JPS6280579A - Measuring instrument for radioactive concentration - Google Patents

Measuring instrument for radioactive concentration

Info

Publication number
JPS6280579A
JPS6280579A JP22116785A JP22116785A JPS6280579A JP S6280579 A JPS6280579 A JP S6280579A JP 22116785 A JP22116785 A JP 22116785A JP 22116785 A JP22116785 A JP 22116785A JP S6280579 A JPS6280579 A JP S6280579A
Authority
JP
Japan
Prior art keywords
gamma ray
slit width
measured
gamma
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22116785A
Other languages
Japanese (ja)
Inventor
Tetsuo Goto
哲夫 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Original Assignee
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Atomic Industry Group Co Ltd filed Critical Toshiba Corp
Priority to JP22116785A priority Critical patent/JPS6280579A/en
Publication of JPS6280579A publication Critical patent/JPS6280579A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To measure accurate radioactive concentration by correcting the slit width of a variable slit width collimator according to the transmissivity of gamma rays, correcting an error in measurement due to the horizontal ray source state in a sample to be measured, and inputting measurement data from a gamma ray detector and calculating the radioactive concentration by nuclear species. CONSTITUTION:A container 2 to be measured is mounted on a sample mount table 9 and a sample on the table 9 is divided lengthwise into plural columnar segments for radiation evaluation; and transmitted gamma rays from an external gamma ray source 10 are measured by a gamma ray detector 11 at a position opposite to the ray source 10 across the container 2 and an arithmetic device calculates the mean concentration in a segment from the transmissivity by using a specific expression. Then, the slit width of the rectangular variable slit width collimator 12 installed in front of the detector 11 is determined on the basis of the gamma ray transmissivity. Then, the arithmetic device calculates the peak count rate of an object nuclear species from gamma ray spectrum data inputted from respective detectors and calculates the radioactive concentration by nuclear species.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、定型容器内に充填された非定型固体放射性廃
棄物等の放射性物質の82度を核種別に測定する放射能
濃度測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a radioactivity concentration measuring device that measures 82 degrees of radioactive material such as atypical solid radioactive waste filled in a regular container for each nuclide.

[発明の技術的背景] 原子力施設より発生する配管やコンクリート廃材のよう
な非定型の固体廃棄物のうち、焼却処理や酸分解等の減
容処理を行うことができない物は、そのままドラム缶等
の定型容器内に収納して廃棄物貯蔵所等に廃棄保管され
ている。こうした廃棄物を他施設へ移動する場合や施設
の許可貯蔵能力(放射能♀換埠)を評価する場合には、
廃棄物中に含まれる放射能聞を測定する必要がある。こ
のような場合には、一般に、放射性物質より放出される
ガンマ線のエネルギーを弁別することができるNaI(
Tβ)シンチレーション検出器やゲルマニウム半導体検
出器等を用いて、内部の固体廃棄物を取り出すことなく
容器の外部より測定が行なわれている。
[Technical background of the invention] Among atypical solid wastes such as piping and concrete waste generated from nuclear facilities, those that cannot be subjected to volume reduction treatment such as incineration or acid decomposition are directly stored in drums, etc. They are stored in standard containers and disposed of at waste storage facilities, etc. When moving such waste to other facilities or evaluating a facility's permitted storage capacity (radioactive ♀ exchange wharf),
It is necessary to measure the radioactivity contained in waste. In such cases, NaI(
Tβ) Measurement is performed from outside the container using a scintillation detector, germanium semiconductor detector, etc., without taking out the solid waste inside.

しかしながらこのような廃棄物の放射能定量には、大ぎ
な誤差が伴う。それは、一般に@器内に充填されている
放射性廃棄物の放射能の分イ1か局所的であり、かつガ
ンマ線の吸収体となる物質の分イ5が一様でない場合が
多く、検出器からの距離およびガンマ線吸収体のバラツ
キがそのまま測定値に影響をあたえるためである。この
ような誤差は測定対象が低エネルギーガンマ線放出核種
になる程顕著である。
However, quantifying the radioactivity of such waste is accompanied by large errors. In general, the radioactivity of the radioactive waste filled in the container is localized, and the fraction of the gamma ray absorber is often uneven, and the difference between the detector and the This is because the distance between and variations in the gamma ray absorber directly affect the measured values. Such errors become more pronounced as the measurement target becomes a nuclide that emits low-energy gamma rays.

