JPS6280277A - Thin amorphous alloy strip having superior constant magnetic permeability - Google Patents

Thin amorphous alloy strip having superior constant magnetic permeability

Info

Publication number
JPS6280277A
JPS6280277A JP21792285A JP21792285A JPS6280277A JP S6280277 A JPS6280277 A JP S6280277A JP 21792285 A JP21792285 A JP 21792285A JP 21792285 A JP21792285 A JP 21792285A JP S6280277 A JPS6280277 A JP S6280277A
Authority
JP
Japan
Prior art keywords
amorphous alloy
ribbon
magnetic permeability
compressive force
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21792285A
Other languages
Japanese (ja)
Inventor
Nobuyuki Morito
森戸 延行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP21792285A priority Critical patent/JPS6280277A/en
Publication of JPS6280277A publication Critical patent/JPS6280277A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemically Coating (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To improve the constant permeability of a thin amorphous alloy strip in a wide range by forming a prescribed insulating film on the surface of the strip having a positive magnetostriction constant so that compressive force is applied in the longitudinal direction of the strip. CONSTITUTION:The titled thin amorphous alloy strip is obtd. by forming an insulating film for applying compressive force on the surface of a thin amorphous alloy strip having a positive magnetostriction constant. The insulating film has 1-5mum thickness and is formed by coating the surface of the strip with an aqueous soln. of lithium silicate having 3-4 molar ratio of SiO2/Li2O, baking the soln. and carrying out heat treatment at 250 deg.C - the crystallization temp.

Description

【発明の詳細な説明】 (産業上の利用分野) 恒透磁率に優れた非晶質合金薄帯に関して、この明細書
で述べる技術内容は、非晶質合金薄帯の表面に、該薄帯
に対して圧縮力を付与し得る絶縁被膜を被成することに
よって、恒透磁率範囲の有利な拡大を図るところにある
Detailed Description of the Invention (Industrial Application Field) The technical content described in this specification regarding an amorphous alloy ribbon with excellent constant magnetic permeability is to By forming an insulating coating capable of applying a compressive force to the magnetic field, the constant magnetic permeability range is advantageously expanded.

磁化曲線において、磁束密度Bが磁界の強さHに対して
直線的に変化し、透磁率μが加える磁界の強さHの大き
さに依存せずほぼ一定な材料を、恒透磁率材料と呼び、
通信機器用ろ波器や、装荷線輪、サイリスタの保護回路
およびパルス変圧器などに使用されている。
In the magnetization curve, a material whose magnetic flux density B changes linearly with the magnetic field strength H and whose magnetic permeability μ is almost constant regardless of the magnitude of the applied magnetic field strength H is called a constant magnetic permeability material. call,
It is used in filters for communication equipment, loading wires, thyristor protection circuits, pulse transformers, etc.

(従来の技術) 恒透磁率材料としては、従来、45%N+ −30%F
e−25%Coバーミンバーや50%Ni −50%F
eイソバームなどが知られているが、これらはいずれも
恒透磁率範囲が5〜100eまでという狭い範囲に限ら
れていた。
(Conventional technology) As a constant magnetic permeability material, conventionally, 45%N+ -30%F
e-25%Co verminbar and 50%Ni-50%F
Although e-isobalm and the like are known, the constant magnetic permeability range of all these is limited to a narrow range of 5 to 100 e.

この点、広い範囲にわたって恒透磁率を示す材料の製造
方法として、特開昭57−169207号公報において
、Fe基非晶質合金薄帯の表面に酸化膜を形成させる方
法が、また特開昭57−169208号公報においては
、含Aβ・Fe基非晶質合金簿帯の表面にA1の酸化膜
を形成させる方法がそれぞれ提案された。
In this regard, as a method for manufacturing a material that exhibits constant magnetic permeability over a wide range, JP-A-57-169207 discloses a method of forming an oxide film on the surface of an Fe-based amorphous alloy ribbon. No. 57-169208 proposes a method of forming an oxide film of A1 on the surface of an Aβ-Fe-based amorphous alloy strip.

