JPS628043B2 - - Google Patents

Info

Publication number
JPS628043B2
JPS628043B2 JP55170076A JP17007680A JPS628043B2 JP S628043 B2 JPS628043 B2 JP S628043B2 JP 55170076 A JP55170076 A JP 55170076A JP 17007680 A JP17007680 A JP 17007680A JP S628043 B2 JPS628043 B2 JP S628043B2
Authority
JP
Japan
Prior art keywords
terminal
amplifier
input
output
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55170076A
Other languages
Japanese (ja)
Other versions
JPS5793709A (en
Inventor
Hisashi Sotokari
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP55170076A priority Critical patent/JPS5793709A/en
Publication of JPS5793709A publication Critical patent/JPS5793709A/en
Publication of JPS628043B2 publication Critical patent/JPS628043B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/30Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor
    • H03F3/3083Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor the power transistors being of the same type
    • H03F3/3086Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor the power transistors being of the same type two power transistors being controlled by the input signal
    • H03F3/3094Phase splitters therefor

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、同一の半導体基板上に、一対の電力
増幅器を形成し、この一対の電力増幅器を用いて
一つの負荷に出力を供給する電力増幅装置に関す
る。出力トランスレス方式の直接結合電力増幅器
を一対用いて一つの負荷に出力を供給する構成の
動作をB.T.L(バランスドトランスフオーマレス
(BALANCED TRANSFORMERLESS))動作と
いい、第1図、第2図に従来例としてのB.T.L回
路例を示す。 第1図は半導体集積回路に形成した従来の
BTL回路を示すもので、Ampは同相の負帰還
電力増幅器、Ampは、逆相の負帰還電力増幅
器である。増幅器Ampの入力を1番端子
に、入力を抵抗R1を介して2番端子に接続
し、増幅器Ampの入力を接地端子である4
番端子に、入力を3番端子に接続している。増
幅器Ampの出力は6番端子を通してスピーカ
ーRLに接続しスピーカーRLの他端は5番端子を
介して増幅器Ampの出力端子に接続されてい
る。増幅器AmpとAmpは電源ライン(電源
端子である7番端子)とアースライン(接地端子
である4番端子)との間に並列に配置接続されて
いる。ここで、1番端子には容量C1を介して入
力信号源が接続され、2番端子は増幅器Amp
の帰還端子として接地点との間に容量C2が接続
され、3番端子は増幅器Ampの入力端子及び
帰還端子として接地点との間に容量C3と抵抗Ra
との直列回路が接続されている。容量C3と抵抗
Raとの接続点には6番端子から抵抗Rbを介して
出力が負帰還されている。抵抗R1,R2,R101
R102は同一半導体基板上に形成される帰還抵抗で
R1=R101,R2=R102の値を有している。又、抵抗
Ra,Rbは外付の炭素皮膜抵抗器で、Ra≪R1
R101でR2/(R1+R2)=R102/(R101+R102)=
Rb/(Ra+Rb)なる抵抗値に設定されている。
図中における波形表示は位相のみを示している。 第1図において、一般に知られているように増
幅器Ampの入力端子(1番端子)に通常のオ
ーデイオ信号(Vsinωt)とする)が入力され
ると、出力端子(6番端子)に入力コンデンサ
C1と増幅器Ampの入力インピーダンスZI及び
帰還端子(2番端子)の交流バイパス用コンデン
サC2と帰還用抵抗R2により、入力信号と比較し
て位相がθ分だけ進んだ出力信号V01=A1Vsin
(ωt+θ)なる出力信号が出力される。 ここで、第1図のAmpにおいて、出力信号
をV01、入力信号ViをVsinωt、1番端子におけ
る信号をVi′,Ampの端子の信号をVE、入
力コンデンサをC1,Ampの入力インピーダン
スをZ1、2番端子のコンデンサをC2、帰還抵抗
をR1,R2とすると、 Vo=A〓pI(Vi′−VE) ………(3) 但し、A〓pIはAmpの示放電圧利得を示
し、A〓pI≫1である。 (1),(2),(3)式で ここでA〓pI≫1のため、分母中の1/A〓pI
は削除し、(4)式を実数部と虚数部にととのえると (4)式より 上式の分子、分母に(1−jwc2R1)・(1−
jwc1z1)をかけると、 さらに右辺、第1項と第2項を整理するとVOI
は、 ここで、第4頁記載の式のA1は、(5)式の右辺
の実数部と虚数部の各々2乗の和の平行根にな
り、θは、実数部と虚数部の比になる。故に で無視出来るとする。 さらに逆相増幅器Ampの入力信号は、増幅
器Ampの出力信号をRa/(Ra+Rb)倍して、
増幅器Ampの入力端子及び帰還端子(3番端
子)に入力しているため、出力端子(5番端子)
に、コンデンサC3と増幅器Ampの入力インピ
ーダンスZ及び交流バイパス用コンデンサC3
と帰還用抵抗R2′により増幅器Ampの出力信号
V01より、さらに位相がθ1′分だけ進んだ出力信
号V02=−A2Vsin(ωt+θ+θ1′)なる出力
信号が出力される。 Ampの出力信号をV02、入力信号は、同相増
幅器Ampの出力信号VOIをRa/(Ra+Rb)
倍、Ampの入力インピーダンスをZ2、入力端
子及び帰還端子の交流バイパス用コンデンサ
C3、帰還抵抗R101,R102とすると、Ampは逆相
増幅器であるから、一般的にV02は、 (但し、Z2≫{(R101+1/jwc)R102}とす る)ここで
The present invention relates to a power amplifier device in which a pair of power amplifiers are formed on the same semiconductor substrate, and the pair of power amplifiers are used to supply an output to one load. The operation in which a pair of output transformerless directly coupled power amplifiers is used to supply output to one load is called BTL (Balanced Transformerless) operation, and Figures 1 and 2 show the conventional A BTL circuit example is shown as an example. Figure 1 shows the conventional structure formed in a semiconductor integrated circuit.
This shows a BTL circuit, where Amp is an in-phase negative feedback power amplifier and Amp is an anti-phase negative feedback power amplifier. The input of the amplifier Amp is connected to the 1st terminal, the input is connected to the 2nd terminal via the resistor R1 , and the input of the amplifier Amp is connected to the ground terminal 4.
The input is connected to the terminal No. 3, and the input is connected to the No. 3 terminal. The output of the amplifier Amp is connected to the speaker RL through the No. 6 terminal, and the other end of the speaker RL is connected to the output terminal of the amplifier Amp through the No. 5 terminal. The amplifiers Amp and Amp are arranged and connected in parallel between a power line (terminal No. 7, which is a power supply terminal) and an earth line (terminal No. 4, which is a ground terminal). Here, the input signal source is connected to the first terminal via the capacitor C1 , and the second terminal is connected to the amplifier Amp.
A capacitor C 2 is connected between the ground point and the feedback terminal of the amplifier Amp, and a capacitor C 3 and a resistor Ra are connected between the third terminal and the ground point as the input terminal and feedback terminal of the amplifier Amp.
A series circuit with is connected. Capacitance C 3 and resistance
The output from the No. 6 terminal is negatively fed back to the connection point with Ra via a resistor Rb. Resistance R 1 , R 2 , R 101 ,
R102 is a feedback resistor formed on the same semiconductor substrate.
They have the values of R 1 =R 101 and R 2 =R 102 . Also, resistance
Ra and Rb are external carbon film resistors, and Ra≪R 1 =
At R 101 , R 2 / (R 1 + R 2 ) = R 102 / (R 101 + R 102 ) =
The resistance value is set to Rb/(Ra+Rb).
The waveform display in the figure shows only the phase. In Figure 1, as is generally known, when a normal audio signal (Vsinωt) is input to the input terminal (terminal 1) of the amplifier Amp, the input capacitor is connected to the output terminal (terminal 6).
C 1 , the input impedance Z I of the amplifier Amp, the AC bypass capacitor C 2 of the feedback terminal (terminal 2), and the feedback resistor R 2 produce an output signal V whose phase is advanced by θ 1 minute compared to the input signal. 01 = A 1 Vsin
An output signal of (ωt+θ 1 ) is output. Here, in the Amp shown in Fig. 1, the output signal is V 01 , the input signal Vi is Vsinωt, the signal at the 1st terminal is Vi′, the signal at the terminal of the Amp is V E , the input capacitor is C 1 , and the input impedance of the Amp is Assuming that Z 1 is the capacitor at the second terminal, C 2 is the feedback resistor, and R 1 and R 2 are the feedback resistors. Vo=A〓 pI (Vi'-V E ) (3) However, A〓 pI indicates the discharge voltage gain of Amp, and A〓 pI ≫1. In equations (1), (2), and (3), Here, since A〓 pI ≫1, 1/A〓 pI in the denominator
By deleting and converting equation (4) into real and imaginary parts, we get from equation (4) The numerator and denominator of the above formula are (1-jwc 2 R 1 ) and (1-
jwc 1 z 1 ), we get Further rearranging the right-hand side, the first term and the second term, V OI
teeth, Here, A 1 in the equation described on page 4 is the parallel root of the sum of the squares of the real and imaginary parts on the right side of equation (5), and θ 1 is the ratio of the real and imaginary parts. Become. Therefore Assume that it can be ignored. Furthermore, the input signal of the anti-phase amplifier Amp is obtained by multiplying the output signal of the amplifier Amp by Ra/(Ra+Rb).
Since it is input to the input terminal and feedback terminal (terminal 3) of the amplifier Amp, the output terminal (terminal 5)
In addition, the capacitor C 3 and the input impedance Z of the amplifier Amp and the AC bypass capacitor C 3
The output signal of the amplifier Amp is
An output signal V 02 =-A 2 Vsin (ωt+ θ 11 ') whose phase is further advanced by θ 1 ' from V 01 is output. The output signal of Amp is V 02 , and the input signal is the output signal V OI of common-mode amplifier Amp as Ra/(Ra + Rb)
Double the input impedance of the Amp to Z 2 , and add AC bypass capacitors to the input and feedback terminals.
Assuming C 3 and feedback resistors R 101 and R 102 , since Amp is an anti-phase amplifier, generally V 02 is (However, Z 2 ≫ {(R 101 + 1/jwc 3 ) R 102 }) Here

