JPS627837A - Manufacture of magnesium alloy having fine-grained structure - Google Patents

Manufacture of magnesium alloy having fine-grained structure

Info

Publication number
JPS627837A
JPS627837A JP14792785A JP14792785A JPS627837A JP S627837 A JPS627837 A JP S627837A JP 14792785 A JP14792785 A JP 14792785A JP 14792785 A JP14792785 A JP 14792785A JP S627837 A JPS627837 A JP S627837A
Authority
JP
Japan
Prior art keywords
fine
alloy
magnesium
magnesium alloy
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14792785A
Other languages
Japanese (ja)
Inventor
Kenji Azuma
健司 東
Chuichi Onishi
大西 忠一
Ichizo Tsukuda
市三 佃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP14792785A priority Critical patent/JPS627837A/en
Publication of JPS627837A publication Critical patent/JPS627837A/en
Pending legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

PURPOSE:To provide a fine-grained structure by allowing a plastic working stage of a specific working temp. and rate of strain to be included in the process of manufacturing a magnesium-base alloy containing specific amounts of Zr. CONSTITUTION:The magnesium-base alloy is made by incorporating as principal hardener 0.2-0.8wt.% Zr to a known alloy of Mg-Zn, Mg-Al-Zn or another type containing 1 or >=2 elements among Zn, Al and Mn. In the manufacturing process of the above alloy, the plastic working stage of 150-450 deg.C working temp. and 1X10<-4>sec<-1>-1sec<-1> rate of strain is included.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、微細結晶粒組織を有し、成形用、鍛造用、
その他構造材用等の用途に好適する優れた延性を示す超
塑性マグネシウム合金の製造法に関する。
[Detailed Description of the Invention] Industrial Fields of Use This invention has a fine grain structure and is suitable for forming, forging,
The present invention also relates to a method for producing a superplastic magnesium alloy that exhibits excellent ductility and is suitable for other uses such as structural materials.

従来の技術 マグネシウム合金は、−1に延性が低いことから、構造
用、成形用、鍛造等の材料としての使用に不適でおる。
Conventional magnesium alloys have a ductility as low as -1, making them unsuitable for use as materials for structures, forming, forging, and the like.

而して、従来では主として合金の組成面から、結晶粒の
微細化をはかり、もって延性を増大をはかることが考慮
されてきており、その代表的な1つとして、zrを0゜
40〜0.8wt%程度添加含有せしめることによって
延性の向上を図ったJIS −MT4合金が良く知られ
ている。
Conventionally, it has been considered to improve the ductility by making the crystal grains finer, mainly from the viewpoint of the composition of the alloy. A JIS-MT4 alloy whose ductility is improved by adding about .8 wt% of the content is well known.

発明が解決しようとする問題点 しかしながら、Z「を含有した上記のようなマグネシウ
ム合金を用い、結晶粒を微細化しつる製造法として知ら
れる冷間加工→焼鈍の工程を含む製造法で製造した場合
でさえ、結晶粒径を20μ以下にまで微細化させること
は困難でおり、製品に好ましい超塑性の特性を帯有uし
めうるちのではなかった。またマグネシウム合金は、本
来冷間加工性が悪いことから、冷間加工を行うことなく
結晶粒の微細化組織を得ることが望まれるが、従来の製
造法ではかかる要請にも適合し得ないものであった。
Problems to be Solved by the Invention However, when a magnesium alloy as described above containing Z is used and manufactured by a manufacturing method that refines the crystal grains and includes a cold working → annealing process known as the vine manufacturing method. However, it is difficult to refine the crystal grain size to less than 20μ, and it has not been possible to obtain the desirable superplastic properties of the product.Furthermore, magnesium alloys inherently have poor cold workability. Therefore, it is desired to obtain a grain-refined structure without performing cold working, but conventional manufacturing methods have not been able to meet this requirement.

問題点を解決する為の手段 この発明者らは、上記のような問題点に鑑み、冷間加工
の必要性を排斥して、しかも結晶粒の極微細化を図り得
る製造法の確立を意図して種々実験と研究を行った結果
、微細化元素としての7−rを含有したマグネシウム合
金を、鋳造後、所定の温間条件下で、極低ひずみ条件下
に加工することによって所期目的を達成しうろことを見
出し、この発明を完成するに至ったものである。
Means for Solving the Problems In view of the problems mentioned above, the inventors aimed to establish a manufacturing method that eliminates the need for cold working and can achieve ultra-fine crystal grains. As a result of various experiments and research, we found that by casting a magnesium alloy containing 7-r as a refining element and processing it under predetermined warm conditions and extremely low strain conditions, the desired purpose could be achieved. They found the means to achieve this and completed this invention.

