JP2703409B2 - Radioactivity measurement method - Google Patents

Radioactivity measurement method

Info

Publication number
JP2703409B2
JP2703409B2 JP3001212A JP121291A JP2703409B2 JP 2703409 B2 JP2703409 B2 JP 2703409B2 JP 3001212 A JP3001212 A JP 3001212A JP 121291 A JP121291 A JP 121291A JP 2703409 B2 JP2703409 B2 JP 2703409B2
Authority
JP
Japan
Prior art keywords
radioactivity
measurement
count rate
block
peak count
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3001212A
Other languages
Japanese (ja)
Other versions
JPH04235379A (en
Inventor
哲夫 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3001212A priority Critical patent/JP2703409B2/en
Publication of JPH04235379A publication Critical patent/JPH04235379A/en
Application granted granted Critical
Publication of JP2703409B2 publication Critical patent/JP2703409B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】〔発明の目的〕[Object of the invention]

【0002】[0002]

【産業上の利用分野】本発明は、供用中或いは原子炉解
体に伴う廃棄物等の試料体、特に非均質で大型の試料体
の放射能を測定するのに最適な放射能測定方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring radioactivity which is most suitable for measuring the radioactivity of a sample such as waste during operation or accompanying dismantling of a nuclear reactor, particularly a non-homogeneous large sample.

【0003】[0003]

【従来の技術】従来、特に大型の試料体の放射能を測定
する放射能測定装置としては、各種の200リットルド
ラム缶検査装置が一般に知られていた。これは、図7に
その一例を示すように、200リットルドラム缶1をタ
ーンテーブル2上に搭載して回転させつつ、この側方に
配置したGe検出器等の放射線検出器3で該検出器3或
いはターンテーブル2を昇降台4上に乗せて相対的に動
かすことにより放射能の測定を行うものであり、解体前
の大型の汚染機器などに対しては適用できず、またいず
れもドラム缶1単位の平均放射能濃度を求めるための装
置であった。
2. Description of the Related Art Conventionally, as a radioactivity measuring apparatus for measuring the radioactivity of a particularly large sample, various 200-liter drum inspection apparatuses have been generally known. As shown in an example in FIG. 7, a 200-liter drum 1 is mounted on a turntable 2 and rotated, and a radiation detector 3 such as a Ge detector disposed on the side of the drum can 1 is used as a detector. Alternatively, the radioactivity is measured by placing the turntable 2 on the lifting platform 4 and relatively moving it, and cannot be applied to large-sized contaminated equipment before dismantling, and in each case, one drum can Was used to determine the average radioactivity concentration.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、今後原
子炉の解体等に伴って発生する廃棄物等に対しては、ド
ラム缶1に収容不可能な大型の機器等(試料体)が含ま
れることが予想され、こうしたものについては、測定の
迅速化、処理コストの低減、或いは被曝の低減化等の観
点から、試料体を解体することなくそのままの状態で放
射能評価する必要性がある場合もあると予想される。
However, for wastes and the like generated in the future due to the dismantling of a nuclear reactor, large-sized equipment (sample) that cannot be accommodated in the drum 1 may be included. It is anticipated that it may be necessary to evaluate the radioactivity of such samples without dismantling the sample from the viewpoint of speeding up measurement, reducing processing costs, or reducing exposure. It is expected to be.

【0005】また、このような場合、測定後の廃棄物の
処理処分に当たって安全評価の観点から、機器全体(試
料体)の平均濃度でなく、重量当たりの局所的な放射能
濃度が問題とされる場合も予想され、こうした観点から
も従来技術では対応が不可能である。
[0005] In such a case, when treating and disposing of waste after measurement, from the viewpoint of safety evaluation, not the average concentration of the entire equipment (sample body) but the local concentration of radioactivity per weight is regarded as a problem. In some cases, conventional techniques cannot cope with this point of view.

【0006】更に、測定対象である試料体の大型化に伴
い、測定対象の不均質性の評価精度に与える影響につい
ても大きくなることが予想され、新たな放射能測定方法
の開発が要求されているのが現状であった。
Further, as the size of the sample to be measured increases, the influence of the heterogeneity of the measurement on the evaluation accuracy is expected to increase, and the development of a new radioactivity measurement method is required. It was the current situation.