こうした影響をできるだけ排除するために、とくに10
0KeV前後の低エネルギー放出核種の分析を対象とし
て従来実施されていた方式を第5図ないし第8図に示す
。第5図は回転台1上に被測定容器2を載置し、検出器
3を被測定容器2の長手方向に移動させて測定を行う方
式でおり、第6図は第5図と同様な方式で円筒状の被測
定容器2をモータ4によって回転するロール5上に置い
て回転さけ、下方に配置された検出器3を被測定容器2
の軸方向に移動させながら測定を行うものである。
In order to eliminate these effects as much as possible,
A conventional method for analyzing low-energy emitting nuclides around 0 KeV is shown in FIGS. 5 to 8. Figure 5 shows a method in which a container to be measured 2 is placed on a rotary table 1, and the detector 3 is moved in the longitudinal direction of the container to be measured to carry out measurement. In this method, a cylindrical container 2 to be measured is placed on a roll 5 rotated by a motor 4 to avoid rotation, and a detector 3 placed below is placed on a roll 5 that is rotated by a motor 4.
The measurement is carried out while moving in the axial direction.

これらはいずれも、被測定容器を回転することにより、
不均一な放射能分布による距離のバラツキや、ガンマ線
吸収体の分イ1のバラツキを平均化することをめざした
ものでおる。
Both of these can be done by rotating the container to be measured.
The aim is to average out the variations in distance due to non-uniform radioactivity distribution and the variations in the fraction of gamma ray absorbers.

第7図は上記方式を改良したもので、検出器3前面に平
行スリット型コリメーク6を置き、被測定容器2の長手
方向の視野を制限し、被測定容器2を回転機構ごと昇降
台7によって移動させて測定を行うものである。この方
式では被測定容器2内の放飼性物質より放出されるガン
マ線のうち、検出器3まで長手方向に斜めに横切る成分
がカットされるため、第5図および第6図の方式と比べ
て容器内の不均一の影響を小さくすることができる。
FIG. 7 shows an improved version of the above method, in which a parallel slit collimator 6 is placed in front of the detector 3 to limit the longitudinal field of view of the container to be measured 2, and the container to be measured 2 is moved along with the rotating mechanism by a lifting platform 7. Measurement is performed by moving the device. In this method, of the gamma rays emitted from the free substances in the container 2 to be measured, the component that crosses diagonally in the longitudinal direction up to the detector 3 is cut, so compared to the methods shown in FIGS. 5 and 6, The influence of non-uniformity within the container can be reduced.

第8図は第7図の方式にざらに改良を加えたもので、検
出器3前面に置かれた平行スリット型コリメータ6によ
り被測定容器2を測定上いくつかのセグメントに分割し
、回転機構とともに被測定容器2をステップ状に上昇さ
せ、それぞれのセグメントごとに放射能量を評価し、そ
の合計により被測定容器2内の放射能量を評価するとと
もに、被測定容器2をはさんで検出器3と相対する位置
に測定対象核種以外の外部カンマ線源8を配置してガン
マ線の透過率によりセグメント内部の密度の平均を求め
、セグメントごとにガンマ線の吸収補正を行うものであ
る。
FIG. 8 shows a slightly improved method of the method shown in FIG. 7, in which a parallel slit collimator 6 placed in front of the detector 3 divides the container 2 to be measured into several segments, and At the same time, the container to be measured 2 is raised in a stepwise manner, the amount of radioactivity is evaluated for each segment, and the amount of radioactivity in the container to be measured 2 is evaluated based on the total. An external comma ray source 8 other than the nuclide to be measured is placed at a position opposite to the nuclide to be measured, and the average density inside the segment is determined based on the gamma ray transmittance, and gamma ray absorption correction is performed for each segment.

