JPH0646571B2 - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPH0646571B2
JPH0646571B2 JP60219660A JP21966085A JPH0646571B2 JP H0646571 B2 JPH0646571 B2 JP H0646571B2 JP 60219660 A JP60219660 A JP 60219660A JP 21966085 A JP21966085 A JP 21966085A JP H0646571 B2 JPH0646571 B2 JP H0646571B2
Authority
JP
Japan
Prior art keywords
gas
fuel
peripheral portion
hole
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60219660A
Other languages
Japanese (ja)
Other versions
JPS6280967A (en
Inventor
健次 渡辺
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP60219660A priority Critical patent/JPH0646571B2/en
Publication of JPS6280967A publication Critical patent/JPS6280967A/en
Publication of JPH0646571B2 publication Critical patent/JPH0646571B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は燃料の有する化学エネルギーを直接電気エネル
ギーに変換させるエネルギー部門で用いる燃料電池に関
するもので、特に、電解質板の両面を酸素極と燃料極で
挾み、酸素極側に酸化ガスを、燃料極側に燃料ガスをそ
れぞれ流せるようにするガスの出入口部に特徴をもたせ
た内部マニホールド型の燃料電池に関するものである。
TECHNICAL FIELD The present invention relates to a fuel cell used in an energy sector for directly converting chemical energy of a fuel into electric energy, and more particularly, to an oxygen electrode and a fuel on both sides of an electrolyte plate. The present invention relates to an internal manifold type fuel cell having a gas inlet / outlet portion that allows an oxidizing gas to flow between an electrode and an oxygen electrode and a fuel gas to flow toward a fuel electrode.

[従来の技術] 燃料電池は、電解質板を酸素極と燃料極とにより両面か
ら挾み、各電極に酸化ガスと燃料ガスを供給することに
より酸素極と燃料極との間で発生する電位差により発電
が行われるようにしたユニットを、セパレータを介して
複数層に積層させた構成としてある。
[Prior Art] In a fuel cell, an electrolyte plate is sandwiched by an oxygen electrode and a fuel electrode from both sides, and by supplying an oxidizing gas and a fuel gas to each electrode, a potential difference is generated between the oxygen electrode and the fuel electrode. The unit configured to generate power is laminated in a plurality of layers via a separator.

従来、かかる燃料電池において、電解質板を挾んで酸素
極側に供給する酸化ガスと燃料極側に供給する燃料ガス
の流れ形式によって、直交流型、対向流型、並行流型の
燃料電池に分けられていた。
Conventionally, such a fuel cell is divided into a cross-flow type, a counter-flow type, and a parallel-flow type fuel cell depending on the flow types of an oxidizing gas that is supplied to the oxygen electrode side across the electrolyte plate and a fuel gas that is supplied to the fuel electrode side. It was being done.

そのうちの並行流型燃料電池は、第4図に示す如く、電
解質板1を上下両面から酸素極2と燃料極3とにより挾
んでなるユニットを、セパレータ4を介して積層させた
構成において、各層の酸素極2側に供給する酸化ガスOG
と燃料極3側に供給される燃料ガスFGとが電解質板1を
挾んで同一方向へ並行に流れるようにセパレータ4のガ
ス通路5,6の向きを定めると共に、該セパレータ4を挾
んで流れる酸化ガスOGと燃料ガスFGも上記と同一の方向
へ並行して流れるようにしてある。
As shown in FIG. 4, the parallel flow type fuel cell has a structure in which a unit in which an electrolyte plate 1 is sandwiched by an oxygen electrode 2 and a fuel electrode 3 from both upper and lower surfaces is laminated with a separator 4 interposed therebetween. Gas OG supplied to the oxygen electrode 2 side of
The gas passages 5 and 6 of the separator 4 are oriented so that the fuel gas FG supplied to the side of the fuel electrode 3 and the fuel gas FG supplied to the side of the fuel electrode 3 flow in parallel in the same direction across the electrolyte plate 1, and the oxidation that flows through the separator 4 is also determined. The gas OG and the fuel gas FG also flow in the same direction as above.

