multi-radiator high band antenna apparatus
US9948002B2 (en) 2014-08-26 2018-04-17 Pulse Finland Oy Antenna apparatus with an integrated proximity sensor and methods
US9973228B2 (en) 2014-08-26 2018-05-15 Pulse Finland Oy Antenna apparatus with an integrated proximity sensor and methods
US9722308B2 (en) 2014-08-28 2017-08-01 Pulse Finland Oy Low passive intermodulation distributed antenna system for multiple-input multiple-output systems and methods of use
US9899741B2 (en) 2015-01-26 2018-02-20 Rodradar Ltd. Radio frequency antenna
WO2016120863A1 (en) * 2015-01-26 2016-08-04 Radar Obstacle Detection Ltd. Radio frequency antenna
US10389036B2 (en) 2015-01-26 2019-08-20 Rodradar Ltd. Radio frequency antenna and monitor
US10651561B2 (en) 2015-01-26 2020-05-12 Rodradar Ltd. Radio frequency antenna and monitor
US9906260B2 (en) 2015-07-30 2018-02-27 Pulse Finland Oy Sensor-based closed loop antenna swapping apparatus and methods
JPWO2019026595A1 (en) * 2017-07-31 2020-07-02 株式会社村田製作所 Antenna module and communication device
US11024955B2 (en) 2017-07-31 2021-06-01 Murata Manufacturing Co., Ltd. Antenna module and communication apparatus

Similar Documents

Publication Publication Date Title
JPH07307612A (en) Plane antenna
US7847737B2 (en) Antenna apparatus
CN107134653B (en) Planar compact slot antenna array based on substrate integrated waveguide resonant cavity
CN113346231B (en) Antenna and wearable equipment
KR20040077052A (en) Wideband slot antenna and slot array antenna using the same
KR100449396B1 (en) Patch antenna and electronic equipment using the same
CN107134652A (en) Circular polarisation slot antenna based on triangle substrate integral waveguide resonator
JP2008048090A (en) Patch antenna
JP3628668B2 (en) Multi-frequency dipole antenna device
CN214043990U (en) Index gradual change type slotted antenna and intelligent terminal
CN111555025A (en) Slot antenna
JP2002524953A (en) antenna
CN107196069B (en) Compact substrate integrated waveguide back cavity slot antenna
CN109037932B (en) Broadband multi-patch antenna
CN109560388A (en) Millimeter wave broadband circular polarized antenna based on substrate integration wave-guide loudspeaker
EP2482383A2 (en) Microstrip antenna
WO2023221651A1 (en) Dual-polarized radiation unit, antenna, and antenna system
CN114824774B (en) Broadband high-isolation dual-polarization super-surface antenna
KR100904638B1 (en) Microstrip Antenna and Array Antenna Feeding Solution
KR20010068154A (en) Dual Circular Polarized Aperture Coupled Microstrip Patch Antenna for Using The Wide Band
CN110416722B (en) Equilateral triangle ring structure gap broadband antenna
KR100532587B1 (en) Linearly polarized microstrip patch array antennas with metallic strips on a superstrate to increase an antenna gain
JPH05145332A (en) Lane antenna
CN218770055U (en) Low-profile circularly polarized radiation antenna and corresponding UWB positioning system
CN219833013U (en) Broadband series-fed low-sidelobe microstrip array structure