[青票技術の問題点] 従来方式においては、容器の長手方向の放射能分布ある
いは密度分布に関しである程度正確なカンマ線の吸収補
正が可能であるが、容器の半径方向に放射能分布あるい
は密度分布が存在する場合には、放射能の評価値に大き
な差が生じることがある。第9図のグラフは、放射能が
局所的に暗在している場合の例として、200λ容積の
S間装ドラム缶容器内に比重1.25の充填材を入れ、
その中に点状の放射線源1個を埋め込んで第7図の方式
で測定した場合の測定結果を示したもので、曲線Aは放
射線源がドラム缶の表面に位置している場合の評価値の
ドラム缶に均一にカイロしている場合の評価値に対する
比を、測定対象核種のカンマ線エネルギーに関して求め
たグラフて必り、曲線Bは放射線源がドラム缶の中心に
位置している場合の同一しく評価値の比を表わしている
。このグラフからの明らかなように、放飼性物質が点状
に鍋在している場合には、ガンマ線のエネルギーが低く
なると放射能量が過大もしくは過少評価される傾向が大
きくなり、放射能量の定量に大きな誤差をもたらす。こ
れは、ガンマ線エネルギーか低くなると、充填物により
カンマ線の吸収される割合が増加するためでおる。
[Problems with the blue slip technology] In the conventional method, it is possible to perform comma ray absorption correction with some accuracy regarding the radioactivity distribution or density distribution in the longitudinal direction of the container; If a distribution exists, large differences may occur in the radioactivity evaluation values. The graph in FIG. 9 shows, as an example of a case where radioactivity is locally present, a filling material with a specific gravity of 1.25 is placed in an S-interposed drum container with a volume of 200λ,
This shows the measurement results when one point-shaped radiation source is embedded in the drum and measured using the method shown in Figure 7. Curve A shows the evaluation value when the radiation source is located on the surface of the drum. The graph shows the ratio of the comma ray energy of the nuclide to be measured to the evaluation value when the drum is heated uniformly.Curve B shows the same evaluation when the radiation source is located at the center of the drum. It represents the ratio of values. As is clear from this graph, when the release material is scattered in a pot, the lower the energy of gamma rays, the greater the tendency for the amount of radioactivity to be overestimated or underestimated. This results in a large error. This is because as the gamma ray energy decreases, the proportion of comma rays absorbed by the filling increases.

[発明の目的] 本発明はかかる点に対処してなされたもので、固体放射
性廃棄物が充填された定型容器の半径方向に密度あるい
は放射能分布が存在する場合においても、物質によるガ
ンマ線吸収に伴う測定評価誤差をきわめて小さくするこ
とができる放射能濃度測定装置を提供しようとするもの
である。
[Purpose of the Invention] The present invention has been made to address the above-mentioned problems, and even when there is a density or radioactivity distribution in the radial direction of a regular container filled with solid radioactive waste, gamma ray absorption by the substance can be prevented. The object of the present invention is to provide a radioactivity concentration measuring device that can extremely reduce accompanying measurement and evaluation errors.

[発明の概要] すなわら本発明は、測定試料の周囲からカンマ線を測定
するカンマ線検出器と、前記測定試料にカンマ線を照射
してその透過率を測定するための外部ノJンマ線源と、
前記ガンマ線検出器の前面に配置されるスリット幅可変
コリメータと、前記透過率から前記スリット幅可変コリ
メータのスリット幅を制御して前記測定試料内の水平方
向の線源の分布状態による測定誤差の補整を行うととも
に、前記ガンマ線検出器からの測定データを入力して核
種別の放射能濃度を算出する演算装置とを備えたことを
特徴とする放射能濃度測定装置である。
[Summary of the Invention] In other words, the present invention includes a comma ray detector that measures comma rays from around a measurement sample, and an external detector that measures the transmittance of comma rays by irradiating the measurement sample with comma rays. a radiation source;
A variable slit width collimator is arranged in front of the gamma ray detector, and the slit width of the variable slit width collimator is controlled based on the transmittance to compensate for measurement errors due to the horizontal distribution state of the radiation source within the measurement sample. This is a radioactivity concentration measuring device characterized by comprising: a calculation device which inputs measurement data from the gamma ray detector and calculates radioactivity concentration for each nuclide.

[発明の実施例] 以下、図面に示した一実施例について本発明の詳細な説
明する。
[Embodiment of the Invention] Hereinafter, the present invention will be described in detail with regard to an embodiment shown in the drawings.