そのために、従来の並行流型燃料電池では、第5図及び
第6図に一例を示す如く、電解質板1とセパレータ4、
及び電極2,3がセパレータ4により電解質板1へ押し付
け過ぎるのを防止すると共に酸化ガスOG及び燃料ガスFG
をセパレータ4両面に沿い流すようにするための酸素極
側スペーサ7、燃料極側スペーサ8の各周辺部の一側
に、酸化ガスOGの供給流路孔9と燃料ガスFGの供給流路
孔10のみを適宜の間隔で交互に設けると共に、上記周辺
部の他側に、酸化ガスOGの排出流路孔11と燃料ガスFGの
排出流路孔12のみを適宜の間隔で交互に設けている。更
に、各層において各セパレータ4の両面に酸化ガスOGと
燃料ガスFGとを供給して排出できるようにするため、各
層の酸素極側スペーサ7に設けられたすべての酸化ガス
供給流路孔9及び各酸化ガス排出流路孔11の部分に切欠
13,14を設け、酸素極側スペーサ7の個所で供給側の酸
化ガスOGのみがすべてセパレータ4のガス通路5に導か
れた後、排出流路孔11に流出させられるようにしてあ
る。同様に各層の燃料極側スペーサ8に設けられたすべ
ての燃料ガス供給通路孔10及び各燃料排出流路孔12の部
分には切欠15,16を設け、燃料極側スペーサ7の個所で
は燃料ガスFGのみがすべての供給流路孔10からすべての
排出流路孔12へ流されるようにしてある。
Therefore, in the conventional parallel flow type fuel cell, the electrolyte plate 1 and the separator 4,
The electrodes 2 and 3 are prevented from being excessively pressed against the electrolyte plate 1 by the separator 4, and the oxidizing gas OG and the fuel gas FG are also prevented.
On both sides of each of the oxygen electrode side spacer 7 and the fuel electrode side spacer 8 for allowing the gas to flow along both sides of the separator 4, the supply passage hole 9 for the oxidizing gas OG and the supply passage hole for the fuel gas FG. Only 10 are provided alternately at appropriate intervals, and on the other side of the peripheral portion, only the exhaust gas passage holes 11 for oxidizing gas OG and the exhaust gas passage holes 12 for fuel gas FG are alternately provided at appropriate intervals. . Furthermore, in order to supply and discharge the oxidizing gas OG and the fuel gas FG to both surfaces of each separator 4 in each layer, all the oxidizing gas supply flow path holes 9 and 9 provided in the oxygen electrode side spacer 7 of each layer and A notch is provided in each oxidizing gas discharge passage hole 11
13, 14 are provided so that at the oxygen electrode side spacer 7, only the oxidizing gas OG on the supply side is entirely introduced into the gas passage 5 of the separator 4 and then discharged to the discharge flow path hole 11. Similarly, notches 15 and 16 are provided in all the fuel gas supply passage holes 10 and each fuel discharge passage hole 12 provided in the fuel electrode side spacer 8 of each layer, and the fuel gas is provided in the fuel electrode side spacer 7 at the location. Only FG is made to flow from all the supply flow passage holes 10 to all the discharge flow passage holes 12.

[発明が解決しようとする問題点] ところが、並行流型燃料電池では、酸化ガスOGと燃料ガ
スFGがセパレータ4及び電解質板1を挾んで並行に供給
側から排出側へ流れる間に、セパレータ4を介して酸化
ガスと燃料ガスとの熱交換によって両ガスの温度差はほ
とんどなく、流れ方向に進むに従って電解質板1からの
発熱によって電解質板(電極もほぼ同一温度)、酸化ガ
ス、燃料ガス及びセパレータの各温度は一様に増加し、
電解質板1の全平面では、両ガスの排出側に高温部が発
生し、両ガスの入口側では温度は低く、排出側で温度が
高いという温度分布となる。これに伴ない発電電流密度
分布も電解質板全面で均一化できず、効率が低下する。
上記のように電解質板の入口側と排出側で大きな温度勾
配が生ずると、電解質板の熱応力が大きく、又、寿命短
縮する。
[Problems to be Solved by the Invention] However, in the parallel flow type fuel cell, while the oxidizing gas OG and the fuel gas FG sandwich the separator 4 and the electrolyte plate 1 and flow in parallel from the supply side to the discharge side, the separator 4 There is almost no temperature difference between the oxidizing gas and the fuel gas through the heat exchange through the electrolyte gas, and the heat generated from the electrolyte plate 1 as it progresses in the flow direction causes the electrolyte plate (the electrodes to have almost the same temperature), the oxidizing gas, the fuel gas, and Each temperature of the separator increases uniformly,
On the entire flat surface of the electrolyte plate 1, a high temperature portion is generated on the discharge side of both gases, the temperature is low on the inlet side of both gases, and the temperature is high on the discharge side. Along with this, the generated current density distribution cannot be made uniform over the entire surface of the electrolyte plate, resulting in a decrease in efficiency.
When a large temperature gradient occurs on the inlet side and the discharge side of the electrolyte plate as described above, the thermal stress of the electrolyte plate is large and the life is shortened.

そこで、本発明は、かかる問題を解消するため、電解質
板全平面において温度差が生じることを少なくして温度
分布の均一化を図ると共に電流密度分布を電解質板の全
平面で均一化した高い電池性能が得られるようにしよう
とするものである。
Therefore, in order to solve such a problem, the present invention aims to make the temperature distribution uniform in all the planes of the electrolyte plate and to make the temperature distribution uniform, and to make the current density distribution uniform in all the planes of the electrolyte plate. It seeks to obtain performance.

