JPS6280967A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS6280967A
JPS6280967A JP60219660A JP21966085A JPS6280967A JP S6280967 A JPS6280967 A JP S6280967A JP 60219660 A JP60219660 A JP 60219660A JP 21966085 A JP21966085 A JP 21966085A JP S6280967 A JPS6280967 A JP S6280967A
Authority
JP
Japan
Prior art keywords
gas
fuel
flow
oxidizing gas
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60219660A
Other languages
Japanese (ja)
Other versions
JPH0646571B2 (en
Inventor
Kenji Watanabe
健次 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP60219660A priority Critical patent/JPH0646571B2/en
Publication of JPS6280967A publication Critical patent/JPS6280967A/en
Publication of JPH0646571B2 publication Critical patent/JPH0646571B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To make temperature distribution uniform and make current density distribution uniform by making oxidizing gas and fuel gas which flow with a separator interposed in a form of parallel flow, and making oxidizing gas and fuel gas which flow with an electrolyte plate interposed in a form of counter flow. CONSTITUTION:Oxidizing gas and fuel gas supply passage holes 9, 10 and exhaust passage holes 11, 12 are installed on one side of the peripheries of an electrolyte plate 1 and a separator 4 and the other side of them respectively. The supply passage hole and exhaust passage hole of oxidizing gas and the supply passage hole and exhaust passage hole of fuel gas which are installed in the periphery of each separator in every adjacent step so as to form counter flow are alternately opened in gas passages in the center of the separator so that oxidizing gas and fuel gas which flow with the separator interposed form parallel flow, and oxidizing gas and fuel gas which flow with the electrolyte plate interposed form counter flow. Thereby, optimum temperature is uniformly kept on the whole surface of the electrolyte plate and the composition of fuel gas and oxidizing gas is kept uniform. Therefore, the whole surface of the electrolyte plate can be effectively utilized to obtain high current density, and the high performance of the fuel cell can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は燃料の有する化学エネルギーを直接電気エネル
ギーに変換させるエネルギ一部門で用いる燃料電池に関
するもので、特に、電解質板の両面を酸素極と燃料極で
挾み、酸素極側に酸化ガスを、燃料極側に燃料ガスをそ
れぞれ流せるようにするガスの出入口部に特徴をもたせ
た内部マニホールド型の燃料電池に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a fuel cell used in the energy sector that directly converts the chemical energy of fuel into electrical energy. This invention relates to an internal manifold type fuel cell which is sandwiched between fuel electrodes and has a characteristic gas inlet/outlet portion that allows oxidizing gas to flow to the oxygen electrode side and fuel gas to the fuel electrode side.

[従来の技術] 燃料電池は、電解質板を酸素極と燃料極とにζり両面か
ら挾み、各電極に酸化ガスと燃料ガスを供給することに
より酸素極と燃料極との間で発生する電位差により発電
が行われるようにしたユニットを、セパレータを介して
複数層に積層させた構成としておる。
[Prior art] In a fuel cell, an electrolyte plate is sandwiched between an oxygen electrode and a fuel electrode, and oxidizing gas and fuel gas are supplied to each electrode, thereby generating gas between the oxygen electrode and the fuel electrode. The unit has a structure in which a plurality of units that generate power by a potential difference are laminated in multiple layers with separators interposed in between.

従来、かかる燃料電池において、電解質板を挾んで酸素
極側に供給する酸化ガスと燃料極側に供給する燃料ガス
の流れ形式によって、直交流型、対向流型、並行流型の
燃料電池に分けられていた。
Conventionally, such fuel cells are divided into cross-flow type, counter-flow type, and parallel-flow type fuel cells, depending on the flow type of oxidizing gas supplied to the oxygen electrode side and fuel gas supplied to the fuel electrode side with an electrolyte plate sandwiched between them. It was getting worse.