第1図および第2図は、本発明の放射能濃度測定装置の
一実施例の検出部を示すもので、第1図は横断面を、第
2図は縦断面を概略的に示している。この検出部は、被
測定容器2を載置する試料載置台9と、この試料載置台
2を定速回転させる回転機構(図示せず)および昇降さ
せる昇降機構(図示せず)と、被測定容器2に測定対象
核種と別のエネルギーのガンマ線を透過させる外部ガン
マ線源10と、被測定容器2内から放出されるガンマ線
および外部ガンマ線源からの被測定容器2中を透過した
ガンマ線を検出する複数のカンマ線検出器11(たとえ
ばゲルマニウム半導体検出器あるいはNaI(Tλ)シ
ンチレーション検出器等)と、これらガンマ線検出器1
1の前面に置かれる長方形型スリット幅可変コリメータ
12とから構成される。
Figures 1 and 2 show a detection section of an embodiment of the radioactive concentration measuring device of the present invention, with Figure 1 schematically showing a cross section and Figure 2 schematically showing a longitudinal section. . This detection unit includes a sample mounting table 9 on which the container to be measured 2 is placed, a rotation mechanism (not shown) that rotates the sample mounting table 2 at a constant speed, an elevating mechanism (not shown) that raises and lowers the sample mounting table 2, and a an external gamma ray source 10 that transmits gamma rays of energy different from the nuclide to be measured into the container 2; and a plurality of external gamma ray sources that detect gamma rays emitted from within the container 2 to be measured and gamma rays transmitted through the container 2 from the external gamma ray source. A comma ray detector 11 (for example, a germanium semiconductor detector or a NaI (Tλ) scintillation detector), and these gamma ray detectors 1
A rectangular slit width variable collimator 12 is placed in front of the collimator 1.

この長方形型スリット幅可変コリメータ12を第3図に
拡大して示す。高さ方向のスリン1〜幅は所定の幅に固
定されるが、水平方向のスリット幅は、図中符号13で
示されるスリットがガイドピン14に沿ってスライドす
ることにより、自在に変えることができる。このような
水平方向のスリット幅は図示しない演算装置によって制
御される。
This rectangular variable slit width collimator 12 is shown enlarged in FIG. The width of the slit in the height direction is fixed to a predetermined width, but the width of the slit in the horizontal direction can be changed freely by sliding the slit indicated by reference numeral 13 along the guide pin 14 in the figure. can. The slit width in the horizontal direction is controlled by an arithmetic unit (not shown).

まず、被測定容器2はその中心軸が回転軸と一致するよ
うに試料載置台9に載置される。この試料載置台9上の
試料は、放射能評価上試料の長手方向に複数の円柱状セ
グメントに分割され、この各セグメントごとにそれぞれ
放削能帛を評価して、その和として全体の放射能♀が求
められる。このような測定上の分割は、ガンマ線検出器
11の前面に置かれたコリメータ12の高さ方向のスリ
ット幅により長手方向の視野を制限し、試料をこの視野
に相当する距離ずつステップ状に上昇させ、その都度定
速回転させながら測定することによって得られる。
First, the container 2 to be measured is placed on the sample mounting table 9 so that its central axis coincides with the rotation axis. The sample on this sample mounting table 9 is divided into a plurality of cylindrical segments in the longitudinal direction of the sample for radioactivity evaluation, and the cutting activity is evaluated for each segment, and the total radioactivity is calculated as the sum. ♀ is required. Such measurement division limits the longitudinal field of view by the width of the slit in the height direction of the collimator 12 placed in front of the gamma ray detector 11, and raises the sample stepwise by a distance corresponding to this field of view. It can be obtained by measuring while rotating at a constant speed each time.

各セグメントについての110”J化量は、次の手順を
経て算出される。まず、外部カンマ線源10がらの透過
ガンマ線が外部ガンマ線源10と試料を挾んで対向する
位置のガンマ線検出器11によって測定され、その透過
率より、次式に基づいて、そのレグメン1〜中の平均密
度ρが演算装置において算出される。
The amount of 110"J conversion for each segment is calculated through the following steps. First, the transmitted gamma rays from the external comma ray source 10 are detected by the gamma ray detector 11 at a position facing the external gamma ray source 10 with the sample sandwiched between them. The average density ρ of the legmen 1 to 1 is calculated from the transmittance by the calculation device based on the following equation.

l0Q(I/Io) ρ=− μmt ここで、Ioは試料のない状態におりる外部ガンマ線源
10からのガンマ線削数率、■は試料を置いた状態にお
ける外部ガンマ線源10からのガンマ線計数率、μmは
外部ガンマ線源10からのガンマ線エネルギーに対応す
る質量吸収係数、tは被測定容器の内半径である。
l0Q (I/Io) ρ=- μmt Here, Io is the gamma ray count rate from the external gamma ray source 10 when there is no sample, and ■ is the gamma ray count rate from the external gamma ray source 10 when the sample is placed. , μm is the mass absorption coefficient corresponding to the gamma ray energy from the external gamma ray source 10, and t is the inner radius of the vessel to be measured.