[問題点を解決するための手段] 本発明は、電解質板(1)の両面を酸素極(2)と燃料極(3)
を挾むように構成された単セルと、一方の面の中央部に
ガス通路(5)が形成され且つ他方の面の中央部にガス通
路(6)が形成されたセパレータ(4)とを、上記電解質板
(1)の周辺部とセパレータ(4)の周辺部とが互いに気密に
接触するように積層し、 上記電解質板(1)、セパレータ(4)の上記周辺部一側に、
それぞれ外部から供給される未反応の酸化ガスの供給流
路孔(9)及び燃料ガスの供給流路孔(10)と、酸化ガスの
排出流路孔(11)及び燃料ガスの排出流路孔(12)とを設け
ると共に、上記電解質板(1)、セパレータ(4)の周辺部一
側と対向する周辺部他側に、それぞれ外部から供給され
る未反応の酸化ガスの供給流路孔(9)及び燃料ガスの供
給流路孔(10)と、酸化ガスの排出流路孔(11)及び燃料ガ
スの排出流路孔(12)とを設け、 上記周辺部一側に設けられた酸化ガスの供給流路孔(9)
と上記周辺部他側に設けられた酸化ガスの排出流路孔(1
1)とをそれぞれ連通路を介してガス通路(5)に連通せし
め且つ上記周辺部一側に設けられた燃料ガスの供給流路
孔(10)と上記周辺部他側に設けられた燃料ガスの排出流
路孔(12)とをそれぞれ連通路を介してガス通路(6)に連
通せしめたセパレータ(4)と、上記周辺部他側に設けら
れた酸化ガスの供給流路孔(9)と上記周辺部一側に設け
られた酸化ガスの排出流路孔(11)とをそれぞれ連通路を
介してガス通路(5)に連通せしめ且つ上記周辺部他側に
設けられた燃料ガスの供給流路孔(10)と周辺部一側に設
けられた燃料ガスの排出流路孔(12)とをそれぞれ連通路
を介してガス通路(6)に連通せしめたセパレータ(4)とが
上記単セルを挾んで交互に配設されるよう構成したこと
を特徴とするものである。
[Means for Solving Problems] In the present invention, both surfaces of the electrolyte plate (1) are provided with an oxygen electrode (2) and a fuel electrode (3).
A single cell configured to sandwich the separator, a gas passage (5) is formed in the central portion of one surface and a separator (4) in which the gas passage (6) is formed in the central portion of the other surface, Electrolyte plate
The peripheral part of (1) and the peripheral part of the separator (4) are laminated so that they are in airtight contact with each other, the electrolyte plate (1), on one side of the peripheral part of the separator (4),
Unreacted oxidizing gas supply channel hole (9) and fuel gas supply channel hole (10) respectively supplied from the outside, oxidizing gas discharge channel hole (11) and fuel gas discharge channel hole (12) and with the electrolyte plate (1), the peripheral portion other side opposite to the peripheral portion one side of the separator (4), the supply flow path hole of the unreacted oxidizing gas supplied from the outside, respectively ( 9) and a fuel gas supply flow path hole (10), an oxidizing gas discharge flow path hole (11) and a fuel gas discharge flow path hole (12) are provided, and the oxidizing gas provided on one side of the peripheral portion is provided. Gas supply channel hole (9)
And the oxidizing gas discharge passage hole (1
1) and the fuel gas supply passage hole (10) provided on one side of the peripheral portion and the fuel gas provided on the other side of the peripheral portion for communicating with the gas passage (5) through the communication passages. A discharge channel hole (12) of the separator (4), which is communicated with the gas channel (6) through a communication channel, respectively, and an oxidizing gas supply channel hole (9) provided on the other side of the peripheral portion. And the oxidizing gas discharge flow passage hole (11) provided on the one side of the peripheral portion are respectively connected to the gas passage (5) through the communication passages and the supply of the fuel gas provided on the other side of the peripheral portion. The separator (4) in which the flow passage hole (10) and the fuel gas discharge flow passage hole (12) provided on one side of the peripheral portion are connected to the gas passageway (6) through the communication passages, respectively. It is characterized in that the cells are sandwiched and arranged alternately.

[作用] 電解質板(1)を挾んで流れる酸化ガスと燃料ガスは対向
する位置の各供給流路孔(9)(10)からセパレータ(4)の各
ガス通路(5)(6)に沿って流されて対向流となる。これに
より酸化ガスと燃料ガスの反応を電解質板(1)の全平面
で均一に保つことができ、電解質板(1)の全面をその最
高性能で利用できて高い電流密度が得られる。又、セパ
レータ(4)を挾んで各ガス通路(5)(6)を流れる酸化ガス
と燃料ガスは並行流となるので、電解質板(1)全面を最
適な温度に均一化させることができる。
[Operation] Oxidizing gas and fuel gas that flow across the electrolyte plate (1) go from the supply flow passage holes (9) and (10) at opposite positions along the gas passages (5) and (6) of the separator (4). Is discharged and becomes a counter current. As a result, the reaction between the oxidizing gas and the fuel gas can be kept uniform on all the flat surfaces of the electrolyte plate (1), and the entire surface of the electrolyte plate (1) can be utilized with its maximum performance to obtain a high current density. Further, since the oxidizing gas and the fuel gas that flow through the gas passages (5) and (6) sandwiching the separator (4) are in parallel flow, the entire surface of the electrolyte plate (1) can be made uniform at an optimum temperature.