そのうちの並行流型燃料電池は、第4図に示す如く、電
解質板1を上下両面から酸素極2と燃料極3とにより挾
んでなるユニットを、セパレータ4を介して積層させた
構成において、各層の酸素極2側に供給する酸化ガスO
Gと燃料極側3に供給される燃料ガス「Gとが電解質板
1を挾んで同一方向へ並行に流れるようにセパレータ4
のガス通路5,6の向きを定めると共に、該セパレータ
4を挾んで流れる酸化ガスOGと燃料ガスFGも上記と
同一の方向へ並行して流れるようにしである。
As shown in FIG. 4, the parallel flow fuel cell has a structure in which a unit consisting of an electrolyte plate 1 sandwiched between an oxygen electrode 2 and a fuel electrode 3 from both upper and lower sides is laminated with a separator 4 in between. Oxidizing gas O supplied to the oxygen electrode 2 side of
The separator 4 is arranged so that G and the fuel gas G supplied to the fuel electrode side 3 sandwich the electrolyte plate 1 and flow in parallel in the same direction.
The directions of the gas passages 5 and 6 are determined, and the oxidizing gas OG and fuel gas FG flowing between the separators 4 are also made to flow in parallel in the same direction as above.

そのために、従来の並行流型燃料電池では、第5図及び
第6図に一例を示す如く、電解質板1とセパレータ4、
及び電極2,3がセパレータ4により電解質板1へ押し
付は過ぎるのを防止すると共に酸化ガスOG及び燃料ガ
スFGをセパレータ4両面に沿い流すようにするための
酸素極側スペーサ7、燃料極側スペーサ8の各周辺部の
一側に、酸化ガスOGの供給流路孔9と燃料ガスFGの
供給流路孔10のみを適宜の間隔で交互に設けると共に
、上記周辺部の他側に、酸化ガスOGの排出流路孔11
と燃料ガスFGの排出流路孔12のみを適宜の間隔で交
互に設けている。更に、各層において各セパレータ4の
両面に酸化ガスOGと燃料ガスFGとを供給して排出で
きるようにするため、各層の酸素極側スペーサ7に設け
られたすべての酸化ガス供給流路孔9及び各酸化ガス排
出流路孔11の部分に切欠13.14を設け、酸素極側
スペーサ7の個所で供給側の酸化ガスOGのみがすべて
セパレータ4のガス通路5に導かれた後、排出流路孔1
1に流出させられるようにしである。同様に各位の燃料
極側スペーサ8に設けられたすべての燃料ガス供給通路
孔10及び各燃料排出流路孔12の部分には切欠15.
1Bを設け、燃料極側スペーサ7の個所では燃料ガスF
Gのみがすべての供給流路孔10からすべての排出流路
孔12へ流されるようにしである。
For this reason, in a conventional parallel flow fuel cell, as shown in FIGS. 5 and 6, an electrolyte plate 1, a separator 4,
and a spacer 7 on the oxygen electrode side for preventing the electrodes 2 and 3 from being pressed against the electrolyte plate 1 by the separator 4 and for allowing the oxidizing gas OG and fuel gas FG to flow along both sides of the separator 4, and a spacer 7 on the fuel electrode side. On one side of each peripheral part of the spacer 8, only the supply passage holes 9 for oxidizing gas OG and the supply passage holes 10 for fuel gas FG are provided alternately at appropriate intervals, and on the other side of the peripheral part, Gas OG discharge channel hole 11
and fuel gas FG exhaust passage holes 12 are provided alternately at appropriate intervals. Furthermore, in order to supply and discharge the oxidizing gas OG and fuel gas FG to both sides of each separator 4 in each layer, all the oxidizing gas supply channel holes 9 and Notches 13 and 14 are provided in each oxidant gas discharge passage hole 11, and after all of the oxidant gas OG on the supply side is guided to the gas passage 5 of the separator 4 at the oxygen electrode side spacer 7, the discharge passage is Hole 1
It is made to be drained to 1. Similarly, all fuel gas supply passage holes 10 and each fuel discharge passage hole 12 provided in each fuel electrode side spacer 8 have notches 15.
1B, and the fuel gas F is provided at the fuel electrode side spacer 7.
Only G flows from all supply passage holes 10 to all discharge passage holes 12.