【0007】本発明は上記に鑑み、特に非均質で大型の
試料体を分解することなく、細分化した状態での放射能
濃度を評価することができるとともに、測定精度の改善
も達成できる放射能測定方法を提供することを目的とす
る。 〔発明の構成〕
[0007] In view of the above, the present invention enables the evaluation of the radioactivity concentration in a fragmented state without decomposing a non-homogeneous and large sample, and the improvement of the measurement accuracy. It is intended to provide a measuring method. [Configuration of the invention]

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明に係る放射能測定方法は、2種類以上のγ線
を放出する放射能を含む試料体を複数のブロックに分割
し、各ブロックに含まれる放射能から放出されるγ線を
複数の測定位置で1台の放射線検出器で測定して得たγ
線スペクトルに基づいて各ブロックに含まれる放射能の
光電ピーク計数率を、そのブロックに含まれる放射能量
と、複数の測定位置の一の測定位置からの距離と、各ブ
ロックの密度とを有する関数で表わし、この各ブロック
の光電ピーク計数率を複数のブロック全体において総和
した光電ピーク計数率を、前記の一の測定位置における
試料体の光電ピーク計数率として表わし、複数の測定位
置における試料体の光電ピーク計数率を測定して、前記
関数と比較することによって、前記放射能量と前記密度
とを求めることを特徴とする。
In order to achieve the above object, a method for measuring radioactivity according to the present invention comprises dividing a sample containing radioactivity emitting two or more types of γ-rays into a plurality of blocks. Γ obtained by measuring γ-rays emitted from the radioactivity contained in the block at a plurality of measurement positions with one radiation detector
A function having the photopeak count rate of the radioactivity contained in each block based on the line spectrum, the amount of radioactivity contained in the block, the distance from one of the plurality of measurement positions, and the density of each block. The photoelectric peak count rate obtained by summing the photoelectric peak count rates of the respective blocks in a plurality of blocks is represented as the photoelectric peak count rate of the sample at the one measurement position, and the The amount of radioactivity and the density are obtained by measuring a photoelectric peak count rate and comparing the measured function with the function.

【0009】また、試料体に含まれる放射能から放出さ
れるγ線の種類が1種類である場合には、複数台の放射
線検出器で同時に測定して得たγ線スペクトルに基づい
て、同様に試料体の放射能量および密度を求めることが
できる。
When only one kind of γ-ray is emitted from the radioactivity contained in the sample, the γ-ray spectrum obtained by simultaneously measuring with a plurality of radiation detectors is used. The radioactivity and the density of the sample can be determined in advance.

【0010】[0010]

【作用】上記のように構成した本発明によれば、測定単
位ごとの放射能濃度を、測定対象である試料体を物理的
に分解することなく、かつ非均質な試料体についても正
確に測定することができる。
According to the present invention constructed as described above, the radioactivity concentration for each unit of measurement can be accurately measured without physically decomposing the sample to be measured and also for a non-homogeneous sample. can do.

【0011】[0011]

【実施例】以下、本発明の実施例を図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】図1及び図2は、放射線検出器3が1台
で、かつ測定点(測定位置)をN個にとった場合の放射
能測定方法の一例を示すものである。
FIGS. 1 and 2 show an example of a method for measuring radioactivity when one radiation detector 3 is used and N measurement points (measurement positions) are taken.

【0013】即ち、直方体状に仮定した測定対象である
試験体(廃棄物)5の放射能中のγ線を、エネルギー測
定可能なGe検出器等の放射線検出器3で該検出器3に
対して相対的に移動しつつ、N個(N=5)の区分に分
割して測定する。夫々の区分の放射能量をAi 、密度を
ρi と置くと、各測定点での光電ピーク計数率Cnkは下
記式1で与えられる。
That is, the γ-rays in the radioactivity of the test object (waste) 5 to be measured, which is assumed to be a rectangular parallelepiped, is transmitted to the detector 3 by a radiation detector 3 such as a Ge detector capable of measuring energy. While moving relatively, and dividing into N (N = 5) sections for measurement. Assuming that the radioactivity of each section is A i and the density is ρ i , the photoelectric peak count rate C nk at each measurement point is given by the following equation 1.

