JPS627839A - Manufacture of niti alloy - Google Patents

Manufacture of niti alloy

Info

Publication number
JPS627839A
JPS627839A JP14738185A JP14738185A JPS627839A JP S627839 A JPS627839 A JP S627839A JP 14738185 A JP14738185 A JP 14738185A JP 14738185 A JP14738185 A JP 14738185A JP S627839 A JPS627839 A JP S627839A
Authority
JP
Japan
Prior art keywords
alloy
molten metal
mold
niti
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14738185A
Other languages
Japanese (ja)
Inventor
Kazuo Sawada
澤田 和夫
Kazuhiko Hayashi
和彦 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP14738185A priority Critical patent/JPS627839A/en
Publication of JPS627839A publication Critical patent/JPS627839A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To provide functions such as shape memory effect, superelastic behavior, etc., by unidirectionally solidifying a molten metal of Ni-Ti alloy containing specific amounts of Ni or of the one in which >=1 element among Cu, Al, V, Zn, Mo, Cr, Fe, Co and rare earth elements is substituted for a part of Ni or Ti. CONSTITUTION:The molten metal 3 of the Ni-Ti alloy containing 50-60% Ni or of the one in which >=1 element among Cu, Al, V, Zn, Mo, Cr, Fe, Co and rare earth elements is substituted for a part of Ni or Ti s poured into a mold 2, where the molten metal 3 is cooled from the bottom of the mold 2 by means of a cooling chill 4, which the upper part is heated by means of a heater 5 outside the mold 2. Accordingly, the molten metal 3 is solidified from downward into solid phase 6, while the upper part is held in the molten state and formed into liquid phase 7. On slowly moving the mold 2 downward, the solid-liquid interface 8 is shifted to the liquid phase 7 side and grain bounda ries 9 grow unidirectionally, so that an ingot is formed into a unidirectionally solidified structure.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、形状記憶効果、超弾性挙動などを示すNi
 Ti系合金の鋳造方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention is directed to the use of Ni, which exhibits shape memory effects, superelastic behavior, etc.
This invention relates to improvements in casting methods for Ti-based alloys.

従来の技術 第3図には、従来のNi Ti系合金の製造方法が示さ
れている。従来のNi Ti系合金の製造方法では、鋳
型1にNi Ti系合金の溶湯を矢印六方向から注ぎ入
れながら、この溶湯を順次凝固させていく方法が採られ
ていた。
BACKGROUND OF THE INVENTION FIG. 3 shows a conventional method for producing a Ni Ti alloy. In a conventional method for manufacturing a Ni Ti alloy, a method has been adopted in which a molten Ni Ti alloy is poured into a mold 1 from six directions indicated by arrows, and the molten metal is sequentially solidified.

発明が解決しようとする問題点 Ni Ji系合金は、酸素との親和性が強いTtを多く
含有するため、溶解、!8造を注意深く行なっても、N
t 7i系合金の鋳塊中に、400〜5o o ppm
以上の酸素が混入するのを避けられなかった。混入した
酸素は、Ni Tiマトリックス中に固溶したり、Ti
 4 Ni 20の酸化物となって、Ni Ji系合金
の結晶粒界に析出したりする。
Problems to be Solved by the Invention NiJi-based alloys contain a large amount of Tt, which has a strong affinity for oxygen, so they melt and! Even if you do the 8 construction carefully, N
400 to 5 o ppm in the ingot of T7i alloy
It was unavoidable that more oxygen was mixed in. The mixed oxygen may be dissolved in the NiTi matrix or dissolved in the Ti matrix.
4 becomes an oxide of Ni20 and precipitates at the grain boundaries of NiJi alloys.

合金中における酸化物の含有率が高くなると、熱間加工
に際し割れが生じたり、成形加工中にクラックが入った
りするおそれがある。
If the content of oxides in the alloy becomes high, there is a risk that cracks may occur during hot working or cracks may occur during forming.

またTi5Ni20の酸化物を多く含有するNiTi系
合金を繰返し形状回復をさせる部材として用いた場合に
は、酸化物が応力集中源となり、疲労寿命を低下させて
しまう。
Furthermore, when a NiTi-based alloy containing a large amount of Ti5Ni20 oxide is used as a member for repeated shape recovery, the oxide becomes a stress concentration source and reduces the fatigue life.