[発明が解決しようとする問題点] ところが、並行流型燃料電池では、酸化ガスOGと燃料
ガスFGがセパレータ4及び電解質板1を挾んで並行に
供給側から排出側へ流れる間に、セパレータ4を介して
酸化ガスと燃料ガスとの熱交換によって両ガスの温度差
はほとんどなく、流れ方向に進むに従って電解質板1か
らの発熱によって電解質板(電極もほぼ同一温度)、酸
化ガス、燃料ガス及びセパレータの各温度は一環に増加
し、電wl−質板1の全平面では、両ガスの排出側に高
温部が発生し、両ガスの入口側では温度が低く、排出側
で温度が高いという温度分布となる。これに伴ない発電
電流密度分布も電解質板全面で均一化できず、効率が低
下する。
[Problems to be Solved by the Invention] However, in the parallel flow fuel cell, while the oxidizing gas OG and the fuel gas FG sandwich the separator 4 and the electrolyte plate 1 and flow in parallel from the supply side to the discharge side, the separator 4 There is almost no temperature difference between the two gases due to heat exchange between the oxidizing gas and the fuel gas. Each temperature of the separator increases uniformly, and on the entire plane of the electrolyte plate 1, a high temperature area occurs on the discharge side of both gases, the temperature is low on the inlet side of both gases, and the temperature is high on the discharge side. Temperature distribution. As a result, the power generation current density distribution cannot be made uniform over the entire surface of the electrolyte plate, resulting in a decrease in efficiency.

上記のように電解質板の入口側と排出側で大きな温度勾
配が生ずると、電解質板の熱応力が大きく、又、寿命短
縮する。
As described above, when a large temperature gradient occurs between the inlet side and the discharge side of the electrolyte plate, the thermal stress of the electrolyte plate becomes large and the life of the electrolyte plate is shortened.

そこで、本発明は、かかる問題を解消するため、電解質
板全平面において温度差が生じることを少なくして温度
分布の均一化を図ると共に電流密度分布を電解質板の全
平面で均一化した高い電池性能が得られるようにしよう
とするものである。
Therefore, in order to solve this problem, the present invention aims to make the temperature distribution uniform by reducing the temperature difference on the entire surface of the electrolyte plate, and to make the current density distribution uniform on the entire surface of the electrolyte plate. The aim is to improve performance.

[問題点を解決するための手段] 本発明は、電解質板の両面を酸素極と燃料極で挾むよう
に構成された単セルの酸素極側に酸化ガスを、又、燃料
極側に燃料ガスを流すようにしたユニットを、セパレー
タを介して積層させた燃料電池において、上記電解質板
、セパレータの周辺部一側と該一側と対向する他側に、
それぞれ酸化ガス及び燃料ガスの各供給流路孔と排出流
路孔とを設け、且つ上記セパレータを挾んで流れる酸化
ガスと燃料ガスは並行流となり且つ上記電解質板を挾ん
で流れる酸化ガスと燃料ガスは対向流となるよう隣接す
る各段ごとに各セパレータの周辺部に設けられた各々相
対向する酸化ガスの供給流路孔及び排出流路孔と燃料ガ
スの供給流路孔及び排出流路孔とをセパレータ中央部の
ガス通路に交互に開口させた構成とする。
[Means for Solving the Problems] The present invention provides an oxidizing gas to the oxygen electrode side and a fuel gas to the fuel electrode side of a single cell configured such that both sides of an electrolyte plate are sandwiched between an oxygen electrode and a fuel electrode. In a fuel cell in which units configured to flow are stacked via a separator, the electrolyte plate, one side of the peripheral portion of the separator, and the other side opposite to the one side,
Supply passage holes and discharge passage holes are respectively provided for oxidizing gas and fuel gas, and the oxidizing gas and fuel gas flowing through the separator become parallel flows, and the oxidizing gas and fuel gas flowing through the electrolyte plate between them. are the oxidizing gas supply passage hole and discharge passage hole, and the fuel gas supply passage hole and discharge passage hole, which are provided at the periphery of each separator in each adjacent stage so as to provide counterflow. and are alternately opened to the gas passage in the center of the separator.

[作  用] 電解質板を挾んで流れる酸化ガスと燃料ガスは対向する
位置の各供給流路孔からセパレータに沿って流されて対
向流となる。これにより酸化ガスと燃料ガスの組成比を
電解質板の全平面で均一に保つことができ、電解質板の
全面をその最高性能で利用できて高い電流密度が得られ
る。又、セパレータを挾んで流れる酸化ガスと燃料ガス
は並行流となるので電解質板全面を最適な温度に均一化
させることができる。
[Function] The oxidizing gas and the fuel gas flowing across the electrolyte plate are flown along the separator from the respective supply flow passage holes at opposing positions to form counterflows. As a result, the composition ratio of oxidizing gas and fuel gas can be kept uniform over the entire surface of the electrolyte plate, and the entire surface of the electrolyte plate can be utilized at its maximum performance, resulting in a high current density. In addition, since the oxidizing gas and the fuel gas flowing through the separator flow in parallel, the entire surface of the electrolyte plate can be kept at an optimal temperature.