[実施例] 以下、本発明の実施例を図面を参照して説明する。[Embodiment] An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例を示すもので、第5図及び第
6図と同様に電極に対応する中央部を切り抜いて空間部
としてある酸化極スペーサ7と燃料極側スペーサ8を電
解質板1とセパレータ4との間に介在させて使用し、セ
パレータ4の中央部の凹凸が電極2,3を強く押し付ける
ことがないようにしてある燃料電池において、各層の電
解質板1、セパレータ4、酸素極側スペーサ7a,7b及び
燃料極側スペーサ8a,8bのそれぞれの周辺部の一側に、
酸化ガスの供給流路孔9及び排出流路孔11、燃料ガスの
供給通路孔10及び排出流路孔12とをそれぞれ適宜間隔で
設けると共に、相対向する周辺部の他側にも、上記各流
路孔9,11、10,12を適宜間隔で設ける。
FIG. 1 shows an embodiment of the present invention. Similar to FIG. 5 and FIG. 6, the oxidizing electrode spacer 7 and the fuel electrode side spacer 8 which are space portions by cutting out the central portion corresponding to the electrode are used as the electrolyte. In a fuel cell which is used by interposing between the plate 1 and the separator 4 so that the unevenness of the central portion of the separator 4 does not strongly press the electrodes 2 and 3, the electrolyte plate 1 of each layer, the separator 4, On one side of each peripheral portion of the oxygen electrode side spacers 7a, 7b and the fuel electrode side spacers 8a, 8b,
The oxidizing gas supply flow path hole 9 and the exhaust flow path hole 11, the fuel gas supply flow path hole 10 and the exhaust flow path hole 12 are provided at appropriate intervals, respectively, and the above-mentioned each is also provided on the other side of the peripheral portion facing each other. The flow path holes 9, 11, 10, 12 are provided at appropriate intervals.

上記セパレータ4を挾んで流れる酸化ガスOG-1,OG-2と
燃料ガスFG-1,FG-2が並行流となるようにし且つ電解質
板1を挾んで流れる酸化ガスOG-1,OG-2と燃料ガスFG-1,
FG-2とは互に反対方向の流れとなる対向流となるように
それぞれガスが流せるようにするため、電解質板1の直
上方に位置する酸素極側スペーサ7aの周辺部一側に設け
られた酸化ガス排出流路孔11のみを中央部の空間に開口
させるための切欠13を設けると共に、上記酸素極側スペ
ーサ7aの周辺部一側に相対する周辺部他側に設けられた
酸化ガス供給流路孔9のみを中央部の空間に開口させる
ための切欠14を設け、又、上記酸素極側スペーサ7aの上
方に位置する燃料極側スペーサ8aの周辺部一側に設けら
れた燃料ガス排出流路孔12のみを中央部の空間に開口さ
せるための切欠15を設けると共に、相対する周辺部他側
に設けられた燃料ガス供給流路孔10のみを中央部の空間
に開口させるための切欠16を設ける。一方、電解質板1
の直下方に位置する燃料極側スペーサ8bでは、周辺一側
に設けられている燃料ガス供給流路孔10のみを中央部の
空間に開口させる切欠16を設けると共に、相対する周辺
部他側に設けられている燃料ガス排出流路孔12のみを中
央部の空間に開口させる切欠15を設け、又、上記燃料極
側スペーサ8bの下方に位置する酸素極側スペーサ7bで
は、周辺部一側に設けられている酸化ガス供給流路孔9
のみを中央部の空間に開口させる切欠14を設けると共
に、相対する周辺部他側に設けられている酸化ガス排出
流路孔11のみを中央部の空間に開口させる切欠13を設け
る。
Oxidizing gas OG-1, OG-2 flowing through the separator 4 and fuel gas FG-1, FG-2 in parallel flow, and oxidizing gas OG-1, OG-2 flowing through the electrolyte plate 1 And fuel gas FG-1,
It is provided on one side of the peripheral portion of the oxygen electrode side spacer 7a located immediately above the electrolyte plate 1 in order to allow the gases to flow so as to form counter flows that flow in opposite directions to FG-2. And a notch 13 for opening only the oxidizing gas discharge flow path hole 11 in the central space, and an oxidizing gas supply provided on the other side of the peripheral portion facing the one side of the oxygen electrode side spacer 7a. A notch 14 is provided for opening only the flow path hole 9 in the central space, and a fuel gas discharge provided on one side of the peripheral portion of the fuel electrode side spacer 8a located above the oxygen electrode side spacer 7a. A notch 15 is provided for opening only the flow path hole 12 in the central space, and a notch for opening only the fuel gas supply flow path hole 10 provided on the other side of the opposing peripheral part to the central space. 16 is provided. On the other hand, electrolyte plate 1
In the fuel electrode side spacer 8b located immediately below, a notch 16 for opening only the fuel gas supply flow path hole 10 provided on one side of the periphery to the space of the central portion is provided, and on the other side of the opposing peripheral portion. A notch 15 is provided to open only the fuel gas discharge flow path hole 12 provided in the central space, and in the oxygen electrode side spacer 7b located below the fuel electrode side spacer 8b, it is provided on one side of the peripheral portion. Oxidizing gas supply channel hole 9 provided
A notch (14) is provided for opening only the central portion into the central space, and a notch (13) is provided for opening only the oxidizing gas discharge flow path hole (11) provided on the other side of the opposing peripheral portion into the central portion space.

