JPS6261111B2 - - Google Patents

Info

Publication number
JPS6261111B2
JPS6261111B2 JP11815784A JP11815784A JPS6261111B2 JP S6261111 B2 JPS6261111 B2 JP S6261111B2 JP 11815784 A JP11815784 A JP 11815784A JP 11815784 A JP11815784 A JP 11815784A JP S6261111 B2 JPS6261111 B2 JP S6261111B2
Authority
JP
Japan
Prior art keywords
steel strip
magnetic steel
amorphous magnetic
magnetic
alkoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11815784A
Other languages
Japanese (ja)
Other versions
JPS60262978A (en
Inventor
Akimi Umezono
Shun Sato
Takao Kanai
Toshio Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11815784A priority Critical patent/JPS60262978A/en
Publication of JPS60262978A publication Critical patent/JPS60262978A/en
Publication of JPS6261111B2 publication Critical patent/JPS6261111B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は非晶質磁性鋼帯の表面に非晶質を維持
するための必要条件である結晶化温度以下の温度
で絶縁性を付与、更に材料の磁性に好ましくない
圧縮応力による磁性の劣化の要因を極力避けるた
め、熱膨張率の小さな酸化物皮膜を得る表面処理
方法に関するものである。 ここで非晶質磁性鋼帯とは原子配列が液体のよ
うにランダムな構造をもつ磁性材料用鋼帯で溶融
金属を冷却基板上で超急冷する事により製造する
事が出来る。 金属成分としてはFe、B、Si、Cなどが主成
分である。 (従来の技術) 非晶質磁性鋼帯は結晶材料にくらべて磁気特性
がすぐれている事によつて省エネルギーの点から
近年大いに注目されている材料であるが、巻鉄心
或は積層鉄心として使用の際、層間の渦流損を押
えるため表面に絶縁性被膜を施すことが好まし
い。 非晶質磁性材料が通常20乃至60μmと薄く、又
結晶化温度以上の温度では結晶化が進むために好
ましくは膜厚が0.2μm程度以下の薄い皮膜を結
晶化温度以下の温度で形成させる必要がある。 磁性材料の表面処理が磁性材料表面に圧縮応力
を与える様に働くと、磁性が劣化するため、それ
を避け、出来うれば張力がかかる様な表面皮膜が
好ましく、そのためには熱膨張率が磁性材料より
小さい特性を有する皮膜が好ましい。 しかし非晶質磁性材料の熱膨張率は非常に小さ
く表面処理皮膜の構成成分の選択も極く限られ
る。 1984年4月開催の国際応用磁気学会(Inter
Mag.)の発表(予稿集AP―15)によればSiO2
ーテイングの例があるが、フイルム状にしたもの
はストレスにより磁気特性(鉄損)のばらつきを
生じやすく粉状にしてその欠点を逃げている。し
かし粉状のコーテイングは鉄心加工時の密着性に
問題があると考えられる。 (発明が解決しようとする問題点) 本発明の目的はこの様な背景をもとに非晶質磁
性鋼帯の表面に鋼帯の磁性への悪影響を押え、極
めて薄く均質に、好ましい特性の一つである絶縁
性を有する金属酸化物(セラミツクス)皮膜を結
晶化温度以下の温度で充分焼成する表面処理法を
提供することにある。 本発明の酸化物皮膜は熱膨張率が極めて小さく
磁性材料の磁性を少なくとも劣化させる度合の少
ないZrO2或はZrO2とSiO2の化合物を主成分とす
るものである。勿論巻鉄心或は積鉄心に成形した
場合その層間絶縁抵抗付与により渦流損失は大幅
に低下する。 (問題点を解決するための手段) 本発明の骨子とするところは、ジルコニウムア
ルコキシドあるいはジルコニウムアルコキシドと
ケイ素のアルコキシドを含む有機溶媒溶液を、磁
性鋼帯表面に塗布、乾燥焼付ける事により熱分解
させZrO2或はZrO2とSiO2の混合物乃至化合物と
推定される皮膜を形成させるものであるが結晶の
成長度が低くX線回折等による確認は出来ていな
い。しかしジルコニウムアルコキシドあるいはジ
ルコニウムアルコキシドとケイ素のアルコキシド
を含む有機溶媒溶液が空気中の湿分により加水分
解されても或は加水分解されなくても磁性材料が
350℃乃至400℃で焼鈍されたあとは最終的には
ZrO2或はSiO2の混合酸化物或は化合物の皮膜が
形成されているものと考えられる。 これらの酸化物或は混合酸化物の焼結体の膨張
率は可成り小さい事が期待出来、従つて焼鈍後磁
性材料に好ましくない圧縮応力を出来るだけ小さ
く、場合によつては磁性に好ましい張力を与える
事も期待出来る。勿論鋼板表面のこれら酸化物皮
膜による絶縁性の向上は巻鉄心或は積層鉄心とし
て使用する場合、渦流損の増を抑え鉄損の低下に
効果がある。 (実施例) 以下実施例をあげて具体的に説明する。 実施例 Fe80.5原子%(以下同じ)、B12%、Si6.5%、
C1%を主成分とする板厚40±2μ、板幅100mmの
非晶質磁性鋼帯に下記の処理液およびとの
混合溶液を塗布し、200℃の大気中で乾操巻鉄心
として360℃N2気流中で1時間の磁場焼鈍をした
後、磁性を測定した。 塗布剤 :ZrO2として5重量%のジルコニウム―n
―ブトキシドを含む酢酸ブチル溶液 :SiO2として5重量%のシリコンテトラエ
トキシドを含む酢酸エチル溶液 ZrO2:SiO2がモル比で1:1になる様混合、
混合後直ちに塗布 磁性測定結果は次表のとおりである。
(Field of Industrial Application) The present invention imparts insulation to the surface of an amorphous magnetic steel strip at a temperature below the crystallization temperature, which is a necessary condition for maintaining the amorphous state, and furthermore, it is undesirable for the magnetism of the material. The present invention relates to a surface treatment method for obtaining an oxide film with a small coefficient of thermal expansion in order to avoid as much as possible the cause of magnetic deterioration due to compressive stress. Here, the amorphous magnetic steel strip is a steel strip for magnetic materials whose atomic arrangement is random like that of a liquid, and can be manufactured by ultra-quenching molten metal on a cooling substrate. The main metal components are Fe, B, Si, C, etc. (Prior art) Amorphous magnetic steel strip is a material that has attracted much attention in recent years from the viewpoint of energy saving due to its superior magnetic properties compared to crystalline materials, but it has not been used as a wound core or a laminated core. At this time, it is preferable to apply an insulating coating to the surface in order to suppress eddy current loss between layers. Since the amorphous magnetic material is usually as thin as 20 to 60 μm and crystallization progresses at temperatures above the crystallization temperature, it is necessary