【式】であるた め右辺分母の第1項は削除できる。 故に、 Vo2=jwc102/1+jwc101・R
a/Ra+Rb・Vo1 分子、分母に(1−jwc3R101)をかけると、 ここで、第5頁,6頁記載の式のA2は(7)式右
辺の実数部と虚数部の各々の2集の和の平方根に
なりθ は実数部と虚数部の比になる。故に、 θ =tan-11/wc101 但し、Ampの開放電圧利得Avoが
Since [Formula] is satisfied, the first term of the denominator on the right side can be deleted. Therefore, Vo 2 = jwc 3 R 102 /1 + jwc 3 R 101・R
a/Ra+Rb・Vo 1 numerator, multiplying the denominator by (1-jwc 3 R 101 ), Here, A 2 in the equation described on pages 5 and 6 is the square root of the sum of the two sets of the real part and imaginary part on the right side of equation (7), and θ 1 1 is the ratio of the real part and the imaginary part. Become. Therefore, θ 1 1 = tan -1 1/wc 3 R 101 However, the open circuit voltage gain Avo of Amp is

【式】、Ra≪R1=R101で 無視出来るとする。 故に、負荷RLの両端には、増幅器Ampの出
力信号V01と増幅器Ampの出力信号V02の合成
出力信号VORL=V01−V02=A1Vsin(ωt+θ
)+A2Vsin(ωt+θ+θ1′)=A1V・2sin
(ωt+θ+θ1′/2)・cos(θ1′/2)(ここ
でAmpとAmpの電圧増幅率A1・A2はA1=A2
とする)が出力される。ところが、出力信号VOR
は、増幅器AmpI,Ampの出力信号の位相の
相違θ1′によつて入力信号VsinWtと比較して、
歪んだ合成信号となり聴感上の不快感等の悪影響
があつた。さらに増幅器Ampの入力系路とし
ての炭素皮膜抵抗器Ra,Rbが外付であるため、
コンデンサ以外に外付素子として炭素皮膜抵抗器
が2ケ余分に必要である。 次に他の従来例を第2図に示した。やはり半導
体集積回路に形成するものであり、第1図におけ
る増幅器Ampの入力系路である抵抗Ra,Rbを
増幅器Amp,Ampと同一の半導体基板上に
抵抗Ra′,Rb′として形成し、抵抗Ra′,Rb′の交
点を8番端子に抵抗Ra′の一方の端を4番端子
に、抵抗Rb′の一方の端を6番端子に接続してい
る。回路としては第1図のものと同じである。第
2図においても、第1図と同様に増幅器Amp
の入力信号を増幅器Ampの出力信号から得て
いる為、第1図におけると同様の特性悪化があ
る。さらに抵抗Ra′,Rb′を同一半導体基板上に
形成したことにより、第1図における外付端子が
多くいるという欠点は改善されるが、新たに8番
端子が必要となり半導体基板から外部接続端子数
の増加をともない半導体集積回路化する場合不利
となる事がある。 上述のごとく、従来技術によるBTL構成回路
には、(1)増幅器Amp,Ampの出力信号の位
相差により、負荷RLの両端には歪んだ合成信号
が出力される為、聴感上の不快感を生じる、(2)コ
ンデンサ以外の外付素子としての抵抗が必要とな
りその分コスト高又は(3)外付素子を同一半導体基
板上に形成した場合、新たに外部接続端子数の増
加が必要となり、端子数当りの機能低下、ボンデ
イングパツド増加に伴うコスト高という問題があ
る。 本発明の目的は出力歪みがない半導体集積回路
に適したBTL構成の電力増幅器を提供すること
にある。 本発明によれば、入力端子にコレクタ接地の
PNPトランジスタのベースを接続し、該PNPトラ
ンジスタのエミツタ出力を同相増巾器としての負
帰還電力増幅器の入力段に印加し、該PNPトラ
ンジスタのコレクタを接地し、前記入力端子に、
エミツタ接地のNPNトランジスタのベースを接
続し、該NPNトランジスタのコレクタ出力を逆
相増巾器としての負帰還電力増巾器の入力段に
印加し、該NPNトランジスタのエミツタを接地
又は抵抗を介して接地し同相増幅器の出力端子と
逆相増幅器の出力端子間に、負荷を接続した電力
増幅器を得る。次に、図面を参照して本発明をよ
り詳細に説明す。第3図は本発明の一実施例を示
すもので、Ampは同相の負帰還増幅器、Amp
は逆相の負帰還増幅器で、増幅器Ampの正
相入力端子(入力)をPNPトランジスタQ1
エミツタに、PNPトランジスタQ1のコレクタを
接地端子である4番端子にPNPトランジスタQ1
のベースを入力端子である1番端子及び抵抗R3
の一端に、抵抗R3の他端は、ダイオードD1のカ
ソード及びダイオードD2のアノードに、ダイオ
ードD2のカソードは4番端子に、増幅器Amp
の正相入力(入力)はダイオードD1のアノー
ド及び増幅器Ampに、NPNトランジスタQ2
コレクタを増幅器Ampの初段差動増幅器を構
成するトランジスタQ103とQ104の共通エミツタに
NPNトランジスタQ2のエミツタを4番端子に、
トランジスタQ4のベースを1番端子と抵抗R3
PNPトランジスタQ1のベースの交点に接続する
以外は、増幅器AmpとAmpは電源ライン
(電源端子である7番端子に接続されている)と
アースライン(接地端子である4番端子に接続さ
れている)との間に並列に配置接続されている。
ここで1番端子は増幅器Amp,Ampの共通
の入力端子であり容量C1を通して入力信号源に
接続されており、2番端子は増幅器Ampの帰
還端子として容量C2を介して接地されており、
3番端子は増幅器Ampの帰還端子として容量
C3を介して接地されており、4番端子は増幅器
Amp,Ampの共通の接地端子として接地さ
れており、5番端子は増幅器Ampの出力端子
6番端子は増幅器Ampの出力端子で、これら
5番端子と6番端子の間に負荷RLとしてスピー
カーが接続されている。容量C2,C3はC2=C3
選ばれ交流信号のバイパスコンデンサの役をす
る。抵抗R1…R4,R101,R102は同一半導体基板上
に形成される抵抗で、R1=R101,R2=R102と設
定、抵抗Rc,Rdは同一半導体基板に形成される
各増幅器Amp,Ampの初段差動増幅器の負
荷で、Rc/(γeQ3+γeQ4)=Rd/γeQ2なる
関係に設定する。尚、γeQ2,γeQ3,γeQ4
トランジスタQ2,Q3,R4のエミツタ導通抵抗を
表わしている。図中における波形表示は位相のみ
を示している。第3図において回路動作を簡単に
説明すると、Ampに対しては、同一の入力端
子である1番端子より入力信号が印加すると、ト
ランジスタQ1のベース・エミツタを介して、
Ampの非反転入力端子に入力信号と同相の
信号が印加される。ここでAmpは入力段が差
動回路構成の負帰還同相増幅器であるため、
Ampの出力である出力端子6番には、入力信
号と同相の信号が出力される。 次にAmpに対しては、同一の入力端子であ
る一番端子より入力信号が印加するとカスケード
接続されたトランジスタQ2のベース・コレクタ
を介してAmpの差動回路構成の入力段である
トランジスタQ103とQ104の共通エミツタに入力信
号と逆相の信号が印加される。ここでAmp
は、入力段が差動回路構成の負帰還逆相増幅器で
あるためAmpの出力端子である出力端子5番
には、入力信号と逆相の信号が出力される。 第3図において、同一の入力端子である1番端
子より、オーデイオ信号(Vsinωtとする)が
トランジスタQ1,Q2を介して増幅器Amp,
Ampに入力される。そのため5,6番端子に
おける出力信号V01,V02は入力コンデンサC1
と、1番端子からみた入力インピーダンスZi及
び、帰還端子の交流バイパス用コンデンサC2
C3(C2=C3)と帰還用抵抗R2,R102(R2=R102
により、同等の位相進み分θを含んだ出力信号
V01=A1Vsin(ωt+θ),V02=−A2Vsin(ω
t+θ)が出力される。 第3図のAmpにおいて、出力信号をV01、入
力信号をVi=Vsinωt、1番端子における入力
信号をVi′、トランジスタQ3のベースでの入力信
号をVi1′、トランジスタQ4のベースでの信号をV
E1、入力コンデンサをC1、1番端子から見た入力
インピーダンスをZi、2番端子のコンデンサを
C2、帰還抵抗をR1,R2とすると、 V01=Av01(Vi′1−VE1) ……(10) (但し、Av01は、Ampの開放電圧利得を示
し、Av01≫1である。) トランジスタQ1のベースからエミツタへの信
号伝達でのロス分は、トランジスタQ1のエミツ
タ抵抗分とトランジスタQ3のベース側を見たイ
ンピーダンスZQ3との比になるが、ZQ3≫γeQ1
のため、 Vi=Vi1′ ………(11) となる。 (8),(9),(10),(11)式から ここで、Av01≫1のため、分母中の1/Av01
は削除し、(12)式を実数部と虚数部にととのえる
と、(12)式より 上式の分子、分母に(1−jωC2R1)・(1−
jωC1Zi)をかけると、 V01= {1+jωC(R+R)}・(1−jωC
)/1+ω ・R ・jωCZi・(1−jωCZi)/1+ω
Zi・Vi さらに右辺第1項と第2項を整理すると、V01
は、 V01= ωCZi/(1+ω ・R )・(1+ω
・Zi) ・〔ωC1Zi・{1+ω2C2 2・R1・(R1+R2)} −ωC2R2+j{1+ω2C2 2・R1・(R1+R2) +ω2C1C2R2Zi}〕・Vi ……(13) ここで、A1は(13)式の右辺の実数部と虚数
部の各々2乗の和の平方根になる。又、位相差の
θ11は実数部と虚数部の比になる。 故に、 次に、第3図のAmpにおいて、出力信号
V02、入力信号Vi=Vsinωt、1番端子における
入力信号をVi′、トランジスタQ2のコレクタ(ト
ランジスタQ103とQ104の共通エミツタ)での入力
信号をVi2′、トランジスタQ104のベースでの信号
をVE2、入力コンデンサC1、1番端子から見た入
力インピーダンスをZi、3番端子のコンデンサを
C3、帰還抵抗R101,R102とすると、 V02=Av02(Vi2′−VE2) ………(16) (但し、Av02は、Ampの開放電圧利得を示
し、Av02≫1である。) 但し、トランジスタQ2のベースからコレクタ
への信号伝達でのロス分は、トランジスタQ2
エミツタ抵抗γeQ2とトランジスタQ2のコレク
タ側にエミツタが共通に接続されているトランジ