[実 施 例] 以下、本発明の実施例を図面を参照して説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例を示すもので、第5図及び第
6図と同様に電極に対応する中央部を切り後いて空間部
としである酸素極スペーサ7と燃料極側スペーサ8を電
解質板1とセパレータ4との間に介在させて使用し、セ
パレータ4の中央部の凹凸が電極2,3を強く押し付け
ることがないようにしである燃料電池において、各層の
電解質板1、セパレータ4、酸素極側スペーサ7a、7
b及び燃料極側スペーサ8a、8bのそれぞれの周辺部
の一側に、酸化ガスの供給流路孔9及び排出流路孔11
、燃料ガスの供給通路孔10及び排出流路孔12とをそ
れぞれ適宜間隔で設けると共に、相対向する周辺部の弛
側にも、上記各流路孔9,11.10.12を適宜間隔
で設ける。
FIG. 1 shows an embodiment of the present invention, in which an oxygen electrode spacer 7 and a fuel electrode side spacer 8 are formed by cutting out the central part corresponding to the electrode to form a space, similar to FIGS. 5 and 6. In a fuel cell, the electrolyte plate 1 and the separator 4 of each layer are interposed between the electrolyte plate 1 and the separator 4 to prevent the unevenness of the central part of the separator 4 from pressing the electrodes 2 and 3 strongly. 4. Oxygen electrode side spacer 7a, 7
An oxidizing gas supply channel hole 9 and a discharge channel hole 11 are provided on one side of the peripheral portion of each of the spacers 8a and 8b on the fuel electrode side.
, fuel gas supply passage holes 10 and discharge passage holes 12 are provided at appropriate intervals, and the above-mentioned flow passage holes 9, 11, 10, 12 are also provided at appropriate intervals on the loose sides of the opposing peripheral parts. establish.

上記セパレータ4を挾んで流れる酸化ガス0G−1,0
G−2と燃料ガスFG−1,FG−2が並行流となるよ
うにし且つ電解質板1を挾んで流れる酸化ガス0G−1
,0G−2と燃料ガスFG−1,FG−2とは互に反対
方向の流れとなる対向流となるようにそれぞれガスが流
せるようにするため、電解質板1の上方に直上方に位置
する酸素極側スペーサ7aの周辺部一側に設けられた酸
化ガス排出流路孔11のみを中央部の空間に開口させる
ための切欠13を設けると共に、相対する周辺部他側に
設けられた燃料ガス排出流路孔12のみを中央部の空間
に開口する切欠15を設けると共に、相対する周辺部他
側に設けられた燃料ガス供給流路孔10のみが中央部の
空間に開口する切欠16を設ける。
Oxidizing gas flowing between the separators 4 0G-1,0
Oxidizing gas 0G-1 flows in such a way that G-2 and fuel gases FG-1 and FG-2 flow in parallel and sandwich the electrolyte plate 1.
, 0G-2 and the fuel gases FG-1 and FG-2 are located directly above the electrolyte plate 1 so that the gases can flow in opposite directions. A notch 13 is provided for opening only the oxidizing gas discharge passage hole 11 provided on one side of the peripheral portion of the oxygen electrode side spacer 7a into the space in the center, and a cutout 13 is provided for opening only the oxidizing gas discharge passage hole 11 provided on one side of the peripheral portion of the oxygen electrode side spacer 7a, and a cutout 13 is provided on the other side of the opposing peripheral portion. A notch 15 is provided in which only the discharge passage hole 12 opens into the central space, and a notch 16 is provided in which only the fuel gas supply passage hole 10 provided on the other side of the opposing peripheral portion opens into the central space. .