(発明が解決しようとする問題点) しかしながら非晶質合金は多くの場合焼鈍によって脆く
なることから、上記した方法によって恒透磁率の範囲を
広げる場合には、磁心を構成したあとに酸化膜形成のた
めの熱処理を施す必要があるところ、たとえば磁心とし
て巻鉄心を作る場合においては、薄帯の巻回し状態に応
じて、酸化反応の進行具合や酸化膜厚に違いが出てくる
ため、製品特性にばらつきが生じるところに問題を残し
ていた。
(Problem to be solved by the invention) However, in many cases, amorphous alloys become brittle due to annealing, so when expanding the range of constant magnetic permeability by the above method, an oxide film is formed after forming the magnetic core. For example, when making a wound core as a magnetic core, the degree of progress of the oxidation reaction and the thickness of the oxide film vary depending on the winding condition of the ribbon. The problem remained that variations in characteristics occurred.

この発明は、上記の問題を有利に解決するもので、恒透
磁率を広い範囲にわたってしかも安定して発揮し得る非
晶質合金薄帯を提案することを目的とする。
The present invention aims to advantageously solve the above-mentioned problems and to propose an amorphous alloy ribbon that can stably exhibit constant magnetic permeability over a wide range.

(問題点を解決するための手段) さて発明者らは、単軸磁気異方性をもつ材料を磁化困難
軸の方向に磁化したときに恒透磁率が現われること、な
らびに非晶質磁性合金は誘導磁気異方性が大きいことに
着目し、非晶質合金薄帯に外部力を作用させることによ
って、その長手方向を磁化困難軸とすべく、種々の実験
を行った。
(Means for solving the problem) The inventors have discovered that constant magnetic permeability appears when a material with uniaxial magnetic anisotropy is magnetized in the direction of the hard magnetization axis, and that an amorphous magnetic alloy Focusing on the large induced magnetic anisotropy, we conducted various experiments to make the longitudinal direction of the amorphous alloy ribbon the axis of difficulty in magnetization by applying an external force to the ribbon.

その結果、180度磁壁をそなえ、薄帯長手方向に磁化
容易軸を有し、かつ正の磁歪常数をもつ非晶質合金薄帯
につき、その長手方向に圧縮力を付加した場合、90度
磁壁が形成されてリボン長手方向は磁化困難軸となるこ
とが見出された。この点、CO基非晶質合金のような磁
歪が零の合金においては、上記したような外部応力によ
る磁壁の変化はなかった。
As a result, when a compressive force is applied in the longitudinal direction of an amorphous alloy ribbon that has a 180-degree magnetic domain wall, an easy axis of magnetization in the longitudinal direction of the ribbon, and a positive magnetostriction constant, the 90-degree magnetic domain wall was formed, and the longitudinal direction of the ribbon was found to be the axis of difficult magnetization. In this regard, in alloys with zero magnetostriction such as CO-based amorphous alloys, there was no change in the domain wall due to external stress as described above.

従って正の磁歪常数をもつ非晶質合金薄帯に対し、何ら
かの手段でリボンの長手方向に圧縮力を加えることがで
きるならば、リボン長手方向に磁化した場合に恒透磁率
が得られるはずである。
Therefore, if compressive force can be applied to an amorphous alloy ribbon with a positive magnetostriction constant in the longitudinal direction of the ribbon by some means, constant magnetic permeability should be obtained when the ribbon is magnetized in the longitudinal direction. be.

そこで発明者らは次に、薄帯に圧縮力を加える手段につ
いて種々検討したところ、かような手段としては、薄帯
表面に圧縮力付与型の絶縁被膜を被成させることが極め
て有効であることの知見を得た。
Therefore, the inventors next investigated various means for applying compressive force to the ribbon, and found that an extremely effective means for such a method is to coat the surface of the ribbon with an insulating film that applies compressive force. I gained some knowledge.