to form a thin film with a thickness of preferably about 0.2 μm or less at a temperature below the crystallization temperature. There is. If the surface treatment of the magnetic material acts to apply compressive stress to the surface of the magnetic material, the magnetism will deteriorate, so to avoid this, it is preferable to create a surface coating that can be applied with tension. Coatings with properties smaller than the material are preferred. However, the coefficient of thermal expansion of amorphous magnetic materials is extremely small, and the selection of constituent components of the surface treatment film is extremely limited. The International Society of Applied Magnetics (Inter) was held in April 1984.
Mag.) (Proceedings AP-15), there is an example of SiO 2 coating, but film-formed coatings tend to cause variations in magnetic properties (iron loss) due to stress, and powder-formed coatings can overcome this drawback. running away However, powder coating is thought to have problems with adhesion during core processing. (Problems to be Solved by the Invention) Based on this background, the purpose of the present invention is to form an extremely thin and homogeneous surface of an amorphous magnetic steel strip with favorable characteristics while suppressing the negative effect on the magnetism of the steel strip. An object of the present invention is to provide a surface treatment method for sufficiently firing a metal oxide (ceramics) film having an insulating property at a temperature below the crystallization temperature. The oxide film of the present invention is mainly composed of ZrO 2 or a compound of ZrO 2 and SiO 2 which has an extremely small coefficient of thermal expansion and is less likely to degrade the magnetism of the magnetic material. Of course, when formed into a wound core or a laminated core, the eddy current loss is significantly reduced by providing interlayer insulation resistance. (Means for Solving the Problems) The gist of the present invention is to apply an organic solvent solution containing zirconium alkoxide or zirconium alkoxide and silicon alkoxide to the surface of a magnetic steel strip, and dry and bake it to thermally decompose it. It forms a film that is presumed to be ZrO 2 or a mixture or compound of ZrO 2 and SiO 2 , but the degree of crystal growth is so low that it cannot be confirmed by X-ray diffraction or the like. However, even if an organic solvent solution containing zirconium alkoxide or zirconium alkoxide and silicon alkoxide is hydrolyzed by moisture in the air, or even if it is not hydrolyzed, a magnetic material is produced.
After being annealed at 350℃ to 400℃, the final
It is thought that a film of a mixed oxide or compound of ZrO 2 or SiO 2 is formed. The expansion coefficient of the sintered body of these oxides or mixed oxides can be expected to be quite small, so that the compressive stress that is undesirable for the magnetic material after annealing can be minimized, and in some cases, the tensile stress that is favorable for the magnetic material can be minimized. You can also expect it to give you. Of course, the improvement in insulation by these oxide films on the surface of the steel sheet is effective in suppressing the increase in eddy current loss and reducing iron loss when used as a wound core or a laminated core. (Example) The present invention will be specifically explained below with reference to Examples. Example: Fe80.5 atomic% (same below), B12%, Si6.5%,
An amorphous magnetic steel strip with a thickness of 40±2μ and a width of 100mm, mainly composed of C1%, was coated with the following treatment solution and a mixed solution of Magnetism was measured after magnetic field annealing for 1 hour in a N 2 stream. Coating agent: 5% by weight zirconium-n as ZrO 2
- Butyl acetate solution containing butoxide: Ethyl acetate solution containing 5% by weight silicon tetraethoxide as SiO 2 Mix so that the molar ratio of ZrO 2 :SiO 2 is 1:1,
Apply immediately after mixing The magnetic measurement results are shown in the table below.