一方、電解質板1の直下方に位置する燃料極側スペーサ
8bでは、周辺一側に設けられている燃料ガス供給流路
孔10のみを中央部の空間に開口させる切欠16を設け
ると共に、相対する周辺部他側に設けられている。燃料
ガス排出流路孔12のみを中央部の空間に開口させる切
欠15を設け、又、上記燃料極側スペーサ8bの下方に
位置する酸素極側スペーサ7bでは、周辺部一側に設け
られている酸化ガス供給流路孔9のみを中央部の空間に
開口させる切欠14を設けると共に、相対する周辺部他
側に設けられている酸化ガス排出流路孔11のみを中央
部の空間に開口させる切欠13を設ける。
On the other hand, in the fuel electrode side spacer 8b located directly below the electrolyte plate 1, a notch 16 is provided to open only the fuel gas supply passage hole 10 provided on one side of the periphery to the space in the center, and It is located on the other side of the periphery. A notch 15 is provided to open only the fuel gas discharge passage hole 12 into the central space, and a notch 15 is provided on one side of the periphery of the oxygen electrode side spacer 7b located below the fuel electrode side spacer 8b. A notch 14 is provided that opens only the oxidizing gas supply flow path hole 9 into the space in the center, and a notch that opens only the oxidant gas discharge flow path hole 11 provided on the other side of the opposing periphery into the space in the center. 13 will be provided.

上記各酸化ガス供給流路孔9及び排出流路孔11と燃料
ガス供給流路孔10及び排出流路孔12には、燃料電池
の外部に配した配管に接続される。
Each of the oxidizing gas supply passage hole 9 and discharge passage hole 11 and the fuel gas supply passage hole 10 and discharge passage hole 12 are connected to piping arranged outside the fuel cell.

電解質板1、セパレータ4、スペーサ7a、7b 。Electrolyte plate 1, separator 4, spacers 7a, 7b.

8a、8bの各周辺部の相対向する位置に設けられてい
る各酸化ガス供給流路孔9に外部から酸化ガスを導入し
、又、各燃料ガス供給流路孔10に外部から燃料ガスを
導入すると、成る段のセパレータ4を挾んで流れる酸化
ガス0G−1又は0G−2と燃料ガスFG−1又はFG
−2は矢印で示す如く同一方向に流れる並流となるが、
電解質板1を挾んで流れる酸化ガス0G−1と燃料ガス
[G−1あるいは0G−2とFG−2は互に反対方向に
流れる対向流となる。すなわち、上記両ガスの流れ方向
は、ガスの流れのみを示す第2図のようになる。これに
より、電解質板1の両面では酸化ガスと燃料ガスとが対
向流となることから、燃料ガスと酸化ガスの組成比を電
解質板1の全平面で均一化させることができ、又、セパ
レータ4を挾んで酸化ガス0G−1又は0G−2及び燃
料ガスFG−2又はFG−1が並行流となるので電解質
板1全面を最適な温度に均一化させることができる。こ
のように、本発明では、対向流の特長と並行流の特長を
同時に得られて第3図に示す如き温度分布、電流密度分
布となる。すなわち、1つのセパレータ4を挾んで流れ
る酸化ガス0G−2と燃料ガスFG−1は入口部aから
曲線■で示す如く一様に昇温される。一方、隣接する他
のセパレータ4を挾んで流れる酸化ガス0G−1と燃料
ガスFG−2は、排出側から入口部すに向けて曲線■で
示す如く逆に流れ方向距離Xにつれて一様に降温して行
く。
Oxidizing gas is introduced from the outside into each of the oxidizing gas supply passage holes 9 provided at opposing positions in the peripheral portions of 8a and 8b, and fuel gas is introduced from the outside into each of the fuel gas supply passage holes 10. When introduced, oxidizing gas 0G-1 or 0G-2 and fuel gas FG-1 or FG flow between the separators 4 of the stages.
-2 is a parallel current flowing in the same direction as shown by the arrow, but
The oxidizing gas 0G-1 and the fuel gas [G-1, or 0G-2 and FG-2, which flow across the electrolyte plate 1, form countercurrents flowing in opposite directions. That is, the flow directions of both of the gases are as shown in FIG. 2, which only shows the flow of the gases. As a result, the oxidizing gas and the fuel gas flow in opposite directions on both sides of the electrolyte plate 1, so that the composition ratio of the fuel gas and the oxidizing gas can be made uniform over the entire plane of the electrolyte plate 1, and the separator 4 Since the oxidizing gas 0G-1 or 0G-2 and the fuel gas FG-2 or FG-1 flow in parallel across the electrolyte plate 1, the entire surface of the electrolyte plate 1 can be uniformized to an optimal temperature. As described above, in the present invention, the features of countercurrent flow and the features of parallel flow can be obtained at the same time, resulting in the temperature distribution and current density distribution as shown in FIG. That is, the oxidizing gas 0G-2 and the fuel gas FG-1 flowing through one separator 4 are uniformly heated from the inlet portion a as shown by the curve 2. On the other hand, the temperature of the oxidizing gas 0G-1 and the fuel gas FG-2 flowing through another adjacent separator 4 decreases uniformly as the flow direction distance X increases from the discharge side to the inlet part, as shown by the curve I'll go.