さらに、7 i 4 N i 20の析出により、マト
リックス中のTim度が低下するため、MS点くマルテ
ンサイト相転移開始温度)が低下する。Ti4NizO
の析出量は一定ではなく、微妙に変動するので、T!n
Nf20の析出量に伴ってMS点も変動する。したがっ
て、所望のMS点を有するNi Ti系合金の製造が回
部であった。
Furthermore, due to the precipitation of 7 i 4 N i 20, the degree of Tim in the matrix decreases, so the martensitic phase transition start temperature (MS) decreases. Ti4NizO
The amount of precipitation of T! is not constant and varies slightly. n
The MS point also varies with the amount of Nf20 precipitated. Therefore, the production of a NiTi-based alloy having a desired MS point was the next step.

また、N+7+マトリツクス中にTi 4 Ni 20
などが介在すると、マルテンサイト界面が移動する際の
障害となるため、温度ヒステリシス(Af −Ms )
が大きくなる。よってこの発明の目的は、成形加工性に
優れ、疲労寿命が長く、さらにMS点が高り、温度ヒス
テリシスの小さいNiTi系合金の製造方法を提供する
ことである。
In addition, Ti 4 Ni 20 in the N+7+ matrix
If such substances are present, it becomes an obstacle to the movement of the martensite interface, resulting in temperature hysteresis (Af -Ms).
becomes larger. Therefore, an object of the present invention is to provide a method for manufacturing a NiTi alloy that has excellent formability, long fatigue life, high MS point, and small temperature hysteresis.

問題点を解決するための手段 この発明による、形状記憶効果や超弾性挙動などの機能
を有するNiTi系合金の製造方法は、N1を50〜6
0%含み、残部がTiよりなるNiTi合金、または、
NiもしくはTiの一部がCLI、AfLSV、Zn1
M01Cr、Fe、QOおよび希土類元素からなる群か
ら選ばれた1種以上の金属で置換されたNi Ti系合
金の溶湯を一方向へ向かって凝固させることを特徴とす
る。
Means for Solving the Problems According to the present invention, the method for producing a NiTi alloy having functions such as shape memory effect and superelastic behavior is characterized in that N1 is reduced to 50 to 6
NiTi alloy containing 0% and the remainder consisting of Ti, or
Part of Ni or Ti is CLI, AfLSV, Zn1
It is characterized by solidifying a molten Ni Ti alloy substituted with one or more metals selected from the group consisting of M01Cr, Fe, QO, and rare earth elements in one direction.

作用 第1図には、この発明によるNi Ti系合金の製造方
法の概略を示す模式図が示されている。NiT1系合金
のWIiは一方向から冷却され、熱流方向と逆の向きに
凝固が進んでゆく。したがって溶湯は、凝固した固相と
、溶融状態に保たれだ液相とに分かれ、固相と液相との
境界の固液界面が徐々に液相側へ移動してゆく。
Operation FIG. 1 is a schematic diagram showing an outline of the method for manufacturing a NiTi alloy according to the present invention. WIi, which is a NiT1-based alloy, is cooled from one direction, and solidification progresses in the opposite direction to the heat flow direction. Therefore, the molten metal is separated into a solidified solid phase and a molten liquid phase, and the solid-liquid interface between the solid phase and the liquid phase gradually moves toward the liquid phase.

溶湯に混入した酸素は、固相よりも液相に溶は込みやす
いため、固液界面で、固相から液相へ移ってゆく。した
がって固相中の酸素濃度は、元の溶湯の酸素濃度よりも
低くなる。
Oxygen mixed into the molten metal dissolves more easily in the liquid phase than in the solid phase, so it moves from the solid phase to the liquid phase at the solid-liquid interface. Therefore, the oxygen concentration in the solid phase becomes lower than the oxygen concentration in the original molten metal.