上記各酸化ガス供給流路孔9及び排出流路孔11と燃料ガ
ス供給流路孔10及び排出流路孔12には、燃料電池の外部
に配した配管が接続される。
Pipes arranged outside the fuel cell are connected to the oxidizing gas supply passage hole 9 and the exhaust passage hole 11, the fuel gas supply passage hole 10 and the exhaust passage hole 12, respectively.

電解質板1、セパレータ4、スペーサ7a,7b、8a,8bの各
周辺部の相対向する位置に設けられている各酸化ガス供
給流路孔9に外部から未反応の酸化ガスを導入し、又、
各燃料ガス供給流路孔10に外部から未反応の燃料ガスを
導入すると、或る段のセパレータ4を挾んで流れる酸化
ガスOG-1と燃料ガスFG-2、あるいは酸化ガスOG-2と燃料
ガスFG-1は矢印で示す如く同一方向に流れる並行流とな
るが、電解質板1を挾んで流れる酸化ガスOG-1と燃料ガ
スFG-1、あるいは酸化ガスOG-2と燃料ガスFG-2は互に反
対方向に流れる対向流となる。すなわち、上記両ガスの
流れ方向は、ガスの流れのみを示す第2図のようにな
る。これにより、電解質板1の両面では酸化ガスと燃料
ガスとが対向流となることから、燃料ガスはその入側で
濃度が高く、出側へ向けて濃度が低くなる一方、酸化ガ
スはその入側(即ち燃料ガスの出側)で濃度が高く、出
側(即ち燃料ガスの入側)へ向けて濃度が低くなり、互
いに相手の濃度低下分を補うような形となって、燃料ガ
スと酸化ガスの反応を電解質板1の全平面で均一化させ
ることができ、又、セパレータ4を挾んで酸化ガスOG-1
又はOG-2及び燃料ガスFG-2又はFG-1が並行流となるので
電解質板1全面を最適な温度に均一化させることができ
る。このように、本発明では、対向流の特長と並行流の
特長を同時に得られて第3図に示す如き温度分布、電流
密度分布となる。すなわち、1つのセパレータ4を挾ん
で流れる酸化ガスOG-1と燃料ガスFG-2は入口部aから曲
線Iで示す如く一様に昇温される。一方、隣接する他の
セパレータ4を挾んで流れる酸化ガスOG-2と燃料ガスFG
-1は、その排出側から入口部bに向けて曲線IIで示す如
く逆に流れ方向距離Xにつれて一様に降温して行く。電
解質板1の温度は、電解質板1を挾んで流れる酸化ガス
OG-1と燃料ガスFG-1の温度が対向して流れるので、両ガ
スの平均温度に近くなり、ほぼ平坦な温度分布を得るこ
とができる。
An unreacted oxidizing gas is introduced from the outside into each oxidizing gas supply passage hole 9 provided at each of the peripheral portions of the electrolyte plate 1, the separator 4, and the spacers 7a, 7b, 8a, 8b facing each other. ,
When an unreacted fuel gas is introduced from the outside into each fuel gas supply passage hole 10, the oxidizing gas OG-1 and the fuel gas FG-2 or the oxidizing gas OG-2 and the fuel flowing through the separator 4 at a certain stage are flown. The gas FG-1 is a parallel flow that flows in the same direction as shown by the arrow, but the oxidizing gas OG-1 and the fuel gas FG-1, which flow through the electrolyte plate 1, or the oxidizing gas OG-2 and the fuel gas FG-2. Are countercurrents flowing in opposite directions. That is, the flow directions of the both gases are as shown in FIG. 2 showing only the gas flows. As a result, the oxidizing gas and the fuel gas flow in opposite directions on both sides of the electrolyte plate 1, so that the fuel gas has a high concentration on the inlet side and a low concentration on the outlet side, while the oxidizing gas enters the same. The concentration is high on the side (that is, the outlet side of the fuel gas) and decreases toward the outlet side (that is, the inlet side of the fuel gas), and it becomes a form in which they complement each other's concentration decrease, The reaction of the oxidizing gas can be made uniform on the entire plane of the electrolyte plate 1, and the separator 4 is sandwiched between the oxidizing gas OG-1.
Alternatively, since the OG-2 and the fuel gas FG-2 or FG-1 flow in parallel, the entire surface of the electrolyte plate 1 can be made uniform at an optimum temperature. As described above, according to the present invention, the features of the counter flow and the features of the parallel flow can be obtained at the same time to obtain the temperature distribution and the current density distribution as shown in FIG. That is, the oxidizing gas OG-1 and the fuel gas FG-2 flowing through one separator 4 are uniformly heated from the inlet a as shown by the curve I. On the other hand, the oxidizing gas OG-2 and the fuel gas FG that flow through the other adjacent separator 4
The temperature of -1 uniformly decreases from the discharge side toward the inlet portion b, as indicated by the curve II, along the flow direction distance X. The temperature of the electrolyte plate 1 is the oxidizing gas that flows across the electrolyte plate 1.
Since the temperatures of OG-1 and fuel gas FG-1 flow opposite to each other, the temperature becomes close to the average temperature of both gases, and a substantially flat temperature distribution can be obtained.