スタQ103とQ104各々のエミツタ抵抗γeQ103,γ
Q104の並列和との比になり、 γeQ2=KT/q・1/Ie,γeQ103 =γeQ104=KT/q・1/Ie/2 のため、 γeQ2=(1/γeQ103+1/γeQ104) となり、 Vi′=Vi2′ ………(17) となる。ここでIeはトランジスタQ3のエミツタ
に流れる電流を示す。 (14),(15),(16),(17)式で ここでAv02≫1のため、分母中の1/Av02
削除し、(18)式も実数部と虚数部にととのえる
と、 (18)式より 上式の分母、分子に(1−jωC3R101)・(1−
jωC1Zi)をかけると V02={1+jωC(R101+R102)}・(1−jωC101)/1+ω ・R101 ・jω
Zi・(1−jωCZi)/1+ω ZiVi さらに右辺第1項と第2項を整理するとV02は V02= ωCZi/(1+ω 101 )・(1+ω
・Zi) ・〔ωC1Zi・{1+ω2C3 2・R101・(R101 +R102)}−ωC3R102+j{1+ω2C2 2・R101 ・(R101+R102)+ω2C1C2R102・Zi}〕・Vi
………(19) ここでA2は、(19)式の右辺の実数部と虚数部
の各々2乗の和の平方根になり、位相差θ12は実
数部と虚数部の比になる。 故に、 A2= ωCZi/(1+ω 101 )・(1+ω
・Zi) ・√〔1・{1+2 3 2101・(101102)}−31022+{1+2 3 2 101 ・(101102)+2 1 3102・} θ12=tan-11+ω ・R101・(R101+R102)+ω102・Zi/ωCZi・{
1+ω ・R101・(R101+R102)}−ωC10 ここで、R1=R101,R2=R102,C2=C3のた
め、A1=A2,θ=θ11=θ12となる。 この結果、負荷RLの両端には、増幅器Amp
の出力信号V01と増幅器Ampの出力信号V02
位相差による歪のない合成出力VORL=V01−V02
=2A1Vsin(ωt+θ)が出力される。 従来例における出力端子の合成出力は、VORL
=V01−V02=A1Vsin(ωt+θ)+A2Vsin(ω
t+θ+θ1′)=2sin(ωt+θ+θ1′/2)
×cos(θ1′/2)であり、実施例の回路構成時
においては、合成出力は、VORL=V01−V02
2A1Vsin(ωt+θ)であり、従来例に比して
AmpとAmpでの位相差θ1′がなくなつてお
り、AmpとAmpの出力信号の位相差によつ
て生じる歪を小さくしている。さらに従来例のご
とく増幅器Ampの入力信号を増幅器Ampよ
り得るための外付抵抗又は外部接続端子数の増加
が不必要である。故に本発明によつて従来技術に
おける増幅器Amp,Ampの出力信号合成時
において位相差に起因する信号の歪みや、外付素
子の増加又は外部接続端子数の増加によるコスト
upが防止できる。 次に、第4図に本発明の具体的実施例を示す。
第4図において、Q1…Q15,Q105…Q114はトラン
ジスタ、D1…D8,D103…D108はダイオード、R1
R13,R103…R112は抵抗、RLは負荷、C1…C3はコ
ンデンサ(但し、C2=C3)I0,I0′は定電流源、
は増幅器Amp,Ampの共通の入力端子、
は増幅器Ampの帰還端子、は増幅器Amp
の出力端子、は増幅器Amp,Amp共通の
接地端子、は増幅器Ampの出力端子、は
増幅器Ampの出力端子、は増幅器Amp,
Amp共通の電源端子を示している。ここで、
増幅器Amp,Ampの開放電圧利得を同一に
するには、入力段以降が同一並列接続であるた
め、入力段の電圧利得を一致させるため、R3
(γeQ4+γeQ5)=R103/(γeQ15+R13)になる
ように、抵抗R13の抵抗値を設定する。ここでγ
e〓4,γeQ3,γeQ15は、トランジスタQ1
Q5,Q15のエミツタ導通抵抗を表わしている。
尚、図中のAmp,Ampで素子番号下2ケタ
の番号が同一の素子は、同等のトランジスタ、ダ
イオード、抵抗値を示している。又、図中におけ
る波形表示は、位相のみを示している。第4図に
おいては、Amp,Ampの構成が第3図より
も具体的に示されているだけであり、その動作は
前述のとおりである。 第4図においても第3図と同様に、同一の入力
端子より、オーデイオ入力信号がトランジスタ
Q1,Q2を介して増幅器Amp,Ampに入力し
ているため、増幅器Amp,Ampにおける出
力信号は同等の位相進み分θを有している。故
に、負荷RLの両端には位相差による歪のない合
成出力が出力され、かつ従来例のごとく、Amp
の入力信号をAmpより得るための外付抵抗
又は外部接続端子数の増加が不必要である。故
に、本発明によつて、従来技術における増幅器
Amp,Ampの出力信号合成時において位相
差に起因する信号の歪みや外付素子の増加、又は
外部接続端子数の増加を防止できる。
[Formula], Ra≪R 1 = R 101 and can be ignored. Therefore, the combined output signal V 01 of the output signal V 01 of the amplifier Amp and the output signal V 02 of the amplifier Amp is present at both ends of the load RL .
1 ) +A 2 Vsin (ωt+θ 11 ′) = A 1 V・2sin
(ωt+θ 11 ′/2)・cos(θ 1 ′/2) (Here, the voltage amplification factor A 1・A 2 of Amp and Amp is A 1 = A 2
) is output. However, the output signal V OR
L is compared with the input signal VsinWt due to the phase difference θ 1 ' of the output signals of the amplifiers AmpI and Amp,
This resulted in a distorted composite signal, which had negative effects such as auditory discomfort. Furthermore, since the carbon film resistors Ra and Rb, which serve as the input path for the amplifier Amp, are external,
In addition to the capacitor, two additional carbon film resistors are required as external elements. Next, another conventional example is shown in FIG. It is also formed in a semiconductor integrated circuit, and the resistors Ra and Rb, which are the input path of the amplifier Amp in FIG. 1, are formed as resistors Ra′ and Rb′ on the same semiconductor substrate as the amplifiers Amp and The intersection of Ra' and Rb' is connected to the No. 8 terminal, one end of the resistor Ra' is connected to the No. 4 terminal, and one end of the resistor Rb' is connected to the No. 6 terminal. The circuit is the same as that shown in FIG. In Fig. 2, as in Fig. 1, the amplifier Amp
Since the input signal of is obtained from the output signal of the amplifier Amp, there is a deterioration in characteristics similar to that in FIG. Furthermore, by forming the resistors Ra' and Rb' on the same semiconductor substrate, the disadvantage of having many external terminals in Figure 1 is improved, but a new terminal No. 8 is required, and the external connection terminal is not connected to the semiconductor substrate. There may be disadvantages when implementing semiconductor integrated circuits as the number increases. As mentioned above, in the conventional BTL configuration circuit, (1) due to the phase difference between the output signals of the amplifiers Amp and Amp, a distorted composite signal is output to both ends of the load R L , resulting in auditory discomfort; (2) A resistor is required as an external element other than a capacitor, which increases the cost, or (3) When external elements are formed on the same semiconductor substrate, an increase in the number of external connection terminals is required. However, there are problems such as decreased functionality per number of terminals, and increased cost due to increased number of bonding pads. An object of the present invention is to provide a power amplifier with a BTL configuration suitable for a semiconductor integrated circuit without output distortion. According to the present invention, the input terminal is connected to the collector ground.