電解質板1の温度は、電解質板1を挾んで流れる酸化ガ
ス0G−1と燃料ガスFG−1の温度が対向して流れる
ので、両ガスの平均温度に近くなり、はぼ平坦な温度分
布を得ることができる。
Since the temperatures of the oxidizing gas 0G-1 and the fuel gas FG-1, which flow across the electrolyte plate 1, flow opposite each other, the temperature of the electrolyte plate 1 becomes close to the average temperature of both gases, resulting in a nearly flat temperature distribution. Obtainable.

電流密度は、曲線■で示す如く、電解質板1の温度が均
一であり、且つガス組成比がほぼ均一であることからほ
とんど電解質板温度と同一の平坦化された分布となる。
As shown by curve (2), the current density has a flattened distribution that is almost the same as the electrolyte plate temperature because the temperature of the electrolyte plate 1 is uniform and the gas composition ratio is almost uniform.

上記においては、酸化ガス0G−1,0G−2、燃料ガ
スFG−1,FG−2の入口温度を適当に選ぶことで電
解質板1の全面がその最適作動温度に維持されるので、
全面での発電量が高い値に維持できる。又、電解質板1
、酸素極2、燃料極3及びセパレータ4が第3図に示す
如く全面でほぼ均一温度となり、熱応力が発生しにくく
耐久性のある電池が得られる。
In the above, the entire surface of the electrolyte plate 1 is maintained at its optimum operating temperature by appropriately selecting the inlet temperatures of the oxidizing gases 0G-1, 0G-2 and the fuel gases FG-1, FG-2.
The amount of power generated across the entire area can be maintained at a high value. Also, electrolyte plate 1
As shown in FIG. 3, the temperature of the oxygen electrode 2, fuel electrode 3, and separator 4 is almost uniform over the entire surface, and a durable battery is obtained in which thermal stress is less likely to occur.

なお、本発明は上記実施例のみに限定されるものではな
い。たとえば、スペーサ7a、 7b、 8a。
Note that the present invention is not limited to the above embodiments. For example, spacers 7a, 7b, 8a.

8bを用いて、これに切欠13.14.15.16を設
けてガスがセパレータ4のガス通路と、各ガスの供給流
路孔及び排出流路孔とを連通させるようにした場合を例
示したが、セパレータ4自体に切欠溝を設けてガスの各
流路孔とセパレータのガス通路とを連通させるようにし
てもよく、又、切欠13.14.15.16の各形状、
数は図示以外のものでもよい。
8b is used, and cutouts 13, 14, 15, and 16 are provided in this so that the gas communicates with the gas passage of the separator 4 and the supply channel hole and the discharge channel hole of each gas. However, a notch groove may be provided in the separator 4 itself to communicate each gas passage hole with the gas passage of the separator, and each shape of the notch 13, 14, 15, 16
The numbers may be other than those shown.

[発明の効果] 以上述べた如く本発明の燃料電池によれば、セパレータ
に沿って流される酸化ガスと燃料ガスの流れ方向を各段
で異なるように規制するため、各ガスの供給通路孔と排
出流路孔を定め、常にセパレータを挾んで流れる酸化ガ
スと燃料ガスは並行流となり、電解質板を挾んで流れる
酸化ガスと燃料ガスは対向流となるようにしであるので
、次の如き優れた効果を秦し得る。
[Effects of the Invention] As described above, according to the fuel cell of the present invention, in order to regulate the flow direction of the oxidizing gas and the fuel gas flowing along the separator differently in each stage, the supply passage holes for each gas and The exhaust flow path holes are defined so that the oxidizing gas and fuel gas that always flow between the separators flow in parallel, and the oxidizing gas and fuel gas that flow between the electrolyte plates flow in opposite directions. The effect can be reduced.