而して、この発明は、Zrを0.2〜0.8wt%含有
したマグネシウム基合金の製造に際し、その製造工程に
おいて、 加工温度:150〜450℃ ひずみ速度: 1 X ’I 0−4sec−’ 〜1
 5ec−1の塑性加工を行うことを特徴とするもので
ある。
Therefore, in the production process of the magnesium-based alloy containing 0.2 to 0.8 wt% of Zr, the present invention provides the following conditions: Processing temperature: 150 to 450°C Strain rate: 1 X'I 0-4sec- '~1
It is characterized by performing plastic working of 5ec-1.

この発明の製造に用いられるマグネシウム基合金は、主
要硬化元素としてZn 、 AI 、あるいはMnの一
種または2種以上を含む既知のMq−Zn系、Mg−A
l −Zn系等の合金にZrを規定量範囲に含有せしめ
たものである。
The magnesium-based alloy used in the production of this invention is a known Mq-Zn alloy containing one or more of Zn, AI, or Mn as a main hardening element, Mg-A
This is an alloy such as 1-Zn containing Zr in a specified amount range.

ここに、Znの含有量は一般的に概ね0.5〜1.5w
t%の範囲であり、A1の含有量は概ね2.4〜7.2
wt%の範囲である。その他Mn、Fe、5iXCuが
許容不純物範囲に含有されつる。
Here, the Zn content is generally approximately 0.5 to 1.5w.
t% range, and the content of A1 is approximately 2.4 to 7.2
The range is wt%. In addition, Mn, Fe, and 5iXCu are contained within the allowable impurity range.

この発明において必須の添加元素として0゜2〜o、a
wt%の含有が規定される°Zrは、従来既知のとおり
結晶粒の微細化に効果を有するものであり、下限値0.
2wt%未満ではその効果がなく、上限値Q、Bwt%
を越えると、zr系晶出物が発生し、延性の低下を招く
。最も好適なZr含有量は0.4〜0.7’wt%程度
である。
In this invention, essential additive elements include 0°2~o, a
°Zr, whose wt% content is specified, is effective in refining crystal grains as is conventionally known, and has a lower limit of 0.
If it is less than 2wt%, there is no effect, and the upper limit Q, Bwt%
If it exceeds this value, Zr-based crystallized substances will be generated, leading to a decrease in ductility. The most suitable Zr content is about 0.4 to 0.7'wt%.

この発明の製造工程中に必要的に実施されるべき塑性加
工は、その加工の種類に於て特に限定されるものではな
く、張出し加工、押出し加工、圧延、伸線、鍛造、圧縮
などの各種加工等が包含される。しかし、その加工条件
は、加工温度に於て150〜450℃、ひずみ速度にお
イT 1 X 10−4sec−1〜15ec−1(7
)範囲に限定される。ここに、加工湿度が150’C未
満では、加工により発生した転位のセル化が生じにくく
、また固溶Zrのサブグレインまたはグレイン上への析
出が生じないため、ピンニング効果が不足することとな
り、結晶粒の微細化をはかることができない。一方加工
温度が450℃を越えると固溶Zrが析出せず、結晶粒
の微細化を実現することができない。また、加工時の合
金のひずみ速度は、これが’l X 10−4sec−
1未満では微細セルおよび微細再結晶粒が小さくならな
い。半面1sec−1を越えて早い加工が加えられると
、転位の導入が多くセルの安定がはかれず、その結果も
はや析出物によるピンニング効果が不足し、結晶粒の微
細化を果すことができなくなる。実験の結果によれば最
も好ましい加工条件の範囲は、概ね加工温度:200〜
250°C、ヒスミ速度; 1 X 10−3SeC−
1〜1 X 10−2SeC−1程度でおる。
The type of plastic working that must be performed during the manufacturing process of this invention is not particularly limited, and may include various types of processing such as stretching, extrusion, rolling, wire drawing, forging, and compression. This includes processing, etc. However, the processing conditions are a processing temperature of 150 to 450°C and a strain rate of T 1 X 10-4 sec-1 to 15 ec-1 (7
) limited to a range. Here, if the processing humidity is less than 150'C, dislocations generated by processing are unlikely to form cells, and solid solution Zr does not precipitate on subgrains or grains, resulting in insufficient pinning effect. It is not possible to refine the crystal grains. On the other hand, if the processing temperature exceeds 450°C, solid solution Zr will not precipitate, making it impossible to achieve grain refinement. Also, the strain rate of the alloy during processing is 'l x 10-4sec-
If it is less than 1, fine cells and fine recrystallized grains will not become small. If processing is applied at a speed exceeding 1 sec-1 per half, many dislocations will be introduced and the cell will not be stabilized, and as a result, the pinning effect by the precipitates will no longer be sufficient and grain refinement will no longer be achieved. . According to the experimental results, the most preferable range of processing conditions is generally processing temperature: 200~
250°C, hissing rate; 1 X 10-3SeC-
It is about 1 to 1 x 10-2 SeC-1.