The base of the PNP transistor is connected, the emitter output of the PNP transistor is applied to the input stage of a negative feedback power amplifier as a common mode amplifier, the collector of the PNP transistor is grounded, and the input terminal is connected to the base of the PNP transistor.
Connect the base of the NPN transistor whose emitter is grounded, apply the collector output of the NPN transistor to the input stage of a negative feedback power amplifier as a negative phase amplifier, and connect the emitter of the NPN transistor to the ground or through a resistor. A power amplifier is obtained in which a load is grounded and connected between an output terminal of an in-phase amplifier and an output terminal of an anti-phase amplifier. Next, the present invention will be explained in more detail with reference to the drawings. Figure 3 shows an embodiment of the present invention, where Amp is an in-phase negative feedback amplifier;
is an anti-phase negative feedback amplifier, the positive phase input terminal (input) of the amplifier Amp is connected to the emitter of PNP transistor Q 1 , and the collector of PNP transistor Q 1 is connected to the ground terminal No. 4 terminal of PNP transistor Q 1.
Connect the base to the input terminal No. 1 terminal and resistor R 3
The other end of the resistor R 3 is connected to the cathode of the diode D 1 and the anode of the diode D 2 , and the cathode of the diode D 2 is connected to the terminal 4 of the amplifier Amp.
The positive phase input (input) of the diode D 1 is connected to the anode of the amplifier Amp, and the collector of the NPN transistor Q 2 is connected to the common emitter of the transistors Q 103 and Q 104 that constitute the first stage differential amplifier of the amplifier Amp.
Connect the emitter of NPN transistor Q 2 to terminal 4,
Connect the base of transistor Q 4 to terminal 1 and resistor R 3 .
Other than connecting to the intersection of the bases of PNP transistor Q 1 , the amplifiers Amp and Amp are connected to the power line (connected to terminal 7, which is the power terminal) and the ground line (connected to terminal 4, which is the ground terminal). ) are arranged and connected in parallel.
Here, the No. 1 terminal is the common input terminal of the amplifiers Amp and Amp, and is connected to the input signal source through the capacitor C 1 , and the No. 2 terminal is the feedback terminal of the amplifier Amp, and is grounded through the capacitor C 2 . ,
Terminal 3 is a capacitor as the feedback terminal of the amplifier Amp.
It is grounded through C 3 , and terminal 4 is connected to the amplifier.
It is grounded as a common ground terminal for Amp, Amp, and the 5th terminal is the output terminal of the amplifier Amp. The 6th terminal is the output terminal of the amplifier Amp, and the speaker is used as a load R L between these 5th and 6th terminals. is connected. Capacitors C 2 and C 3 are selected such that C 2 =C 3 and serve as bypass capacitors for AC signals. Resistors R 1 ...R 4 , R 101 , and R 102 are resistors formed on the same semiconductor substrate, and R 1 = R 101 and R 2 = R 102 are set. Resistors Rc and Rd are formed on the same semiconductor substrate. The load of each amplifier Amp and the first-stage differential amplifier of Amp is set to the relationship Rc/(γe Q3 +γe Q4 )=Rd/γe Q2 . Note that γe Q2 , γe Q3 , and γe Q4 represent emitter conduction resistances of transistors Q 2 , Q 3 , and R 4 . The waveform display in the figure shows only the phase. To briefly explain the circuit operation in Fig. 3, when an input signal is applied to Amp from the same input terminal, No. 1, it passes through the base and emitter of transistor Q1 .
A signal in phase with the input signal is applied to the non-inverting input terminal of the Amp. Here, Amp is a negative feedback common mode amplifier with a differential circuit configuration in its input stage, so
A signal in phase with the input signal is output to output terminal No. 6, which is the output of the Amp. Next, for Amp, when an input signal is applied from the first terminal, which is the same input terminal, it passes through the base and collector of the cascade-connected transistor Q 2 , and then passes through the transistor Q, which is the input stage of the differential circuit configuration of Amp. A signal with the opposite phase to the input signal is applied to the common emitter of Q103 and Q104 . Amp here