(1)電解質板がその全面で最適温度に均一化され、且
つ燃料ガスと酸化ガスの組成比を均一に保つことができ
るので、電解質板の全面をその最高性能で利用でき、高
い電流密度が得られて燃料電池の高性能化が図れる。
(1) Since the electrolyte plate can be kept at an optimal temperature over its entire surface, and the composition ratio of fuel gas and oxidizing gas can be kept uniform, the entire surface of the electrolyte plate can be used at its maximum performance, resulting in high current density. As a result, the performance of fuel cells can be improved.

(n)  電解質板から生ずる反応熱の除去に対して燃
料ガスと酸化ガスの流量を反応に必要な最小流量に抑え
ることができるので、動力を小さくでき高効率化が図れ
る。
(n) Since the flow rate of fuel gas and oxidizing gas can be suppressed to the minimum flow rate necessary for the reaction in order to remove the reaction heat generated from the electrolyte plate, the power can be reduced and high efficiency can be achieved.

(2)電流密度が均一であるため、電解質板の損耗が局
部的に大きくならず、電池の長寿命化が図れる。
(2) Since the current density is uniform, wear and tear on the electrolyte plate does not increase locally, and the life of the battery can be extended.

OV)  電池を構成する電解質板、電極、セパレータ
の温度分布が小さいため熱応力が発生しにくいと共に、
ホットスポットが電解質板に生じにくいため。電解質板
の破損等が起こりにくく、電池の性能の安定化、信頼性
が高い。
OV) Because the temperature distribution of the electrolyte plates, electrodes, and separators that make up the battery is small, thermal stress is less likely to occur, and
Because hot spots are less likely to occur on the electrolyte plate. Breakage of the electrolyte plate is less likely to occur, and battery performance is stabilized and reliability is high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す説明用斜視図、第2図
は本発明により得られるガスの流れを示す斜視図、第3
図は第2図の如きガスの流れ型式の場合の温度、電流密
度の分布を示す図、第4図は並行流型燃料電池のガス流
れを示す斜視図、第5図は第4図の如きガス流れを実現
する従来のガス出入口部の一例を示す斜視図、第6図は
従来の並行流型燃料電池の断面図である。 1は電解質板、2は酸素極、3は燃料極、4はセパレー
タ、7.7a、 7bは酸素極側スペーサ、8、8a、
 8bは燃料極側スペーサ、9は酸化ガス供給流路孔、
10は燃料ガス供給流路孔、11は酸化ガス排出流路孔
、12は燃料ガス排出流路孔を示す。
FIG. 1 is an explanatory perspective view showing one embodiment of the present invention, FIG. 2 is a perspective view showing the flow of gas obtained by the present invention, and FIG.
The figure shows the distribution of temperature and current density in the case of the gas flow type shown in Fig. 2, Fig. 4 is a perspective view showing the gas flow of a parallel flow type fuel cell, and Fig. 5 shows the distribution of the gas flow in the case of the gas flow type shown in Fig. 4. FIG. 6 is a perspective view showing an example of a conventional gas inlet/outlet section for realizing gas flow, and FIG. 6 is a sectional view of a conventional parallel flow fuel cell. 1 is an electrolyte plate, 2 is an oxygen electrode, 3 is a fuel electrode, 4 is a separator, 7.7a, 7b is an oxygen electrode side spacer, 8, 8a,
8b is a fuel electrode side spacer, 9 is an oxidizing gas supply channel hole,
Reference numeral 10 indicates a fuel gas supply channel hole, 11 indicates an oxidizing gas discharge channel hole, and 12 indicates a fuel gas discharge channel hole.

Claims (1)