この発明は、上記の知見に立脚するものである。This invention is based on the above knowledge.

すなわちこの発明は、正の磁歪常数をもつ非晶質合金薄
帯の表面に、圧縮力付与型の絶縁被膜をそなえて成る、
恒透磁率に優れた非晶質合金薄帯である。
That is, the present invention comprises an amorphous alloy ribbon having a positive magnetostriction constant, which is provided with an insulating coating that imparts compressive force on the surface of the amorphous alloy ribbon.
This is an amorphous alloy ribbon with excellent constant magnetic permeability.

この発明において、薄帯表面に被成すべき絶縁被膜とし
ては、SiO2/Li2Oのモル比が3〜4の範囲を満
足するけい酸リチウム水溶液を、基地薄帯の表面に塗布
、焼付けたのち、250℃以上、結晶化温度以下の温度
域における熱処理を経て得られた、膜厚:1.0〜5.
0μmの圧縮力付与型の絶縁被膜がとりわけ有利に適合
する。
In this invention, the insulating film to be formed on the surface of the ribbon is coated with a lithium silicate aqueous solution having a SiO2/Li2O molar ratio of 3 to 4 and baked on the surface of the base ribbon. Film thickness obtained through heat treatment in a temperature range of 1.0 to 5.degree. C. or above and below the crystallization temperature.
An insulating coating with a compressive force of 0 μm is particularly advantageously suitable.

またこの発明において好適に用いることができる正の磁
歪常数をもつ非晶質合金薄帯としては、次のようなもの
がある。
Furthermore, examples of amorphous alloy ribbons having a positive magnetostriction constant that can be suitably used in the present invention include the following.

Feを主成分とし、B、SiおよびCなどの一種または
二種以上を15〜20at%の範囲において含有するも
のであって、代表組成としては、Fe7sBsSi +
2C++ Fe7sB+ 。
The main component is Fe and contains one or more of B, Si, and C in the range of 15 to 20 at%, and the typical composition is Fe7sBsSi +
2C++ Fe7sB+.

5i12およびFe 77 at 2 Si + oc
+などが挙げられる。なおこの種合金において磁歪常数
の大きさは合金中のFeiにほぼ比例する。
5i12 and Fe 77 at 2 Si + oc
+ etc. Note that in this type of alloy, the magnitude of the magnetostriction constant is approximately proportional to Fei in the alloy.

以下、この発明を具体的に説明する。This invention will be specifically explained below.

まずこの発明の基礎となった実験結果について説明する
First, the experimental results that formed the basis of this invention will be explained.

fil O−)’v法によッテ、l”e 78B1 o
si + 2の組成になる幅: somm、厚み227
μmの非晶質合金薄帯を作成した。
fil O-)'v method, l”e 78B1 o
Width with composition si + 2: somm, thickness 227
A μm-sized amorphous alloy ribbon was produced.

ついでこの薄帯表面に、S ! 02 / L、I 2
0のモル比を3.5に調整したけい酸リチウム水溶液(
8産化学製リチウムシリケートLSS−35)を塗布し
、200℃で3分間焼付けた。得られた被膜厚は約3μ
mであった。
Then, on the surface of this thin strip, S! 02/L, I 2
Lithium silicate aqueous solution whose molar ratio of 0 was adjusted to 3.5 (
Lithium silicate LSS-35) manufactured by Sansan Kagaku Co., Ltd. was applied and baked at 200° C. for 3 minutes. The resulting coating thickness was approximately 3μ
It was m.

この段階における非晶質合金薄帯は延性に冨み、脆(は
なかった。
The amorphous alloy ribbon at this stage was highly ductile and not brittle.