ついで、カンマ線検出器11の前面に設置された長方形
型スリット幅可変コリメータ12のスリブ1〜幅がガン
マ線透過率より決定されるが、それは次のような原理に
基づくものである。試料中に放射性核種が中心部に偏在
している場合、カンマ線検出器11との間の物質の内部
吸収により、ガンマ線検出器11での測定値は減少する
。この減少割合は密度が高くなるにつれて指数的に増加
し、測定の過少評価につながる。一方、ガンマ線検出器
11より試料をながめた場合、その視野の広がりは水平
方向のスリット幅が広い程広くなる。測定試料は定速度
回転しているため、コリメータの視野を放射能か横切る
時間は中心部と周辺とでは異なり、周辺にいく程短くな
る。この対比はスリットの幅が狭くなる稈人ぎくなる。
Next, the width of the slit 1 of the rectangular variable slit width collimator 12 installed in front of the comma ray detector 11 is determined from the gamma ray transmittance, which is based on the following principle. When radionuclides are unevenly distributed in the center of the sample, the measured value at the gamma ray detector 11 decreases due to internal absorption of the substance between the sample and the comma ray detector 11. This rate of decrease increases exponentially with increasing density, leading to underestimation of measurements. On the other hand, when viewing the sample through the gamma ray detector 11, the wider the horizontal slit width, the wider the field of view. Since the measurement sample is rotating at a constant speed, the time it takes for radioactivity to cross the field of view of the collimator is different between the center and the periphery, and becomes shorter toward the periphery. This contrast makes the culm stiffer as the width of the slit becomes narrower.

したがって、適当なコリメータ12のスリン1へ幅をと
ることにより、放射能の半径方向の分イ[に応じた形で
、線源が中心部および周辺部にあった場合の双方のカン
マ線の吸収の差を補正する壬みつ【プか可能てある。し
かしなから、充填密度か同一の場合でし、測定対象核種
が異なると、測定対象核種から放出されるガンマ線の吸
収率か変わるため、透過率とス1ノット幅の関係は異な
るものとなる。したがって、あらかじめ測定対象核種を
ガンマ線の放出エネルギーに応じて複数のグループに分
類し、それぞれについて専用のスペクトル測定用のカン
マ線検出器11および]リメータ12を用いて第4図に
示すようなガンマ線透過率対スリット幅の関係を導出し
、この結果に基づいてそれぞれのコリメータ12のスリ
ット幅を決定する。エネルギー領域の分類としては、た
とえばガンマ線検出器11を2台用いる場合、ガンマ線
吸収係数の変化の度合が比較的少ない100〜1500
KeVと100KeV以下にと分類する方法が考えられ
る。
Therefore, by setting an appropriate width to the sulin 1 of the collimator 12, the absorption of both comma rays when the source is at the center and at the periphery can be achieved in accordance with the radial portion of the radioactivity. It is possible to correct the difference. However, if the packing density is the same and the nuclide to be measured is different, the absorption rate of gamma rays emitted from the nuclide to be measured will change, so the relationship between the transmittance and the s1 knot width will be different. Therefore, the nuclide to be measured is classified in advance into a plurality of groups according to the emitted energy of gamma rays, and a dedicated comma ray detector 11 and a remeter 12 are used for each group to measure the gamma ray transmission as shown in FIG. The relationship between ratio and slit width is derived, and the slit width of each collimator 12 is determined based on this result. For example, when two gamma ray detectors 11 are used, the energy range is classified as 100 to 1500, where the degree of change in gamma ray absorption coefficient is relatively small.
One possible method is to classify it into KeV and 100KeV or less.