Since the input stage is a negative feedback anti-phase amplifier having a differential circuit configuration, a signal having an anti-phase with the input signal is output to output terminal No. 5, which is the output terminal of the Amp. In Fig. 3, an audio signal (assumed Vsinωt) is input from the same input terminal No. 1 through transistors Q 1 and Q 2 to the amplifier Amp,
Input to Amp. Therefore, the output signals V 01 and V 02 at terminals 5 and 6 are input capacitor C 1
, the input impedance Zi seen from the No. 1 terminal, and the AC bypass capacitor C 2 of the feedback terminal,
C 3 (C 2 = C 3 ) and feedback resistor R 2 , R 102 (R 2 = R 102 )
As a result, the output signal containing the equivalent phase advance θ 1
V 01 = A 1 Vsin (ωt + θ 1 ), V 02 = −A 2 Vsin (ω
t+θ 1 ) is output. In the Amp shown in Figure 3, the output signal is V 01 , the input signal is Vi = Vsinωt, the input signal at terminal 1 is Vi ′, the input signal at the base of transistor Q 3 is Vi 1 ′, and the input signal at the base of transistor Q 4 is signal of V
E1 is the input capacitor, C 1 is the input impedance seen from terminal 1, Zi is the input impedance seen from terminal 2, and the capacitor at terminal 2 is
Assuming C 2 and feedback resistances R 1 and R 2 , V 01 = Av 01 (Vi' 1 - V E1 ) ...(10) (However, Av 01 indicates the open circuit voltage gain of Amp, and Av 01 ≫ 1.) From the base to the emitter of transistor Q 1 The loss in signal transmission is the ratio of the emitter resistance of transistor Q 1 to the impedance Z Q3 when looking at the base side of transistor Q 3 , and Z Q3 ≫γe Q1
Therefore, Vi=Vi 1 ′ (11). From equations (8), (9), (10), and (11), Here, since Av 01 ≫ 1, 1/Av 01 in the denominator
By deleting and converting equation (12) into real and imaginary parts, we get from equation (12) In the numerator and denominator of the above formula, (1-jωC 2 R 1 )・(1-
jωC 1 Zi), V 01 = {1+jωC 2 (R 1 + R 2 )}・(1−jωC 2 R 4
)/1+ω 2 C 2 2・R 1 2・jωC 1 Zi・(1−jωC 1 Zi)/1+ω 2 C 1
2 Zi 2・Vi Further rearranging the first and second terms on the right side, V 01
is, V 01 = ωC 1 Zi/(1+ω 2 C 2 2・R 1 2 )・(1+ω 2
C 1 2・Zi 2 ) ・[ωC 1 Zi・{1+ω 2 C 2 2・R 1・(R 1 +R 2 )} −ωC 2 R 2 +j{1+ω 2 C 2 2・R 1・(R 1 +R 2 ) +ω 2 C 1 C 2 R 2 Zi}]・Vi ... (13) Here, A 1 is the square root of the sum of the squares of the real part and imaginary part on the right side of equation (13). Further, the phase difference θ 11 is the ratio of the real part and the imaginary part. Therefore, Next, in the Amp shown in Figure 3, the output signal
V 02 , input signal Vi = Vsinωt, input signal at terminal 1 is Vi ′, input signal at the collector of transistor Q 2 (common emitter of transistors Q 103 and Q 104 ) is Vi 2 ′, at the base of transistor Q 104 . The signal is V E2 , the input capacitor C 1 is the input impedance seen from terminal 1, Zi is the capacitor at terminal 3
Assuming C 3 , feedback resistors R 101 and R 102 , V 02 = Av 02 (Vi 2 '-V E2 ) ...... (16) (However, Av 02 indicates the open circuit voltage gain of Amp, and Av 02 ≫ 1.) However, from the base of transistor Q 2 The loss in signal transmission to the collector is the emitter resistance γe Q2 of the transistor Q 2 and the emitter resistance γe Q103 , γ of each of the transistors Q 103 and Q 104 whose emitters are commonly connected to the collector side of the transistor Q 2 .
Since γe Q2 = KT/q・1 / Ie, γe Q103 = γe Q104 = KT/q・1/Ie/2, γe Q2 = (1/γe Q103 +1/ γe Q104 ), and Vi′=Vi 2 ′ (17). Here, Ie indicates the current flowing through the emitter of transistor Q3 . In equations (14), (15), (16), and (17), Here, since Av 02 ≫ 1, 1/Av 02 in the denominator is deleted, and formula (18) is also divided into real and imaginary parts. From formula (18), In the denominator and numerator of the above formula, (1-jωC 3 R 101 )・(1-
V 02 = {1+jωC 3 (R 101 + R 102 )}・(1−jωC 3 R 101 )/1+ ω 2 C 3 2・R 101 2・jω
C 1 Zi・(1−jωC 1 Zi)/1+ω 2 C 1 2 Zi 2 Vi Further, rearranging the first and second terms on the right side, V 02 becomes V 02 = ωC 1 Zi/(1+ω 2 C 3 2 R 101 2 )・(1+ω
2 C 1 2・Zi 2 ) ・[ωC 1 Zi・{1+ω 2 C 3 2・R 101・(R 101 +R 102 )}−ωC 3 R 102 +j{1+ω 2 C 2 2・R 101・(R 101 +R 102 )+ω 2 C 1 C 2 R 102・Zi}〕・Vi
......(19) Here, A 2 is the square root of the sum of the squares of the real and imaginary parts on the right side of equation (19), and the phase difference θ 12 is the ratio of the real and imaginary parts. Therefore, A 2 = ωC 1 Zi/(1+ω 2 C 3 2 R 101 2 )・(1+ω
2 C 1 2・Zi 2 ) ・√[ 1・{1+ 2 3 2101・( 101 + 102 )} − 3102 ] 2 + {1+ 2 3 2 101・( 101 + 102 ) + 2 1 3102・} 2 θ 12 =tan -1 1+ω 2 C 3 2・R 101・(R 101 +R 102 )+ω 2 C 1 C 3 R 102・Zi/ωC 1 Zi・{