実施例 実施例1 第2図には、この発明によるNi 7i系合金の製造方
法の一例が示されている。鋳型2には、N1重a55%
−Ti重重量4亢 っている。溶湯3は予め高周波誘導真空溶解法によって
溶製された後、鋳型2へ移されたものである。溶湯3は
鋳型2の底から冷却チル4によって冷却され、上部は鋳
型2の外方に位置するヒータ5によって加熱される。し
たがって、溶湯3は下部から凝固して固相6となり、上
部は溶融状態に保たれて液相7となっている。
Examples Example 1 FIG. 2 shows an example of a method for manufacturing a Ni 7i alloy according to the present invention. For mold 2, N1 heavy a55%
-Ti weight has increased by 4. The molten metal 3 is prepared in advance by a high frequency induction vacuum melting method and then transferred to the mold 2. The molten metal 3 is cooled from the bottom of the mold 2 by a cooling chiller 4, and the upper part is heated by a heater 5 located outside the mold 2. Therefore, the molten metal 3 solidifies from the lower part and becomes a solid phase 6, and the upper part remains in a molten state and becomes a liquid phase 7.

鋳型2は徐々に下方へ移動し、溶湯3は次第に上部まで
冷却されて、固液界面8は液相7側へ移動してゆく。溶
湯3は一方向に向かって凝固されるため、結晶粒界9が
一方向に向かって成長し、鋳塊は一方向凝固組織となる
The mold 2 gradually moves downward, the molten metal 3 is gradually cooled to the upper part, and the solid-liquid interface 8 moves toward the liquid phase 7 side. Since the molten metal 3 is solidified in one direction, the grain boundaries 9 grow in one direction, and the ingot has a unidirectional solidification structure.

溶湯3に混入している酸素などの気体不純物は、固液界
面8で固相6から液相7へ移動する。したがって、凝固
された鋳塊中には酸素やT!xNt20の酸化物が混入
しにくくなる。なJり、NiTi系合金は、工業的には
通常、黒鉛るつぼ中で溶解されるため、溶湯3中には介
在物として、T1・N1・O (7) 他に: T I
 Cが存在する。Tt (lよ融点が3250℃と高い
ため、Ni Ti系合金の溶湯3中には固相で存在する
。したがって、たとえば、横方向や上から下へ向けての
一方向凝固を行なっても、Ni Ti系合金からTiC
を除去することはできない。しかし、TiCは比重が4
.2もであり、II Ti合金の比重は6.5であるた
め、実施例1のように、下から上に向かって一方向凝固
を行なえば、TiCを浮遊除去することができる。
Gaseous impurities such as oxygen mixed in the molten metal 3 move from the solid phase 6 to the liquid phase 7 at the solid-liquid interface 8. Therefore, the solidified ingot contains oxygen and T! xNt20 oxide is less likely to be mixed in. However, since NiTi alloys are industrially usually melted in graphite crucibles, T1, N1, O (7) are included in the molten metal 3 as inclusions.
C exists. Since Tt (l) has a high melting point of 3250°C, it exists in the solid phase in the molten Ni Ti alloy. From Ni Ti alloy to TiC
cannot be removed. However, TiC has a specific gravity of 4
.. 2, and the specific gravity of the II Ti alloy is 6.5. Therefore, if unidirectional solidification is performed from bottom to top as in Example 1, TiC can be removed by floating.

溶Ii3中の不純物は1.溶湯3の凝固が進行するとと
もに残った液相7中に濃縮されてゆき、最後に凝固した
最終凝固部に集積される。
Impurities in solution Ii3 are 1. As the solidification of the molten metal 3 progresses, it is concentrated in the remaining liquid phase 7, and is accumulated in the final solidified portion.

そこで、できた鋳塊の最終凝固部から173を切り落と
し、残りの部分について、酸素および炭素の含有濃度、
加工性、さらに疲労寿命を調べるテストを行なった。加
工性と疲労寿命とを調べるためのテストは、次のような
方法で行なった。まず、鋳塊を熱間加工および冷間加工
によって、直径1 mmの線材に成形した。この線材を
、同じ直径1mmの線に巻付けるテストを行ない、自己
径への巻付けが可能であるかどうかによって加工性をテ
ストした。さらに、この線材をコイル状に記憶処理し、
コイルの先端に錘を吊るして、τ=30k(1/mm2
の定荷重下で、加熱と冷却とを交互に行ない、形状回復
と変形とを繰返した。こうして線材が破断するまでの形
状回復の回数によって、疲労寿命を測定した。
Therefore, 173 was cut off from the final solidified part of the resulting ingot, and the oxygen and carbon content concentration,
Tests were conducted to examine workability and fatigue life. Tests to investigate workability and fatigue life were conducted in the following manner. First, the ingot was formed into a wire rod with a diameter of 1 mm by hot working and cold working. This wire rod was tested by winding it around a wire having the same diameter of 1 mm, and the workability was tested by determining whether winding to the same diameter was possible. Furthermore, this wire is memorized into a coil shape,
A weight is hung on the tip of the coil, and τ=30k (1/mm2
Under a constant load, heating and cooling were performed alternately, and shape recovery and deformation were repeated. In this way, the fatigue life was measured by the number of times the wire rod recovered its shape until it broke.