【0014】[0014]

【数1】 ここで、nは測定位置(最大N)を、iは測定上の分割
位置(最大I)を、kは同一崩壊による放出γ線の個数
(最大K)を夫々意味している。Ek は、k番目の放出
γ線エネルギーであり、μ(Ek )は、γ線エネルギー
に対する質量吸収係数であり、物質によって余り差がな
いものである。測定位置nから分割位置iまでの通過距
離における各ブロック(分割位置)をiとは別個にjと
して表すと、測定位置nから分割位置iまでの各ブロッ
ク毎の通過距離はtijn として表現され、またrinは、
同様に測定位置から分割位置iまでの距離である。
(Equation 1) Here, n means the measurement position (maximum N), i means the measurement division position (maximum I), and k means the number (maximum K) of emitted γ-rays due to the same decay. E k is the k-th emitted γ-ray energy, μ (E k ) is the mass absorption coefficient for γ-ray energy, and there is no significant difference among substances. When each block (division position) in the passage distance from the measurement position n to the division position i is represented as j separately from i, the passage distance for each block from the measurement position n to the division position i is represented as t ijn. , And r in
Similarly, it is the distance from the measurement position to the division position i.

【0015】ここに、測定対象が複数のγ線を放出する
Co−60或いはEu−152といった核種である場
合、上記kの値は、夫々2乃至5個程度までの値とな
る。
Here, when the object to be measured is a nuclide such as Co-60 or Eu-152 which emits a plurality of γ-rays, the value of k is about 2 to 5 each.

【0016】この場合、上記の式1は、N×K個の連立
式となり、各光電ピーク計数率Ciと測定点nとの関係
は図2に示すようになる。
In this case, the above equation 1 is an N × K simultaneous equation, and the relationship between each photoelectric peak count rate C i and the measurement point n is as shown in FIG.

【0017】また、図3に示すように、上記と同様な放
射線検出器3を試料体5の両側等に配置し、試料体5を
移動させながら放射能を測定した場合には、上記の式
は、更に放射線検出器3の数m(最大M)の和となり、
As shown in FIG. 3, when the radiation detector 3 similar to the above is disposed on both sides of the sample body 5 and the radioactivity is measured while moving the sample body 5, the above equation is obtained. Is the sum of several m (maximum M) of the radiation detectors 3,

【数2】 がN×K×M個に亙って各測定点及び検出器で成立す
る。
(Equation 2) Holds for each measurement point and detector over N × K × M.

【0018】上記光電ピーク計数率Cnkm は、図4に示
すように、光電効果によるγ線のエネルギーピークとし
て検出される。図4にはγ線と物質との相互作用現象の
ひとつであるコンプトン散乱による散乱線も示されてい
る。
The photoelectric peak count rate C nkm is detected as an energy peak of γ-rays due to the photoelectric effect, as shown in FIG. FIG. 4 also shows scattered radiation due to Compton scattering, which is one of the interaction phenomena between γ-rays and a substance.

【0019】この図4に示す各放出放射線に対する散乱
線の計数率Bnkm に関しても、類似した式
A similar formula is applied to the scattered radiation count rate B nkm for each emitted radiation shown in FIG.

【数3】 (Equation 3)

【0020】なお、プラスチックシンチレーション検出
器等のエネルギー弁別の不可能な検出器を放射線検出器
3として使用した場合における全光電ピーク計数率Cn
は、
The total photopeak count rate C n when using a radiation detector 3 that cannot detect energy, such as a plastic scintillation detector.
Is

【数4】 となり、検出器3の個数M及び測定点Nの積M×Nでこ
の式4が成立しデータとして取得される。
(Equation 4) Equation 4 holds with the product M × N of the number M of the detectors 3 and the measurement points N, and is obtained as data.