1+ω 2 C 3 2・R 101・(R 101 +R 102 )}−ωC 3 R 10 2Here , since R 1 = R 101 , R 2 = R 102 , C 2 = C 3 , A 1 = A 2 , θ 1 = θ 11 = θ 12 . As a result, the amplifier Amp
Synthetic output without distortion due to the phase difference between the output signal V 01 of the amplifier Amp and the output signal V 02 of the amplifier Amp V ORL = V 01 −V 02
=2A 1 Vsin (ωt+θ) is output. The composite output of the output terminal in the conventional example is V ORL
=V 01 −V 02 =A 1 Vsin(ωt+θ 1 )+A 2 Vsin(ω
t+θ 11 ′)=2sin(ωt+θ 11 ′/2)
×cos(θ 1 ′/2), and in the circuit configuration of the embodiment, the combined output is V ORL =V 01 −V 02 =
2A 1 Vsin (ωt+θ 1 ), compared to the conventional example.
The phase difference θ 1 ' between the Amp and the Amp is eliminated, and the distortion caused by the phase difference between the output signals of the Amp and the Amp is reduced. Further, unlike the conventional example, there is no need to increase the number of external resistors or external connection terminals for obtaining the input signal of the amplifier Amp from the amplifier Amp. Therefore, the present invention eliminates signal distortion caused by the phase difference when synthesizing the output signals of the amplifiers Amp and Amp in the prior art, and costs due to an increase in the number of external elements or the number of external connection terminals.
Up can be prevented. Next, FIG. 4 shows a specific embodiment of the present invention.
In Fig. 4, Q1 ... Q15 , Q105 ... Q114 are transistors, D1 ... D8 , D103 ... D108 are diodes, R1 ...
R 13 , R 103 ... R 112 are resistors, R L is load, C 1 ... C 3 are capacitors (C 2 = C 3 ), I 0 , I 0 ' are constant current sources,
is the common input terminal of amplifier Amp, Amp,
is the feedback terminal of the amplifier Amp, is the amplifier Amp
output terminal, is the amplifier Amp, Amp common ground terminal, is the output terminal of the amplifier Amp, is the output terminal of the amplifier Amp, is the amplifier Amp,
Shows the common power supply terminal for the amplifier. here,
In order to make the open circuit voltage gains of the amplifiers Amp and Amp the same, the input stage and subsequent stages are connected in parallel, so in order to match the voltage gains of the input stages, R 3 /
The resistance value of the resistor R 13 is set so that (γe Q4 + γe Q5 )=R 103 /(γe Q15 + R 13 ). Here γ
e〓 4 , γe Q3 , γe Q15 are transistors Q 1 ,
It represents the emitter conduction resistance of Q 5 and Q 15 .
Note that the elements with the same last two digits of the element number in Amp and Amp in the figure indicate equivalent transistors, diodes, and resistance values. Moreover, the waveform display in the figure shows only the phase. In FIG. 4, the structure of Amp and Amp is only shown more specifically than in FIG. 3, and its operation is as described above. In Fig. 4, as in Fig. 3, the audio input signal is connected to the transistor from the same input terminal.
Since the signals are input to the amplifiers Amp and Amp via Q 1 and Q 2 , the output signals from the amplifiers Amp and Amp have the same phase lead θ 1 . Therefore, a combined output without distortion due to phase difference is output to both ends of the load R L , and as in the conventional example, the Amp
It is unnecessary to increase the number of external resistors or external connection terminals to obtain the input signal from the amplifier. Therefore, according to the present invention, the amplifier in the prior art
When combining the output signals of the amplifiers, it is possible to prevent signal distortion caused by phase differences, an increase in the number of external elements, or an increase in the number of external connection terminals.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はそれぞれ従来例を示すブロツ
ク図、第3図および第4図は本発明の一実施例を
示すブロツク図および回路図である。Ampは
正相の負帰還増幅器、Ampは逆相の負帰還増
幅器、は入力端子、は帰還端子、は帰還端
子、は接地端子、,は出力端子、は電源
端子、Q1…Q15,Q104…Q114はトランジスタ、D1
…D8,D103…D108はダイオード、R1…R12,R103
…R112は抵抗、RLは負荷、I0,I0′は定電流源、
図中における波形表示は位相のみを示している。
1 and 2 are block diagrams showing a conventional example, and FIGS. 3 and 4 are a block diagram and a circuit diagram showing an embodiment of the present invention, respectively. Amp is a positive-phase negative feedback amplifier, Amp is a negative-phase negative feedback amplifier, is the input terminal, is the feedback terminal, is the feedback terminal, is the ground terminal, , is the output terminal, is the power supply terminal, Q 1 ...Q 15 , Q 104 ...Q 114 is a transistor, D 1
…D 8 , D 103 …D 108 is a diode, R 1 …R 12 , R 103
...R 112 is a resistance, R L is a load, I 0 , I 0 ' are constant current sources,
The waveform display in the figure shows only the phase.