比較のために以上のテストを、第3図に示された従来の
方法で鋳造されたNi Ti系合金についても行なった
。その結果は次の表のとおりであった。
For comparison, the above test was also conducted on a NiTi alloy cast by the conventional method shown in FIG. The results are shown in the table below.

実施例2 実施例1と同じ装置を用い、種付は法によりNi重量5
5%−Ti重重ff145%金の単結晶鋳塊を作成した
。この鋳塊の酸素含有率は、100pp諭であった。さ
らに、実施例1と同じ形状回復テストを行なったところ
、破断するまでの形状回復回数は60.000回であっ
た。
Example 2 Using the same equipment as in Example 1, seeding was performed using a Ni weight of 5
A single crystal ingot of 5%-Ti weight ff145% gold was prepared. The oxygen content of this ingot was 100 ppm. Furthermore, when the same shape recovery test as in Example 1 was conducted, the number of shape recovery times before breakage was 60,000.

実m例3 In−45,8重量%丁1合金を実施例1と同様に一方
向凝固し、冷間加工で直径0.5mmの線に成形した。
Practical Example 3 An In-45, 8% by weight D1 alloy was unidirectionally solidified in the same manner as in Example 1, and formed into a wire with a diameter of 0.5 mm by cold working.

この線について、示差熱分析法により、変態温度を測定
したところ、MS点は95℃であった。
When the transformation temperature of this line was measured by differential thermal analysis, the MS point was 95°C.

比較のため、従来の方法で鋳造した同一組成のNi−4
5,81’!%T1合金を実施例3と同様に処理して直
径Q、5mmの線とし、測定したところ、Ms点は80
℃であった。
For comparison, Ni-4 of the same composition cast by the conventional method
5,81'! %T1 alloy was treated in the same manner as in Example 3 to form a wire with a diameter Q of 5 mm, and when measured, the Ms point was 80
It was ℃.

なお、逆変態開始温度と変態開始温度の差、すなわち温
度ヒステリシスは、実施例3の合金では20℃、従来法
で鋳造された合金では30℃であった。
The difference between the reverse transformation start temperature and the transformation start temperature, that is, the temperature hysteresis, was 20°C for the alloy of Example 3 and 30°C for the alloy cast by the conventional method.

以上の実施例では、この発明によるNiTi系合金の’
JIJ 3ti方法はNtとT1のみからなるNiTi
合金の製造に用いられたが、NiもしくはTiの一部が
Cu、A見、V、 Zn 、 Mo 、 Cr 、F8
、Coおよび希土類元素からなる群から選ばれた一種以
上の金属で置換されたNi Ti系合金の製造に用いて
もよい。
In the above embodiments, the NiTi-based alloy according to the present invention was
JIJ 3ti method is NiTi consisting only of Nt and T1.
It was used in the production of alloys, but some of the Ni or Ti was mixed with Cu, A, V, Zn, Mo, Cr, F8.
, Co, and rare earth elements.

なお、鋳塊が完全に単結晶化された場合には、鋳塊中で
の不純物の析出は皆無となる。
Note that when the ingot is completely single crystallized, there is no precipitation of impurities in the ingot.

発明の効果 以上のように、Ni Ti系合金の溶場を一方向に向か
って凝固することによって、鋳塊への酸素の混入を大幅
に減少することができる。その結果従来よりも成形加工
性に優れ、疲労寿命が長く、かつMS点が高(、温度ヒ
ステリシスの小さいNiTi系合金を(qることができ
る。このような効果を奏するNi Ti系合金の製造方
法は、形状記憶合金アクチュエータや超弾性部材などの
材料となるNi Ti系合金の製造にイ1利に利用され
得る。
As described above, the incorporation of oxygen into the ingot can be significantly reduced by solidifying the melt field of the Ni Ti alloy in one direction. As a result, it is possible to create a NiTi-based alloy with superior formability, longer fatigue life, and a higher MS point and lower temperature hysteresis than before. The method can be advantageously used for manufacturing NiTi-based alloys that are used as materials for shape memory alloy actuators, superelastic members, and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明によるNi Ti系合金の製造方法
の概略を示す模式図である。第2図は、この発明による
一実施例を示す断面図である。第3図は、従来のNi 
Ti系合金の製造方法を示す断面図である。
FIG. 1 is a schematic diagram showing an outline of the method for manufacturing a Ni Ti alloy according to the present invention. FIG. 2 is a sectional view showing an embodiment according to the present invention. Figure 3 shows the conventional Ni
FIG. 2 is a cross-sectional view showing a method for manufacturing a Ti-based alloy.