【0021】そして、放射能濃度評価は、以上のデータ
を用いて、M+N個の未知数、Ai及びρi を夫々求
め、下記の式5により放射能濃度ai に換算することに
よって行う。Iについては測定精度を向上させるために
はできるだけ多い方が望ましい。この結果、検出器数M
および測定点Nの積を未知数2×I以上にするため、測
定時間および装置コストが増大することになる。このた
め、これらの式の運用に当たっては、測定点あるいは検
出器をできるだけ削減するため、同一測定で得られる複
数情報、すなわち散乱線計数率Bnkm 、光電ピーク計数
率Cnkm を組み合せて用いることが望ましい。この場
合、式2もしくは式3を複数試験体に含まれる放射性核
種の種類によって組み合せる必要がある。仮に、検出器
を1台(M=1)、測定点N=Iとした場合には、測定
対象核種がCs−137のようなγ線を1本しか放出し
ないものにあっては、式1だけでは解が求められないた
め、複数台の放射線検出器3を用いた場合の式2及び式
3の情報(関係式)によって解を求める。また、Eu−
152のように、極めて測定γ線の放出量が多いものに
関しては、散乱線の領域の設定が困難であるため、式1
及び式2の情報を適用することが好ましい。
The evaluation of the radioactivity concentration is performed by obtaining M + N unknowns, A i and ρ i , respectively, using the above data and converting them into the radioactivity concentration a i by the following equation (5). It is desirable that I be as large as possible in order to improve the measurement accuracy. As a result, the number of detectors M
In addition, since the product of the measurement points N is equal to or greater than the unknown 2 × I, the measurement time and the apparatus cost increase. Therefore, in the operation of these equations, in order to reduce the number of measurement points or detectors as much as possible, it is necessary to use a plurality of pieces of information obtained by the same measurement, that is, the scattered radiation count rate B nkm and the photoelectric peak count rate C nkm in combination. desirable. In this case, it is necessary to combine Equation 2 or Equation 3 depending on the type of radionuclide contained in a plurality of test specimens. Assuming that one detector (M = 1) and the measurement point N = I, if the nuclide to be measured emits only one gamma ray such as Cs-137, the expression 1 Since a solution cannot be obtained only by using the above, the solution is obtained by the information (relational expression) of Expressions 2 and 3 when a plurality of radiation detectors 3 are used. In addition, Eu-
For those having a very large amount of measured γ-rays, such as 152, it is difficult to set the scattered radiation area.
And the information of Equation 2 is preferably applied.

【0022】[0022]

【数5】 ai =Ai /ρi i ……(式5) ここで、Vi は測定区分の体積である。[Number 5] a i = A i / ρ i V i ...... ( Equation 5) where, is the volume of V i is the measuring section.

【0023】更に、tijnm、rinm に関しては、各測定
区分ごとの放射能存在位置が1点であり、かつ同一位置
に存在するとして仮定し、予め定数として与えておく。
本要素が余り測定に利かない条件としては、測定容器と
検出機関の距離が比較的離れている場合である。
Further, as for t ijnm and r inm, it is assumed that the radioactivity exists in each measurement section at one point and exists at the same position, and is given as constants in advance.
The condition where this element is not very useful for measurement is when the distance between the measurement container and the detection institution is relatively large.

【0024】上記の一連の非線形方程式の解法として
は、例えば最少自乗法による繰り返し演算による方式な
どがある。
As a method of solving the above series of nonlinear equations, for example, there is a method based on a repetitive operation by the least square method.

【0025】図5に、上記放射能測定に適した放射能測
定装置の一例を示す。
FIG. 5 shows an example of a radioactivity measuring apparatus suitable for the above radioactivity measurement.