次に、350℃で1時間の熱処理を施したところ、第1
図にB−8曲線を示したように、はぼ250eまでの広
い範囲にわたって恒透磁率が得られた。
Next, when heat treatment was performed at 350°C for 1 hour, the first
As shown by the B-8 curve in the figure, constant magnetic permeability was obtained over a wide range up to approximately 250e.

ここにけい酸リチウム水溶液における5i02/Li 
20のモル比が3に満だなしくと、得られる被膜の耐水
性および耐吸湿性が悪く、一方4を超えると被膜の密着
性が劣化し、とくに膜厚が5μmに近い厚膜にすると被
膜の形成すら難しくなるので、5102/Li 20の
モル比は3〜4の範囲に限定する必要がある。
Here, 5i02/Li in lithium silicate aqueous solution
If the molar ratio of 20 is less than 3, the water resistance and moisture absorption resistance of the obtained film will be poor, while if it exceeds 4, the adhesion of the film will deteriorate, especially when the film thickness is close to 5 μm. Since even the formation of a film becomes difficult, the molar ratio of 5102/Li 20 must be limited to a range of 3 to 4.

またこの発明においては、上記したコーティング処理液
を、基地薄帯の表面に塗布ついで焼付けたのら、250
℃〜結晶化温結晶湿温域において熱処理を施すことが肝
要である。
In addition, in this invention, after applying the above-mentioned coating treatment liquid to the surface of the base ribbon and baking it,
It is important to perform the heat treatment in the crystallization temperature to crystallization humidity range.

というのはかかる熱処理によって、基地薄帯は長手方向
に磁化容易軸が揃って単軸磁気異方性をもつようになる
と共に、一方で基地薄帯の表面に焼付けられた絶縁被膜
が十分に硬質化して該薄帯には圧縮力が付加されること
になり、その結果薄帯の長手方向は磁化困難軸となって
恒透磁率を呈するようになるからである。
This is because, through such heat treatment, the axis of easy magnetization of the base ribbon is aligned in the longitudinal direction and it has uniaxial magnetic anisotropy, while at the same time the insulating film baked on the surface of the base ribbon is sufficiently hard. This is because a compressive force is applied to the ribbon as a result of this, and as a result, the longitudinal direction of the ribbon becomes an axis of difficult magnetization and exhibits constant magnetic permeability.

ここに熱処理温度が250℃に満たないと、脱水が充分
に進まないため被膜の硬質化が難しく、それ故満足のい
く圧縮力の付加ができず、一方結晶化温度を超えると非
晶質状態を維持できず、所望の磁気特性が得られなくな
るので、熱処yIAs度は250℃〜結晶化温結晶湿温
に限定した。
If the heat treatment temperature is less than 250°C, dehydration will not proceed sufficiently, making it difficult to harden the film, and therefore, it will not be possible to apply a satisfactory compressive force.On the other hand, if it exceeds the crystallization temperature, it will become amorphous. Since the temperature cannot be maintained and the desired magnetic properties cannot be obtained, the heat treatment temperature is limited to 250° C. to crystallization temperature and crystal humidity temperature.

なお表面被膜の膜厚が、1.0μmに満たないと薄帯に
満足いくほどの圧縮力を付加することが難しく、一方5
.0μmを超えると被膜の密着性が劣化するきらいにあ
るので、膜厚は1.θ〜5.0μm程度とするのが望ま
しい。
Note that if the thickness of the surface coating is less than 1.0 μm, it is difficult to apply a satisfactory compressive force to the ribbon;
.. If it exceeds 0 μm, the adhesion of the film is likely to deteriorate, so the film thickness should be 1. It is desirable to set it to about θ to 5.0 μm.

(作用) この発明によって恒透磁率を呈する範囲が有利に拡大さ
れる理由は、非晶質合金薄帯の表面に被成した絶縁被膜
による該薄帯への圧縮力付与によって、薄帯長手方向が
磁化困難軸となることによる。
(Function) The reason why the range exhibiting constant magnetic permeability is advantageously expanded by this invention is that compressive force is applied to the ribbon by the insulating coating formed on the surface of the amorphous alloy ribbon, and is the axis of difficult magnetization.