Claims (1)

【特許請求の範囲】[Claims] 1 入力端子にコレクタ接地の第1のトランジス
タのベースを接続し、該第1のトランジスタのエ
ミツタを入力回路が差動増幅回路で構成されてい
る同相増幅器としての負帰還電力増幅器の非反
転入力端子に接続し、該増幅器の反転入力端子
は帰還回路を介して該増幅器の出力端子に接続
し、前記第1のトランジスタのコレクタを接地
し、前記入力端子にエミツタ接地の第2のトラン
ジスタのベースを接続し、該第2のトランジスタ
のコレクタを入力回路が差動増幅回路で構成され
ている逆相増幅器としての負帰還電力増幅器の
差動増幅回路の共通エミツタに接続し、前記第2
トランジスタのエミツタを接地又は抵抗を介して
接地し、該増幅器の非反転入力端子にバイアス
電圧を与え反転入力端子は帰還回路を介して該増
幅器の出力端子に接続し、前記第1、第2のト
ランジスタのベースを抵抗を介してバイアス回路
に接続し、前記同相増幅器の出力端子と前記逆
相増幅器の出力端子との間に負荷を接続したこ
とを特徴とする電力増幅器。
1 A non-inverting input terminal of a negative feedback power amplifier as a common-mode amplifier whose input terminal is connected to the base of a first transistor whose collector is common, and whose input circuit is composed of a differential amplifier circuit. , the inverting input terminal of the amplifier is connected to the output terminal of the amplifier via a feedback circuit, the collector of the first transistor is grounded, and the base of a second transistor whose emitter is grounded is connected to the input terminal. and the collector of the second transistor is connected to a common emitter of a differential amplifier circuit of a negative feedback power amplifier as an anti-phase amplifier whose input circuit is constituted by a differential amplifier circuit, and
The emitter of the transistor is grounded or grounded via a resistor, a bias voltage is applied to the non-inverting input terminal of the amplifier, the inverting input terminal is connected to the output terminal of the amplifier via a feedback circuit, and the first and second A power amplifier characterized in that a base of a transistor is connected to a bias circuit via a resistor, and a load is connected between an output terminal of the in-phase amplifier and an output terminal of the anti-phase amplifier.
JP55170076A 1980-12-02 1980-12-02 Power amplifier Granted JPS5793709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55170076A JPS5793709A (en) 1980-12-02 1980-12-02 Power amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55170076A JPS5793709A (en) 1980-12-02 1980-12-02 Power amplifier