【0026】即ち、直方体状の測定用台車6の両側にG
e検出器等の放射線検出器3が配置されており、測定用
台車6の上に廃棄物等の試料体5が設定される。前記測
定用台車6は、駆動装置及び位置検出器7を介して放射
線検出器3の間をステップ状に移動及び停止を繰り返す
ように構成され、各停止位置を測定点として、放射線検
出器3によりγ線スペクトルが計測される。そして、計
算機は、各測定点におけるγ線スペクトル情報から、光
電ピーク計数率及び拡散線(散乱線)計数率を算出し、
上記の手順で放射能濃度を各測定区分ごとに計算を行う
ようなされている。
That is, G is provided on both sides of the rectangular
A radiation detector 3 such as an e-detector is disposed, and a sample body 5 such as waste is set on a measurement cart 6. The measurement cart 6 is configured to repeatedly move and stop in a step-like manner between the radiation detectors 3 via a driving device and a position detector 7, and each stop position is used as a measurement point and the radiation detector 3 A γ-ray spectrum is measured. Then, the calculator calculates the photoelectric peak count rate and the diffuse ray (scattered ray) count rate from the γ-ray spectrum information at each measurement point,
According to the above procedure, the radioactivity concentration is calculated for each measurement section.

【0027】放射線検出器3としては、エネルギー測定
が可能な検出器として、Ge検出器の他、NaI検出器
が、エネルギー測定が不可能な検出器として、プラスチ
ックシンチレーション検出器が代表的なものとして挙げ
られる。
As the radiation detector 3, in addition to a Ge detector as a detector capable of measuring energy, a NaI detector is a representative of which energy measurement is not possible, and a plastic scintillation detector is representative. No.

【0028】一例として、上記装置により、100cm立
方の試験体(かさ密度1の金属)の中心位置から表面ま
での各位置にCo−60点状線源を設置し、試験体の横
方向5カ所により、Ge検出器でγ線スペクトルの測定
を行った場合の解析結果を図6に示す。Co−60は、
強度がほぼ同程度の2本のγ線を放出するため、合計1
0本のデータが得られ、5分割した密度及び放射能量の
合計10個のデータを式1を用いて解き、放射能の合計
値として、実際の測定値との比較を行った。その結果、
単純に各測定点の光電ピーク計数率から、放射能が試料
全体に均一に分布している場合に得られる測定データに
比べ1桁近い線源位置により精度の改善が得られること
が分かった。
As an example, a Co-60 point source is installed at each position from the center position to the surface of a 100 cm cubic test specimen (metal having a bulk density of 1) by the above-mentioned apparatus, and 5 points in the lateral direction of the test specimen. FIG. 6 shows an analysis result obtained by measuring a γ-ray spectrum with a Ge detector. Co-60 is
Since two gamma rays with almost the same intensity are emitted, a total of 1
Zero data was obtained, and a total of 10 data of the density and the amount of radioactivity divided into 5 were solved using Equation 1, and compared with actual measured values as the total value of radioactivity. as a result,
Simply, from the photoelectric peak count rate of each measurement point, it was found that the accuracy was improved by a source position closer to one digit compared to the measurement data obtained when the radioactivity was uniformly distributed throughout the sample.

【0029】[0029]

【発明の効果】本発明は上記のような構成であるので、
不均一な汚染を有する大型の試験試料について、実際に
分割することなく細分化した放射法濃度の測定を行うこ
とができ、局部的な汚染の正確な評価が可能となる。ま
た、不均一な汚染を有する大型の測定試料についての測
定精度の改善も同時に達成することができるといった効
果がある。
Since the present invention has the above configuration,
With respect to a large test sample having non-uniform contamination, it is possible to measure the radiographic concentration subdivided without actually dividing the sample, thereby enabling accurate evaluation of local contamination. Further, there is an effect that the measurement accuracy of a large measurement sample having non-uniform contamination can be improved at the same time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】検出器を1つとした場合における計数率測定の
模式図。
FIG. 1 is a schematic diagram of counting rate measurement when one detector is used.

【図2】図1に対応した計数率と測定点の関係を示すグ
ラフ。
FIG. 2 is a graph showing a relationship between a counting rate and measurement points corresponding to FIG.

【図3】検出器を2つとした場合における計数率測定の
平面図。
FIG. 3 is a plan view of counting rate measurement when two detectors are used.

【図4】計数率とγ線エネルギーの関係を示すグラフ。FIG. 4 is a graph showing a relationship between a counting rate and γ-ray energy.