Claims (2)

【特許請求の範囲】[Claims] (1)Niを50〜60%含み、残部がTiよりなり、
形状記憶効果や超弾性挙動の機能を有するNiTi合金
、または、前記NiもしくはTiの一部がCu、Al、
V、Zn、Mo、Cr、Fe、Coおよび希土類元素か
らなる群から選ばれた1種以上の金属で置換されたNi
Ti合金の溶湯を一方向へ向かって凝固させることを特
徴とするNiTi系合金の製造方法。
(1) Contains 50 to 60% Ni, the remainder consists of Ti,
A NiTi alloy having a shape memory effect or superelastic behavior, or a part of the Ni or Ti is Cu, Al,
Ni substituted with one or more metals selected from the group consisting of V, Zn, Mo, Cr, Fe, Co and rare earth elements
A method for producing a NiTi alloy, characterized by solidifying a molten Ti alloy in one direction.
(2)前記NiTi系合金の溶湯を下方から冷却して、
前記溶湯を下方から上方に向かつて凝固させる特許請求
の範囲第1項に記載のNiTi系合金の製造方法。
(2) Cooling the molten NiTi alloy from below,
The method for producing a NiTi-based alloy according to claim 1, wherein the molten metal is solidified from below to above.
JP14738185A 1985-07-03 1985-07-03 Manufacture of niti alloy Pending JPS627839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14738185A JPS627839A (en) 1985-07-03 1985-07-03 Manufacture of niti alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14738185A JPS627839A (en) 1985-07-03 1985-07-03 Manufacture of niti alloy

Publications (1)

Publication Number Publication Date
JPS627839A true JPS627839A (en) 1987-01-14

Family

ID=15428957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14738185A Pending JPS627839A (en) 1985-07-03 1985-07-03 Manufacture of niti alloy

Country Status (1)

Country Link
JP (1) JPS627839A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0287186A (en) * 1988-09-22 1990-03-28 Yoshikazu Kimura Information lamination body and its manufacture
EP0384414A2 (en) * 1989-02-23 1990-08-29 Nkk Corporation Magnetic disk substrate
EP0648856A1 (en) * 1993-09-22 1995-04-19 The Furukawa Electric Co., Ltd. Eyeglass frame and fabrication method
JP2009061468A (en) * 2007-09-05 2009-03-26 Kimura Chem Plants Co Ltd Method for producing laminated rubber bearing body, and laminated rubber bearing body
CN102952980A (en) * 2012-11-20 2013-03-06 无锡常安通用金属制品有限公司 Wide-temperature range memory alloy and preparation method thereof
US8801875B2 (en) 2007-12-21 2014-08-12 Cook Medical Technologies Llc Radiopaque alloy and medical device made of this alloy
US9074274B2 (en) 2009-11-17 2015-07-07 Cook Medical Technologies Llc Nickel-titanium-rare earth alloy and method of processing the alloy
US9103006B2 (en) 2006-09-06 2015-08-11 Cook Medical Technologies Llc Nickel-titanium alloy including a rare earth element
US9212409B2 (en) 2012-01-18 2015-12-15 Cook Medical Technologies Llc Mixture of powders for preparing a sintered nickel-titanium-rare earth metal (Ni-Ti-RE) alloy
JP2016027200A (en) * 2014-06-24 2016-02-18 国立大学法人東北大学 NiTi-BASED SUPERELASTIC ALLOY MATERIAL OR SHAPE MEMORY ALLOY MATERIAL AND WIRE AND PIPE MATERIAL CONTAINING THE SAME
US10000827B2 (en) 2011-10-21 2018-06-19 University Of Limerick Method of forming a sintered nickel-titanium-rare earth (Ni—Ti—RE) alloy