電流密度は、曲線IIIで示す如く、電解質板1の温度が
均一であり、且つ酸化ガスと燃料ガスの反応が電解質板
1全平面でほぼ均一に行われることからほとんど電解質
板温度と同一の平坦化された分布となる。
As shown by the curve III, the current density is almost the same as the electrolyte plate temperature because the temperature of the electrolyte plate 1 is uniform and the reaction of the oxidizing gas and the fuel gas is carried out substantially uniformly over the entire plane of the electrolyte plate 1. It becomes a distributed distribution.

上記においては、酸化ガスOG-1,OG-2、燃料ガスFG-1,FG
-2の入口温度を適当に選ぶことで電解質板1の全面がそ
の最適作動温度に維持されるので、全面での発電量が高
い値に維持できる。又、電解質板1、酸素極2、燃料極
3及びセパレータ4が第3図に示す如く全面でほぼ均一
温度となり、熱応力が発生しにくく耐久性のある電池が
得られる。
In the above, oxidizing gas OG-1, OG-2, fuel gas FG-1, FG
By appropriately selecting the inlet temperature of -2, the entire surface of the electrolyte plate 1 is maintained at its optimum operating temperature, so that the amount of power generation on the entire surface can be maintained at a high value. Further, the electrolyte plate 1, the oxygen electrode 2, the fuel electrode 3 and the separator 4 have substantially uniform temperatures over the entire surface as shown in FIG. 3, and a durable battery is obtained in which thermal stress is unlikely to occur.

なお、本発明は上記実施例のみに限定されるものではな
い。たとえば、スペーサ7a,7b,8a,8bを用いて、これに
切欠13,14,15,16を設けてガスがセパレータ4のガス通
路と、各ガスの供給流路孔及び排出流路孔とを連通させ
るようにした場合を例示したが、セパレータ4自体に切
欠溝を設けてガスの各流路孔とセパレータのガス通路と
を連通させるようにしてもよく、又、切欠13,14,15,16
の各形状、数は図示以外のものでもよい。
The present invention is not limited to the above embodiment. For example, the spacers 7a, 7b, 8a, 8b are used, and the notches 13, 14, 15, 16 are provided in the spacers 7a, 7b, 8a, 8b so that the gas is connected to the gas passages of the separator 4 and the supply flow passage holes and the discharge flow passage holes of each gas. Although the case where it is made to communicate is illustrated, the notch groove may be provided in the separator 4 itself so that each gas flow path hole and the gas passage of the separator may be made to communicate, and the notches 13, 14, 15, 16
Each shape and number of may be other than those shown.

[発明の効果] 以上述べた如く本発明の燃料電池によれば、セパレータ
(4)の各ガス通路(5)(6)に沿って流される酸化ガスと燃
料ガスの流れ方向を各段で異なるように規制するため
に、各ガスの供給流路孔(9)(10)と排出流路孔(11)(12)
を定め、常にセパレータ(4)を挾んで各ガス通路(5)(6)
を流れる酸化ガスと燃料ガスは並行流となり、電解質板
(1)を挾んでセパレータ(4)の各ガス通路(5)(6)を流れる
酸化ガスと燃料ガスは対向流となるようにしてあるの
で、次の如き優れた効果を奏し、得る。
[Effects of the Invention] As described above, according to the fuel cell of the present invention, the separator
In order to regulate the flow directions of the oxidizing gas and the fuel gas flowing along the gas passages (5) and (6) of (4) so that they are different at each stage, the supply flow passage holes (9) (10) for each gas are provided. ) And drainage channel holes (11) (12)
Each gas passage (5) (6) with the separator (4) in between.
The oxidizing gas and fuel gas flowing in the
Since the oxidizing gas and the fuel gas that flow through the gas passages (5) and (6) of the separator (4) across the (1) are in counterflow, the following excellent effects are obtained and obtained.

(i)電解質板(1)がその全面で最適温度に均一化され、且
つ燃料ガスと酸化ガスの反応を均一化することができる
ので、電解質板(1)の全面をその最高性能で利用でき、
高い電流密度が得られて燃料電池の高性能化が図れる。
(i) Since the electrolyte plate (1) is homogenized to the optimum temperature over its entire surface and the reaction between the fuel gas and the oxidizing gas can be homogenized, the entire surface of the electrolyte plate (1) can be used with its maximum performance. ,
High current density can be obtained, and high performance of the fuel cell can be achieved.