【図5】本発明の測定方法に使用するに最適な測定装置
の斜視図。
FIG. 5 is a perspective view of a measuring apparatus optimal for use in the measuring method of the present invention.

【図6】本発明方法による解析結果の一例を示すグラ
フ。
FIG. 6 is a graph showing an example of an analysis result by the method of the present invention.

【図7】従来の放射能測定装置の一例を示す斜視図。FIG. 7 is a perspective view showing an example of a conventional radioactivity measuring device.

【符号の説明】[Explanation of symbols]

3 放射線検出器 5 試料体(測定対象,廃棄物) 3 Radiation detector 5 Sample body (measurement target, waste)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 2種類以上のγ線を放出する放射能を含
む試料体を複数のブロックに分割し、各ブロックに含ま
れる放射能から放出されるγ線を複数の測定位置で1台
の放射線検出器で測定して得たγ線スペクトルに基づい
て各ブロックに含まれる放射能の光電ピーク計数率を、
そのブロックに含まれる放射能量と、複数の測定位置の
一の測定位置からの距離と、各ブロックの密度とを有す
る関数で表わし、この各ブロックの光電ピーク計数率を
複数のブロック全体において総和した光電ピーク計数率
を、前記の一の測定位置における試料体の光電ピーク計
数率として表わし、複数の測定位置における試料体の光
電ピーク計数率を測定して、前記関数と比較することに
よって、前記放射能量と前記密度とを求めることを特徴
とする放射能測定方法。
1. A sample containing radioactivity that emits two or more types of γ-rays is divided into a plurality of blocks, and γ-rays emitted from the radioactivity contained in each block are converted into one unit at a plurality of measurement positions. Based on the γ-ray spectrum obtained by measuring with the radiation detector, the photoelectric peak count rate of the radioactivity contained in each block,
Expressed by a function having the amount of radioactivity contained in the block, the distance from one measurement position of the plurality of measurement positions, and the density of each block, the photoelectric peak count rate of each block was summed over the plurality of blocks. The photoelectric peak count rate is expressed as the photoelectric peak count rate of the sample at the one measurement position, and the photoelectric peak count rate of the sample at a plurality of measurement positions is measured and compared with the function to obtain the emission peak count. A method for measuring radioactivity, comprising determining the capacity and the density.
【請求項2】 1種類のγ線を放出する放射能を含む試
料体を複数のブロックに分割し、各ブロックに含まれる
放射能から放出されるγ線を複数の測定位置で複数台の
放射線検出器で同時に測定して得たγ線スペクトルに基
づいて各ブロックに含まれる放射能の光電ピーク計数率
を、そのブロックに含まれる放射能量と、複数の測定位
置の一の測定位置からの距離と、各ブロックの密度とを
有する関数で表わし、この各ブロックの光電ピーク計数
率を複数のブロック全体において総和した光電ピーク計
数率を、前記の一の測定位置における試料体の光電ピー
ク計数率として表わし、複数の測定位置における試料体
の光電ピーク計数率を測定して、前記関数と比較するこ
とによって、前記放射能量と前記密度とを求めることを
特徴とする放射能測定方法。
2. The method according to claim 1, wherein the sample containing radioactivity emitting one kind of γ-ray is divided into a plurality of blocks, and the γ-ray emitted from the radioactivity contained in each block is divided into a plurality of radiations at a plurality of measurement positions. Based on the γ-ray spectrum obtained by simultaneous measurement with the detector, the photoelectric peak count rate of the radioactivity contained in each block, the amount of radioactivity contained in that block, and the distance from one measurement position of a plurality of measurement positions And, represented by a function having the density of each block, the photoelectric peak count rate of the sum of the photoelectric peak count rate of each block in a plurality of blocks as a photoelectric peak count rate of the sample at the one measurement position. Expressing, measuring the photoelectric peak count rate of the sample body at a plurality of measurement positions, and comparing the function with the function to obtain the radioactivity amount and the density. Method.
JP3001212A 1991-01-09 1991-01-09 Radioactivity measurement method Expired - Lifetime JP2703409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3001212A JP2703409B2 (en) 1991-01-09 1991-01-09 Radioactivity measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3001212A JP2703409B2 (en) 1991-01-09 1991-01-09 Radioactivity measurement method