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0287186A (en) * 1988-09-22 1990-03-28 Yoshikazu Kimura Information lamination body and its manufacture
EP0384414A2 (en) * 1989-02-23 1990-08-29 Nkk Corporation Magnetic disk substrate
US5360677A (en) * 1989-02-23 1994-11-01 Nkk Corporation Magnetic disk substrate
EP0648856A1 (en) * 1993-09-22 1995-04-19 The Furukawa Electric Co., Ltd. Eyeglass frame and fabrication method
US9103006B2 (en) 2006-09-06 2015-08-11 Cook Medical Technologies Llc Nickel-titanium alloy including a rare earth element
US9873933B2 (en) 2006-09-06 2018-01-23 Cook Medical Technologies Llc Nickel-titanium alloy including a rare earth element
JP2009061468A (en) * 2007-09-05 2009-03-26 Kimura Chem Plants Co Ltd Method for producing laminated rubber bearing body, and laminated rubber bearing body
US8801875B2 (en) 2007-12-21 2014-08-12 Cook Medical Technologies Llc Radiopaque alloy and medical device made of this alloy
US9074274B2 (en) 2009-11-17 2015-07-07 Cook Medical Technologies Llc Nickel-titanium-rare earth alloy and method of processing the alloy
US10000827B2 (en) 2011-10-21 2018-06-19 University Of Limerick Method of forming a sintered nickel-titanium-rare earth (Ni—Ti—RE) alloy
US10563291B2 (en) 2011-10-21 2020-02-18 University Of Limerick Method of forming a sintered nickel-titanium-rare earth (Ni—Ti—Re) alloy
US9212409B2 (en) 2012-01-18 2015-12-15 Cook Medical Technologies Llc Mixture of powders for preparing a sintered nickel-titanium-rare earth metal (Ni-Ti-RE) alloy
CN102952980A (en) * 2012-11-20 2013-03-06 无锡常安通用金属制品有限公司 Wide-temperature range memory alloy and preparation method thereof
JP2016027200A (en) * 2014-06-24 2016-02-18 国立大学法人東北大学 NiTi-BASED SUPERELASTIC ALLOY MATERIAL OR SHAPE MEMORY ALLOY MATERIAL AND WIRE AND PIPE MATERIAL CONTAINING THE SAME

Similar Documents

Publication Publication Date Title
US4140555A (en) Nickel-base casting superalloys
US5797443A (en) Method of casting articles of a bulk-solidifying amorphous alloy
Bigelow et al. Sulfide inclusions in steel
JPS627839A (en) Manufacture of niti alloy
Cole Inhomogeneities and their control via solidification
CN108559896A (en) Cast high-damping manganese copper alloy material and its manufacturing method
CN103526038B (en) A kind of high-strength high-plasticity TWIP steel esr production method
Fulin et al. Microstructure and segregation behavior of Rene88DT alloy prepared by ESR-CDS
JP2001170757A (en) Oriented solidifying method cooled with liquid metal
Deyong et al. Microstructural and mechanical properties of rapidly solidified Cu Ni Sn alloys
CN109881057A (en) A kind of high-strength and high ductility material and preparation method thereof
CA1073248A (en) Directionally solidified castings
JPH02225642A (en) Niobium-base alloy for high temperature
Guo et al. The effect of phosphorus, sulphur and silicon on segregation, solidification and mechanical properties of cast Alloy 718
NURI et al. Solidification microstructure of ingots and continuously cast slabs treated with rare earth metal
US8241560B2 (en) Nickel base superalloy and single crystal castings
JPS61210142A (en) Ni-ti alloy having superior shock resistance and its manufacture
JP2003094151A (en) POWDER FOR CONTINUOUS CASTING FOR Ni-GROUP ALLOY AND METHOD FOR CONTINUOUS CASTING
US10465258B2 (en) Grain refinement in iron-based materials
US2693414A (en) Methods of casting titanium stabilized steel
Munitz et al. Solidification of supercooled Fe-Ni alloys
JPH08253830A (en) Production of single-crystal ni-base alloy casting having high single-crystallization ratio
JP5173283B2 (en) Nickel-based alloy and manufacturing method thereof
CN1136066C (en) Method for preparing magnesium alloy ingot
US3802867A (en) Procedure for producing structures with globular primary crystals