【表】 (発明の効果) 以上説明したように本発明によれば非晶質磁性
鋼帯の表面に絶縁性を有する金属酸化物皮膜を形
成することができるので渦流損失を大幅に低下さ
せることができ実用上の効果は極めて大きい。
[Table] (Effects of the Invention) As explained above, according to the present invention, it is possible to form an insulating metal oxide film on the surface of an amorphous magnetic steel strip, thereby significantly reducing eddy current loss. The practical effect is extremely large.

Claims (1)

【特許請求の範囲】[Claims] 1 非晶質磁性鋼帯の表面に、ジルコニウムアル
コキシドあるいはジルコニウムアルコキシドとケ
イ素のアルコキシドを含む有機溶媒溶液を塗布
し、前記非晶質磁性鋼の結晶化温度以下の温度
で、乾繰、焼付けを行ない金属酸化物より成る絶
縁性被膜を形成することを特徴とする非晶質磁性
鋼帯の表面処理法。
1. Apply zirconium alkoxide or an organic solvent solution containing zirconium alkoxide and silicon alkoxide to the surface of an amorphous magnetic steel strip, and perform drying and baking at a temperature below the crystallization temperature of the amorphous magnetic steel. A surface treatment method for an amorphous magnetic steel strip characterized by forming an insulating film made of metal oxide.
JP11815784A 1984-06-11 1984-06-11 Surface treatment of amorphous magnetic steel strip Granted JPS60262978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11815784A JPS60262978A (en) 1984-06-11 1984-06-11 Surface treatment of amorphous magnetic steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11815784A JPS60262978A (en) 1984-06-11 1984-06-11 Surface treatment of amorphous magnetic steel strip

Publications (2)

Publication Number Publication Date
JPS60262978A JPS60262978A (en) 1985-12-26
JPS6261111B2 true JPS6261111B2 (en) 1987-12-19

Family

ID=14729507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11815784A Granted JPS60262978A (en) 1984-06-11 1984-06-11 Surface treatment of amorphous magnetic steel strip

Country Status (1)

Country Link
JP (1) JPS60262978A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0316507Y2 (en) * 1986-02-26 1991-04-09

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970009411B1 (en) * 1994-06-30 1997-06-13 한국과학기술연구원 Method for forming insulating film on ribbon of amorphous magnetic alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0316507Y2 (en) * 1986-02-26 1991-04-09

Also Published As

Publication number Publication date
JPS60262978A (en) 1985-12-26

Similar Documents

Publication Publication Date Title
FI57976B (en) FOERFARANDE FOER BILDANDE AV ETT ISOLERINGSSKIKT FOER DAEMPANDE AV MAGNETOSTRIKTION PAO EN ORIENTERAD KISELSTAOLSKIVA
JP7016358B2 (en) Electrical steel sheet with insulating film and its manufacturing method
JP2662482B2 (en) Low iron loss grain-oriented electrical steel sheet
JPS6261111B2 (en)
US4759949A (en) Method of insulating ferromagnetic amorphous metal continuous strip
JP2019137874A (en) Oriented electrical steel sheet and manufacturing method thereof
JP6579260B2 (en) Directional electrical steel sheet and method for manufacturing the grain oriented electrical steel sheet
JPS63297575A (en) Improvement in magnesium oxide steel coating agent
JP2664326B2 (en) Low iron loss unidirectional silicon steel sheet
JPH0151043B2 (en)
JP3162624B2 (en) Method for producing low iron loss unidirectional silicon steel sheet
JP7356017B2 (en) Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
JP3098691B2 (en) Low iron loss unidirectional silicon steel sheet with excellent coating water resistance and rust resistance
KR20190078209A (en) Coated electrical steel sheet having excellent insulation property and method for preparing the same
JPS6152372A (en) Surface treatment of thin amorphous magnetic alloy strip or thin sheet
JPS60152681A (en) Insulating film on nonoriented electrical steel sheet
JPH11300450A (en) Fe base amorphous alloy thin band having extremely thin oxidized layer
JP2772889B2 (en) Low iron loss grain-oriented electrical steel sheet
JPS6265404A (en) Improving magnetic characteristics of amorphous alloy thin band
JP3527008B2 (en) Low iron loss unidirectional electrical steel sheet and method of manufacturing the same
JPS6342705B2 (en)
JPS6152371A (en) Surface treatment of thin amorphous magnetic metallic strip
US3615919A (en) Reactive aluminum nitrate edge coatings for electrical steels
JPS6164885A (en) Surface treatment of thin amorphous magnetic metallic strip
JPH07278828A (en) Coating agent for forming grain-oriented silicon steel sheet coating film and production of grain-oriented silicon steel sheet having the coating film