なお被膜の硬質化をもたらす熱処理は、磁心組立ての前
でも勿論良いが、取扱いの容易さという点からは、磁心
組立て侵が一層好ましい。ここに磁心組立て後に熱処理
を施したとしても、薄帯表面には硬質化はしていないも
ののすでに被膜が焼付けられているので、従来のように
膜厚の違いなどによる特性のばらつきが生じることはな
い。
Note that the heat treatment for hardening the coating may of course be performed before assembling the magnetic core, but from the viewpoint of ease of handling, it is more preferable to perform the heat treatment before assembling the magnetic core. Even if heat treatment is applied after the magnetic core is assembled, a coating has already been baked onto the surface of the ribbon, although it has not hardened, so variations in characteristics due to differences in film thickness will not occur as in the past. do not have.

(実施例) 実施例1 Fe 7 [I B + o S i l 2 (DI
A成ニftル非a’R合金薄帯(結晶化温度:540℃
)の表面に、Si 02 /Li 20のモル比を3.
5に調合したけい酸リチウム水溶液を塗布したのち、2
00℃で2分間焼付けた。このとき得られた被膜の膜厚
は、約4.0μmであった。ついで窒素ガス気流中で3
80℃、 1時間の焼鈍処理を施した。
(Example) Example 1 Fe 7 [I B + o S i l 2 (DI
A-formed non-a'R alloy ribbon (crystallization temperature: 540℃
) with a molar ratio of Si 02 /Li 20 of 3.
After applying the lithium silicate aqueous solution prepared in step 5,
Baked at 00°C for 2 minutes. The thickness of the film obtained at this time was about 4.0 μm. Then, in a nitrogen gas stream,
Annealing treatment was performed at 80°C for 1 hour.

かくして得られた薄帯の磁化曲線について調べたところ
、約35Qeまで恒透磁率を呈した。
When the magnetization curve of the ribbon thus obtained was examined, it exhibited constant magnetic permeability up to about 35 Qe.

実施例2 乾燥膜厚を2.0μmとする他は、実施例1と同様の処
理を施して絶縁被膜付き非晶質合金薄帯を作成した。
Example 2 An amorphous alloy ribbon with an insulating coating was prepared in the same manner as in Example 1 except that the dry film thickness was 2.0 μm.

かくして得られた薄帯は、約2008まで恒透磁率を呈
した。
The ribbon thus obtained exhibited constant magnetic permeability up to about 2008.

比較例1 乾燥膜厚を0.1μmとする他は実施例1と同様な処理
を施して絶縁被膜付き非晶質合金薄帯を作成したところ
、得られた薄帯の透磁率一定の範囲は3Qeにも達しな
かった。
Comparative Example 1 An amorphous alloy ribbon with an insulating coating was prepared in the same manner as in Example 1 except that the dry film thickness was 0.1 μm. The range of constant magnetic permeability of the obtained ribbon was It did not even reach 3Qe.

(発明の効果) かくしてこの発明によれば、従来に比べて著しく広い範
囲にわたって恒透磁率を呈する非晶質合金薄帯を容易に
得ることができる。
(Effects of the Invention) Thus, according to the present invention, it is possible to easily obtain an amorphous alloy ribbon exhibiting constant magnetic permeability over a significantly wider range than in the prior art.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明に従う絶縁被膜付き非晶質合金薄帯
のB−H曲線図である。
FIG. 1 is a B-H curve diagram of an amorphous alloy ribbon with an insulating coating according to the present invention.