(ii)電解質板(1)から生ずる反応熱の除去に対して燃料
ガスと酸化ガスの流量を反応に必要な最小流量に抑える
ことができるので、動力を小さくでき高効率化が図れ
る。
(ii) Since the flow rates of the fuel gas and the oxidizing gas can be suppressed to the minimum flow rate required for the reaction for removing the reaction heat generated from the electrolyte plate (1), the power can be reduced and the efficiency can be improved.

(iii)電流密度が均一であるため、電解質板(1)の損耗が
局部的に大きくならず、電池の長寿命化が図れる。
(iii) Since the current density is uniform, the wear of the electrolyte plate (1) does not locally increase, and the life of the battery can be extended.

(iv)電池を構成する電解質板(1)、電極、セパレータ(4)
の温度分布が小さいため熱応力が発生しにくいと共に、
ホットスポットが電解質板(1)に生じにくいため、電解
質板(1)の破損等が起こりにくく、電池の性能の安定化
を図ることができ、信頼性を向上させることができる。
(iv) Electrolyte plate (1), electrodes, separators (4) that make up the battery
Since the temperature distribution of is small, thermal stress is less likely to occur,
Since hot spots are less likely to occur on the electrolyte plate (1), damage to the electrolyte plate (1) is less likely to occur, the performance of the battery can be stabilized, and reliability can be improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す説明用斜視図、第2図
は本発明により得られるガスの流れを示す斜視図、第3
図は第2図の如きガスの流れ型式の場合の温度、電流密
度の分布を示す図、第4図は並行流型燃料電池のガス流
れを示す斜視図、第5図は第4図の如きガス流れを実現
する従来のガス出入口部の一例を示す斜視図、第6図は
従来の並行流型燃料電池の断面図である。 1は電解質板、2は酸素極、3は燃料極、4はセパレー
タ、7,7a,7bは酸素極側スペーサ、8,8a,8bは燃料極側ス
ペーサ、9は酸化ガス供給流路孔、10は燃料ガス供給流
路孔、11は酸化ガス排出流路孔、12は燃料ガス排出流路
孔を示す。
FIG. 1 is an explanatory perspective view showing an embodiment of the present invention, FIG. 2 is a perspective view showing a gas flow obtained by the present invention, and FIG.
FIG. 4 is a diagram showing the distribution of temperature and current density in the case of the gas flow type as shown in FIG. 2, FIG. 4 is a perspective view showing the gas flow of a parallel flow type fuel cell, and FIG. 5 is as shown in FIG. FIG. 6 is a perspective view showing an example of a conventional gas inlet / outlet portion that realizes gas flow, and FIG. 6 is a sectional view of a conventional parallel flow fuel cell. 1 is an electrolyte plate, 2 is an oxygen electrode, 3 is a fuel electrode, 4 is a separator, 7,7a and 7b are oxygen electrode side spacers, 8,8a and 8b are fuel electrode side spacers, 9 is an oxidizing gas supply flow path hole, Reference numeral 10 is a fuel gas supply flow path hole, 11 is an oxidizing gas discharge flow path hole, and 12 is a fuel gas discharge flow path hole.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電解質板(1)の両面を酸素極(2)と燃料極
(3)で挾むように構成された単セルと、一方の面の中央
部にガス通路(5)が形成され且つ他方の面の中央部にガ
ス通路(6)が形成されたセパレータ(4)とを、上記電解質
板(1)の周辺部とセパレータ(4)の周辺部とが互いに気密
に接触するよう積層し、 上記電解質板(1)、セパレータ(4)の上記周辺部一側に、
それぞれ外部から供給される未反応の酸化ガスの供給流
路孔(9)及び燃料ガスの供給流路孔(10)と、酸化ガスの
排出流路孔(11)及び燃料ガスの排出流路孔(12)とを設け
ると共に、上記電解質板(1)、セパレータ(4)の周辺部一
側と対向する周辺部他側に、それぞれ外部から供給され
る未反応の酸化ガスの供給流路孔(9)及び燃料ガスの供
給流路孔(10)と、酸化ガスの排出流路孔(11)及び燃料ガ
スの排出流路孔(12)とを設け、 上記周辺部一側に設けられた酸化ガスの供給流路孔(9)
と上記周辺部他側に設けられた酸化ガスの排出流路孔(1
1)とをそれぞれ連通路を介してガス通路(5)に連通せし
め且つ上記周辺部一側に設けられた燃料ガスの供給流路
孔(10)と上記周辺部他側に設けられた燃料ガスの排出流
路孔(12)とをそれぞれ連通路を介してガス通路(6)に連
通せしめたセパレータ(4)と、上記周辺部他側に設けら
れた酸化ガスの供給流路孔(9)と上記周辺部一側に設け
られた酸化ガスの排出流路孔(11)とをそれぞれ連通路を
介してガス通路(5)に連通せしめ且つ上記周辺部他側に
設けられた燃料ガスの供給流路孔(10)と周辺部一側に設
けられた燃料ガスの排出流路孔(12)とをそれぞれ連通路
を介してガス通路(6)に連通せしめたセパレータ(4)とが
上記単セルを挾んで交互に配設されるよう構成したこと
を特徴とする燃料電池。
1. An oxygen electrode (2) and a fuel electrode on both sides of the electrolyte plate (1).
A single cell configured to intervene in (3), a separator (4) having a gas passage (5) formed in the center of one surface and a gas passage (6) formed in the center of the other surface. The, the peripheral portion of the electrolyte plate (1) and the peripheral portion of the separator (4) are laminated so as to be in airtight contact with each other, the electrolyte plate (1), on one side of the peripheral portion of the separator (4),
Unreacted oxidizing gas supply channel hole (9) and fuel gas supply channel hole (10) respectively supplied from the outside, oxidizing gas discharge channel hole (11) and fuel gas discharge channel hole (12) and with the electrolyte plate (1), the peripheral portion other side opposite to the peripheral portion one side of the separator (4), the supply flow path hole of the unreacted oxidizing gas supplied from the outside, respectively ( 9) and a fuel gas supply flow path hole (10), an oxidizing gas discharge flow path hole (11) and a fuel gas discharge flow path hole (12) are provided, and the oxidizing gas provided on one side of the peripheral portion is provided. Gas supply channel hole (9)
And the oxidizing gas discharge passage hole (1
1) and the fuel gas supply passage hole (10) provided on one side of the peripheral portion and the fuel gas provided on the other side of the peripheral portion for communicating with the gas passage (5) through the communication passages. A discharge channel hole (12) of the separator (4), which is communicated with the gas channel (6) through a communication channel, respectively, and an oxidizing gas supply channel hole (9) provided on the other side of the peripheral portion. And the oxidizing gas discharge flow passage hole (11) provided on the one side of the peripheral portion are respectively connected to the gas passage (5) through the communication passages and the supply of the fuel gas provided on the other side of the peripheral portion. The separator (4) in which the flow passage hole (10) and the fuel gas discharge flow passage hole (12) provided on one side of the peripheral portion are connected to the gas passageway (6) through the communication passages, respectively. A fuel cell characterized in that the cells are arranged alternately with the cells sandwiched therebetween.
JP60219660A 1985-10-02 1985-10-02 Fuel cell Expired - Lifetime JPH0646571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60219660A JPH0646571B2 (en) 1985-10-02 1985-10-02 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60219660A JPH0646571B2 (en) 1985-10-02 1985-10-02 Fuel cell