Publications (2)

Publication Number Publication Date
JPS5793709A JPS5793709A (en) 1982-06-10
JPS628043B2 true JPS628043B2 (en) 1987-02-20

Family

ID=15898188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55170076A Granted JPS5793709A (en) 1980-12-02 1980-12-02 Power amplifier

Country Status (1)

Country Link
JP (1) JPS5793709A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920010162B1 (en) * 1987-09-19 1992-11-19 최진민 Boiler temperature controller

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5233238A (en) * 1975-09-10 1977-03-14 Hitachi Ltd Elevator speed command apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5233238A (en) * 1975-09-10 1977-03-14 Hitachi Ltd Elevator speed command apparatus

Also Published As

Publication number Publication date
JPS5793709A (en) 1982-06-10

Similar Documents

Publication Publication Date Title
JPH0775289B2 (en) Transconductance amplifier circuit
EP0004099A1 (en) Electrically variable impedance circuit
JPS59103174A (en) Voltage adder circuit
US4780690A (en) Filter arrangement having a transconductance circuit
JPS6039220A (en) Current stabilizing circuit
JPS628043B2 (en)
JPH0237723B2 (en)
US4137506A (en) Compound transistor circuitry
JPH0527282B2 (en)
JPS5840370B2 (en) Zoufuku Cairo
JPH0154884B2 (en)
JPS5836005A (en) Amplifying circuit
JPS61140210A (en) Signal processing circuit
JPH0114726B2 (en)
JP2693861B2 (en) Amplifier circuit
JP2982188B2 (en) Differential amplifier circuit
JP2841563B2 (en) Variable impedance circuit
JPS6121857Y2 (en)
JP3076160B2 (en) Amplifier circuit
JPS6322687B2 (en)
JPH06103813B2 (en) Voltage control amplifier circuit
JPS624006B2 (en)
JPH0533563B2 (en)
JPS6052105A (en) High frequency amplifier
JPH05299947A (en) Differential amplifier