Claims (1)

【特許請求の範囲】 1、正の磁歪常数をもつ非晶質合金薄帯の表面に、圧縮
力付与型の絶縁被膜をそなえて成る、恒透磁率に優れた
非晶質合金薄帯。 2、圧縮力付与型の絶縁被膜が、SiO_2/Li_2
Oのモル比が3〜4の範囲を満足するけい酸リチウム水
溶液を、基地薄帯の表面に塗布、焼付けたのち、250
℃以上、結晶化温度以下の温度域における熱処理を経て
得た膜厚1.0〜5.0μmの被膜である特許請求の範
囲第1項記載の非晶質合金薄帯。
[Claims] 1. An amorphous alloy ribbon with excellent constant magnetic permeability, comprising an amorphous alloy ribbon with a positive magnetostriction constant and an insulating coating that imparts compressive force on the surface thereof. 2. Compressive force imparting type insulation coating is SiO_2/Li_2
A lithium silicate aqueous solution with an O molar ratio of 3 to 4 was applied to the surface of the base ribbon and baked, and then
The amorphous alloy ribbon according to claim 1, which is a film having a thickness of 1.0 to 5.0 μm obtained through heat treatment in a temperature range of not less than 0.degree. C. and not more than the crystallization temperature.
JP21792285A 1985-10-02 1985-10-02 Thin amorphous alloy strip having superior constant magnetic permeability Pending JPS6280277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21792285A JPS6280277A (en) 1985-10-02 1985-10-02 Thin amorphous alloy strip having superior constant magnetic permeability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21792285A JPS6280277A (en) 1985-10-02 1985-10-02 Thin amorphous alloy strip having superior constant magnetic permeability

Publications (1)

Publication Number Publication Date
JPS6280277A true JPS6280277A (en) 1987-04-13

Family

ID=16711831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21792285A Pending JPS6280277A (en) 1985-10-02 1985-10-02 Thin amorphous alloy strip having superior constant magnetic permeability

Country Status (1)

Country Link
JP (1) JPS6280277A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103056091A (en) * 2013-01-28 2013-04-24 青岛云路新能源科技有限公司 Method and device for online insulating coating on surfaces of amorphous strip and nanocrystalline strip

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103056091A (en) * 2013-01-28 2013-04-24 青岛云路新能源科技有限公司 Method and device for online insulating coating on surfaces of amorphous strip and nanocrystalline strip

Similar Documents

Publication Publication Date Title
DE60026892T2 (en) A method of treating a thin and fragile metal strip and magnetic workpieces made of a nanocrystalline alloy strip
JPH0978252A (en) Formation of insulating film on grain-oriented silicon steel sheet
US5091253A (en) Magnetic cores utilizing metallic glass ribbons and mica paper interlaminar insulation
JPH05279864A (en) Formation of insulated film for grain oriented silicon steel sheet
JPS6280277A (en) Thin amorphous alloy strip having superior constant magnetic permeability
JPS6210278A (en) Thin amorphous alloy strip having excellent paramagnetic permeability
JP2718948B2 (en) Manufacturing method of iron-based amorphous alloy ribbon
JPS61195964A (en) Rust preventing method of permanent magnet alloy
JPS6070157A (en) Amorphous alloy and its manufacture
JP3280844B2 (en) Method for forming insulating film on unidirectional silicon steel sheet
US3991233A (en) Method of manufacturing a magnetizable layer for a magnetic domain device
JPH0665662A (en) Soft magnetic alloy
JP2918255B2 (en) Manufacturing method of magnetic core
JP3388247B2 (en) Wound core and method of manufacturing the same
US3606676A (en) Silicate bonding of magnetic cores
JPH0226767B2 (en)
JPS60145360A (en) Amorphous magnetic alloy and its manufacture
JPH02304704A (en) Manufacture of magnetic head
JPS63248106A (en) Amorphous alloy thin band with excellent constant permeability
JPH0216706A (en) Manufacture of amorphous core
JPS6140306B2 (en)
JPS63301510A (en) Formation of nonmagnetic iron oxide thin film
JPH0376571B2 (en)
JPS6261111B2 (en)
JPS63217603A (en) Magnetic core of amorphous metal