このようにいくつかに分類された各エネルギー領域にお
けるガンマ線透過率とスリン1〜幅の関係より、各エネ
ルギー領域に対応するガンマ線検出器11の前のコリメ
ータ12のスリット幅が決定され、ついで、カンマ線ス
ペクトルの測定が行われる。演算装置は、各ガンマ検出
器11からのガンマ線スペクトルデータを入力して測定
対象核種のピークル1数率を算出し、ついで必らかしめ
スリット幅8密度の関数として計算もしくは線源による
実測より求められた検出効率を用い核種別放射能濃度を
算出する。
The slit width of the collimator 12 in front of the gamma ray detector 11 corresponding to each energy region is determined from the relationship between the gamma ray transmittance and the slit width in each energy region classified into several in this way, and then the comma Line spectrum measurements are taken. The calculation device inputs the gamma ray spectrum data from each gamma detector 11, calculates the peak number 1 number rate of the nuclide to be measured, and then calculates it as a function of the slit width 8 density or obtains it from actual measurement using a radiation source. Calculate the radioactivity concentration by nuclide using the detection efficiency.

なあ、本実施例においては、スペクトル測定用のガンマ
線検出器のうちの1台をガンマ線透過率測定に兼用した
が、ガンマ線透過率測定には、スペクトル測定用のガン
マ線検出器とは別のガンマ線検出器を用いてもよい。
In this example, one of the gamma ray detectors for spectrum measurement was also used for gamma ray transmittance measurement, but for gamma ray transmittance measurement, a gamma ray detector separate from the gamma ray detector for spectrum measurement was used. A container may also be used.

[発明の効果] 以上の説明からも明らかなように、本発明の放射能濃度
測定装置では、被測定容器の長手方向の密度および放射
能分布により測定上の誤差を小ざくすることができるば
かりでなく、容器の半径方向の密度および放射能分布に
関しても、広いエネルギー範囲で内部吸収効果の補正が
可能となり、半径方向のバラツキが存在しても正確な放
射能濃度を測定することができる。
[Effects of the Invention] As is clear from the above explanation, the radioactivity concentration measuring device of the present invention can reduce measurement errors by adjusting the density and radioactivity distribution in the longitudinal direction of the container to be measured. In addition, regarding the density and radioactivity distribution in the radial direction of the container, it is possible to correct internal absorption effects over a wide energy range, and it is possible to accurately measure the radioactivity concentration even if there are variations in the radial direction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の放射能濃度測定装置の一実施例の検出
部を示す横断面図、第2図は第1図に示す検出部の縦断
面図、第3図は第1図に示す放射能濃度測定装置の長方
形型スリット幅可変コリメータを示す斜視図、第4図は
ガンマ線透過率とスリット幅の関係の一例を示すグラフ
、第5図ないし第8図は従来の放射能濃度測定装置の検
出部を示す側面図、第9図は充填剤入りのドラム缶内に
点状の放射線源1個を中心部に位置せしめた場合と、ド
ラム缶表面に位置μしめた場合の第7図に示ゴ装置で求
めた放射能評価値を示すグラフでおる。 2・・・・・・・・・被測定容器 9・・・・・・・・・試利戎置台 10・・・・・・・・・外部ガンマ線源11・・・・・
・・・・ガンマ線検出器12・・・・・・・・・長方形
型スリット幅可変コリメータ第1図 第2図 第5図 箕6図 第8図
FIG. 1 is a cross-sectional view showing the detection section of an embodiment of the radioactive concentration measuring device of the present invention, FIG. 2 is a longitudinal section view of the detection section shown in FIG. 1, and FIG. 3 is the same as shown in FIG. 1. A perspective view showing a rectangular variable slit width collimator of a radioactive concentration measuring device, FIG. 4 is a graph showing an example of the relationship between gamma ray transmittance and slit width, and FIGS. 5 to 8 are a conventional radioactive concentration measuring device Figure 9 is a side view showing the detection part of the drum can with filler, and Figure 7 shows the case where one point-shaped radiation source is positioned at the center of the drum can, and the side view when it is positioned on the surface of the drum can. This is a graph showing the radioactivity evaluation values determined by the Go device. 2...... Container to be measured 9... Test sample stand 10... External gamma ray source 11...
・・・・・・Gamma ray detector 12・・・・・・・・・Rectangular slit width variable collimator Fig. 1 Fig. 2 Fig. 5 Minoh Fig. 6 Fig. 8

Claims (2)