Publications (2)

Publication Number Publication Date
JPH04235379A JPH04235379A (en) 1992-08-24
JP2703409B2 true JP2703409B2 (en) 1998-01-26

Family

ID=11495167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3001212A Expired - Lifetime JP2703409B2 (en) 1991-01-09 1991-01-09 Radioactivity measurement method

Country Status (1)

Country Link
JP (1) JP2703409B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160080867A (en) * 2014-12-29 2016-07-08 한국원자력의학원 Gamma radiation counter detecting broad range of activity

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201105450D0 (en) * 2011-03-31 2011-05-18 Babcock Nuclear Ltd Improvements in and relating to methods and systems for investigating radioactive sources in locations
JP5747232B2 (en) * 2011-05-11 2015-07-08 国立研究開発法人日本原子力研究開発機構 Radioactive quantitative measurement equipment for radioactive waste
JP5726667B2 (en) * 2011-07-29 2015-06-03 株式会社東芝 Radiation measurement apparatus and radiation measurement method
JP5810066B2 (en) * 2012-11-15 2015-11-11 株式会社神鋼環境ソリューション Method for estimating the amount of radioactive material
CN104035117B (en) * 2013-03-08 2017-09-12 中国原子能科学研究院 Method for estimating amount of radioactive waste on site
JP6139391B2 (en) * 2013-12-06 2017-05-31 株式会社東芝 Radioactivity inspection apparatus and method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61107183A (en) * 1984-10-30 1986-05-26 Nippon Atom Ind Group Co Ltd Method for measuring radioactive quantity of radioactive waste contained in receptacle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160080867A (en) * 2014-12-29 2016-07-08 한국원자력의학원 Gamma radiation counter detecting broad range of activity
KR101670504B1 (en) 2014-12-29 2016-10-28 한국원자력의학원 Gamma radiation counter detecting broad range of activity

Also Published As

Publication number Publication date
JPH04235379A (en) 1992-08-24

Similar Documents

Publication Publication Date Title
US5206174A (en) Method of photon spectral analysis
US7902519B2 (en) Monitoring
US7279676B2 (en) Position sensitive radiation spectrometer
CN112558135B (en) Nuclear facility waste bag radioactivity characteristic detection system and method
JP2014157132A (en) Radioactivity analyser and radioactivity analytic method
US6740887B1 (en) Apparatus and methods for investigation of radioactive sources in a sample
JP2703409B2 (en) Radioactivity measurement method
JPS6215443A (en) Measuring device for characteristic of radioactive waste
JPH07159541A (en) Radioactivity concentration measuring apparatus for radioactive waste container
KR102394944B1 (en) Apparatus for measuring and amending activity concentration density of radioactive material and operation calibration methode thereof
Hasan et al. Soil radioactivity-depth profiles from regularized inversion of borehole gamma spectrometry data
JP7043045B1 (en) Inspection method for contamination of waste with radioactive substances
JPH05333155A (en) Radioactive concentration measuring method for artificial radioactive nuclide in concrete
Yokoyama et al. Development of clearance verification equipment for uranium-bearing waste
JPS61107183A (en) Method for measuring radioactive quantity of radioactive waste contained in receptacle
JP5926362B1 (en) Radioactivity concentration measuring apparatus and radioactivity concentration measuring method
JPH04194772A (en) Radiation measuring device
JP2020193811A (en) Radioactivity evaluation method, radioactivity measurement method and radioactivity measurement device
JPH06103279B2 (en) Component analysis method
JP2635860B2 (en) Radioactivity evaluation method for solidified radioactive waste
JPS62168080A (en) Measuring instrument for radiation concentration
Sraw et al. Low intensity gamma-ray monitor for in-situ solids fraction measurements in liquids
GB2398381A (en) Attenuation compensation of radioactive emission measurements
JPH048743B2 (en)
Bücherl et al. A versatile system for the in-field non-destructive characterization of radioactive waste packages and of objects in the defense against nuclear threats

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101003

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 14