【特許請求の範囲】[Claims] 1)電解質板の両面を酸素極と燃料極で挾むように構成
された単セルの酸素極側に酸化ガスを、又、燃料極側に
燃料ガスを流すようにしたユニットを、セパレータを介
して積層させた燃料電池において、上記電解質板、セパ
レータの周辺部一側と該一側と対向する他側に、それぞ
れ酸化ガス及び燃料ガスの各供給流路孔と排出流路孔と
を設け、且つ上記セパレータを挾んで流れる酸化ガスと
燃料ガスは並行流となり且つ上記電解質板を挾んで流れ
る酸化ガスと燃料ガスは対向流となるよう隣接する各段
ごとに各セパレータの周辺部に設けられた各々相対向す
る酸化ガスの供給流路孔及び排出流路孔と燃料ガスの供
給流路孔及び排出流路孔とをセパレータ中央部のガス通
路に交互に開口させたことを特徴とする燃料電池。
1) A unit in which oxidizing gas flows to the oxygen electrode side and fuel gas flows to the fuel electrode side of a single cell configured so that both sides of an electrolyte plate are sandwiched between an oxygen electrode and a fuel electrode are laminated via a separator. In the fuel cell, supply passage holes and discharge passage holes for oxidizing gas and fuel gas are respectively provided on one side of the peripheral portion of the electrolyte plate and the separator and on the other side opposite to the one side, and the above-mentioned The oxidizing gas and fuel gas flowing between the separators become parallel flows, and the oxidizing gas and fuel gas flowing between the electrolyte plates become counter-flows. 1. A fuel cell characterized in that supply and discharge passage holes for oxidizing gas and supply and discharge passage holes for fuel gas are alternately opened in a gas passage in the center of a separator.
JP60219660A 1985-10-02 1985-10-02 Fuel cell Expired - Lifetime JPH0646571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60219660A JPH0646571B2 (en) 1985-10-02 1985-10-02 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60219660A JPH0646571B2 (en) 1985-10-02 1985-10-02 Fuel cell

Publications (2)

Publication Number Publication Date
JPS6280967A true JPS6280967A (en) 1987-04-14
JPH0646571B2 JPH0646571B2 (en) 1994-06-15

Family

ID=16738978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60219660A Expired - Lifetime JPH0646571B2 (en) 1985-10-02 1985-10-02 Fuel cell

Country Status (1)

Country Link
JP (1) JPH0646571B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01112673A (en) * 1987-10-27 1989-05-01 Ishikawajima Harima Heavy Ind Co Ltd Cooling method for fuel cell
EP0369059A1 (en) 1987-05-08 1990-05-23 Ishikawajima-Harima Heavy Industries Co., Ltd. Method of ameliorating temperature distribution of a fuel cell
WO2008071138A1 (en) * 2006-12-11 2008-06-19 Staxera Gmbh Cathode air guidance in a fuel cell stack

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0369059A1 (en) 1987-05-08 1990-05-23 Ishikawajima-Harima Heavy Industries Co., Ltd. Method of ameliorating temperature distribution of a fuel cell
JPH01112673A (en) * 1987-10-27 1989-05-01 Ishikawajima Harima Heavy Ind Co Ltd Cooling method for fuel cell
WO2008071138A1 (en) * 2006-12-11 2008-06-19 Staxera Gmbh Cathode air guidance in a fuel cell stack
EP1936724A1 (en) * 2006-12-11 2008-06-25 Staxera GmbH Cathode air duct in a fuel cell stack

Also Published As

Publication number Publication date
JPH0646571B2 (en) 1994-06-15

Similar Documents

Publication Publication Date Title
JP2569550B2 (en) Fuel cell temperature distribution improvement method
US7943266B2 (en) SOFC seal and cell thermal management
KR100798451B1 (en) Fuel cell separator and fuel cell stack and reactant gas control method thereof
JPS6276260A (en) Separator for fuel cell
JP2570771B2 (en) Fuel cell cooling method
JPS6280967A (en) Fuel cell
JPS62163264A (en) Separator for fuel cell
JP2621240B2 (en) Fuel cell
JPS6280972A (en) Improvement of temperature distribution of fuel cell
JPS6297269A (en) Fuel cell
JPS6255873A (en) Fuel cell
JPS6286670A (en) Fuel cell
JPS6316576A (en) Air cooling type fuel cell
JPS6280966A (en) Fuel cell
JPH04322062A (en) Separator of fuel cell and fuel cell using separator
US8012644B2 (en) Fuel cell stack
JP2865025B2 (en) Molten carbonate fuel cell
JPS62103984A (en) Fuel cell
JPH09289026A (en) Fuel cell
JPS6286669A (en) Fuel cell
JPS62103985A (en) Fuel cell
JPH01246767A (en) Fuel cell
JPH07249420A (en) Fuel cell
JPH07118330B2 (en) Gas header for fuel cell and fuel cell using the same
JPH06105625B2 (en) Molten carbonate fuel cell