【特許請求の範囲】[Claims] (1)測定試料の周囲からガンマ線を測定するガンマ線
検出器と、前記測定試料にガンマ線を照射してその透過
率を測定するための外部ガンマ線源と、前記ガンマ線検
出器の前面に配置されるスリット幅可変コリメータと、
前記透過率から前記スリット幅可変コリメータのスリッ
ト幅を制御して前記測定試料内の水平方向の線源の分布
状態による測定誤差の補正を行うとともに、前記ガンマ
線検出器からの測定データを入力して核種別の放射能濃
度を算出する演算装置とを備えたことを特徴とする放射
能濃度測定装置。
(1) A gamma ray detector that measures gamma rays from around the measurement sample, an external gamma ray source that irradiates the measurement sample with gamma rays and measures its transmittance, and a slit placed in front of the gamma ray detector. a variable width collimator;
The slit width of the variable slit width collimator is controlled from the transmittance to correct measurement errors due to the distribution state of the radiation source in the horizontal direction within the measurement sample, and measurement data from the gamma ray detector is input. A radioactivity concentration measuring device comprising: a calculation device for calculating radioactivity concentration for each nuclide.
(2)スリット幅可変コリメータの高さ方向のスリット
幅は固定され、水平方向のスリット幅のみ可変である特
許請求の範囲第1項記載の放射能濃度測定装置。
(2) The radioactive concentration measuring device according to claim 1, wherein the slit width in the height direction of the variable slit width collimator is fixed, and only the slit width in the horizontal direction is variable.
JP22116785A 1985-10-04 1985-10-04 Measuring instrument for radioactive concentration Pending JPS6280579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22116785A JPS6280579A (en) 1985-10-04 1985-10-04 Measuring instrument for radioactive concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22116785A JPS6280579A (en) 1985-10-04 1985-10-04 Measuring instrument for radioactive concentration

Publications (1)

Publication Number Publication Date
JPS6280579A true JPS6280579A (en) 1987-04-14

Family

ID=16762520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22116785A Pending JPS6280579A (en) 1985-10-04 1985-10-04 Measuring instrument for radioactive concentration

Country Status (1)

Country Link
JP (1) JPS6280579A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003516548A (en) * 1999-12-08 2003-05-13 コミツサリア タ レネルジー アトミーク Radiation detector with variable collimation function

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003516548A (en) * 1999-12-08 2003-05-13 コミツサリア タ レネルジー アトミーク Radiation detector with variable collimation function
US6723996B2 (en) * 1999-12-08 2004-04-20 Commissariat A L'energie Atomique Variable collimation radiation detector

Similar Documents

Publication Publication Date Title
US7902519B2 (en) Monitoring
US20100010764A1 (en) Correction of a radioactivity measurement using particles from atmospheric source
KR20180050016A (en) Total inspection system and method for measuring the alpha, beta, and gamma radioactivity from dismantled radioactive wastes in the nuclear power plant decommissioning
JP3795041B2 (en) Radioactive substance content measuring method and measuring apparatus
JP3225127B2 (en) Radioactivity concentration measuring device for radioactive waste storage containers
JPH07159541A (en) Radioactivity concentration measuring apparatus for radioactive waste container
US3932758A (en) Method and apparatus for determining the dose value of neutrons
JP3581413B2 (en) Non-destructive radiometric collimator measurement method for solidified radioactive waste in drums
JPS6280579A (en) Measuring instrument for radioactive concentration
JP2703409B2 (en) Radioactivity measurement method
JPH09230051A (en) Radioactivity quantity measuring method for radioactive waste solidified body
JPS6280578A (en) Measuring instrument for radioactive concentration
JPH04194772A (en) Radiation measuring device
Yamada et al. Performance evaluation of the equipment for measuring radioactivity in whole foodstuffs without destructive sample preparation developed after the Fukushima NPP accident
JP2020193811A (en) Radioactivity evaluation method, radioactivity measurement method and radioactivity measurement device
JPH01101489A (en) Radioactive nuclear species measuring instrument
JP2020094906A (en) Nuclear material quantity measuring apparatus and nuclear material quantity measuring method
JP3241262B2 (en) Radioactivity measurement method for solidified radioactive waste
JP2635860B2 (en) Radioactivity evaluation method for solidified radioactive waste
JP7283717B2 (en) Radioactive concentration evaluation device
JPH0481684A (en) Apparatus for measuring radioactivity
JPH05180942A (en) Radioactivity measuring instrument for radioactive waste packed in drum
JP7307040B2 (en) Radioactivity concentration evaluation method
JP2624480B2 (en) Radioactivity measurement device
JPS62168080A (en) Measuring instrument for radiation concentration