Publications (2)

Publication Number Publication Date
JPS6280967A JPS6280967A (en) 1987-04-14
JPH0646571B2 true JPH0646571B2 (en) 1994-06-15

Family

ID=16738978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60219660A Expired - Lifetime JPH0646571B2 (en) 1985-10-02 1985-10-02 Fuel cell

Country Status (1)

Country Link
JP (1) JPH0646571B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2569550B2 (en) 1987-05-08 1997-01-08 石川島播磨重工業株式会社 Fuel cell temperature distribution improvement method
JPH01112673A (en) * 1987-10-27 1989-05-01 Ishikawajima Harima Heavy Ind Co Ltd Cooling method for fuel cell
DE102006058293B4 (en) * 2006-12-11 2010-09-16 Staxera Gmbh fuel cell stack

Also Published As

Publication number Publication date
JPS6280967A (en) 1987-04-14

Similar Documents

Publication Publication Date Title
JP2569550B2 (en) Fuel cell temperature distribution improvement method
US8518601B2 (en) Gas separator for fuel cells and fuel cell equipped with gas separator
US7943266B2 (en) SOFC seal and cell thermal management
JP2000231929A (en) Fuel cell
JPH10308227A (en) Solid high molecular electrolyte type fuel cell
KR100798451B1 (en) Fuel cell separator and fuel cell stack and reactant gas control method thereof
JPH05159790A (en) Solid electrolyte fuel cell
JP2570771B2 (en) Fuel cell cooling method
JPS6276260A (en) Separator for fuel cell
JPH0646571B2 (en) Fuel cell
JP2621240B2 (en) Fuel cell
JPS6280972A (en) Improvement of temperature distribution of fuel cell
JPS6316576A (en) Air cooling type fuel cell
JPS6297269A (en) Fuel cell
JPH0646573B2 (en) Fuel cell
JPS6255873A (en) Fuel cell
JP2865025B2 (en) Molten carbonate fuel cell
JPS6280966A (en) Fuel cell
JPH0646574B2 (en) Fuel cell
JPH04322062A (en) Separator of fuel cell and fuel cell using separator
JPH09289026A (en) Fuel cell
JPH0782874B2 (en) Fuel cell
JPS6276259A (en) Separator for fuel cell
JP2006518538A (en) Fuel cell stack
JPH0646572B2 (en) Fuel cell