発明の効果 この発明によれば、後記実施例に見られるように、冷間
加工を行なわない簡易な製造工程をもって、結晶粒径を
20μ以下とした極微細な結晶粒組織のマグネシウム合
金を得ることができる。従って、機械的強度の低下を招
くことなく、延性に著しく優れたマグネシウム合金を得
ることができるものであり、従来提供されている既知の
該合金に較べて各種成形性、鍛造性等に一段と優れたマ
グネシウム合金材料を提供しうる。
Effects of the Invention According to the present invention, as seen in the examples below, a magnesium alloy with an extremely fine crystal grain structure with a crystal grain size of 20 μm or less can be obtained using a simple manufacturing process that does not involve cold working. Can be done. Therefore, it is possible to obtain a magnesium alloy with extremely excellent ductility without causing a decrease in mechanical strength, and it has much better formability, forgeability, etc. than the known alloys that have been provided so far. It is possible to provide a magnesium alloy material.

ちなみに、本発明の製造法により、上記のような微細結
晶粒組織が得られるのは、前記の加工条件により、固溶
しているZrがサブグレインまたはグレインに析出し、
ピンニング効果が増大するため、再結晶が遅延し、微細
結晶粒になるもの−と考えられる。
Incidentally, the reason why the above-mentioned fine grain structure is obtained by the manufacturing method of the present invention is that Zr in solid solution precipitates into subgrains or grains due to the processing conditions described above.
It is thought that recrystallization is delayed due to the increased pinning effect, resulting in fine crystal grains.

実施例 表−1に示す各種組成の合金を直径75InInの鋳塊
に水冷金型で鋳造した。そしてこの鋳塊を450℃で3
mX3(Innの帯状材に押出したのち、表−1に示す
各種の加工条件で特殊圧延による塑性加工を施したもの
を試料とした。なお、比較例については、室温で従来の
常法に準じてひずみ速度的1 SeC’の塑性加工を施
したのち、500℃に焼鈍したものを試料とした。
Examples Alloys having various compositions shown in Table 1 were cast into ingots with a diameter of 75 InIn using a water-cooled mold. Then, this ingot was heated to 450℃ for 3
The samples were extruded into strips of m The sample was subjected to plastic working at a strain rate of 1 SeC' and then annealed at 500°C.

惰 上記によって得られた各試料につき、その合金組成中の
平均結晶粒径を測定すると共に、機械的性質を調べたと
ころ、結果は表−2に示すとおりであった。
For each sample obtained above, the average grain size in the alloy composition was measured and the mechanical properties were examined, and the results were as shown in Table 2.

表−2Table-2

Claims (1)

【特許請求の範囲】 Zr;0.2〜0.8wt%含有したマグネシウム基合
金の製造に際し、その製造工程において、 加工温度;150〜450℃ ひずみ速度;1×10^−^4sec^−^1〜1se
c^−^1の塑性加工工程を含むことを特徴とする微細
結晶粒組織を有するマグネシウム合金の製造法。
[Claims] When manufacturing a magnesium-based alloy containing 0.2 to 0.8 wt% of Zr, in the manufacturing process: Processing temperature: 150 to 450°C Strain rate: 1 x 10^-^4 sec^-^ 1~1se
A method for producing a magnesium alloy having a fine grain structure, characterized by including a c^-^1 plastic working step.
JP14792785A 1985-07-04 1985-07-04 Manufacture of magnesium alloy having fine-grained structure Pending JPS627837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14792785A JPS627837A (en) 1985-07-04 1985-07-04 Manufacture of magnesium alloy having fine-grained structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14792785A JPS627837A (en) 1985-07-04 1985-07-04 Manufacture of magnesium alloy having fine-grained structure

Publications (1)

Publication Number Publication Date
JPS627837A true JPS627837A (en) 1987-01-14

Family

ID=15441226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14792785A Pending JPS627837A (en) 1985-07-04 1985-07-04 Manufacture of magnesium alloy having fine-grained structure

Country Status (1)

Country Link
JP (1) JPS627837A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000060133A1 (en) * 1999-04-03 2000-10-12 Volkswagen Aktiengesellschaft Method for producing a magnesium alloy by extrusion moulding and use of the extrusion moulded semifinished products and components

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000060133A1 (en) * 1999-04-03 2000-10-12 Volkswagen Aktiengesellschaft Method for producing a magnesium alloy by extrusion moulding and use of the extrusion moulded semifinished products and components
EP1295957A2 (en) * 1999-04-03 2003-03-26 Volkswagen Aktiengesellschaft Method of producing a magnesium alloy by extrusion and use of the extruded semifinished products and components
EP1295957A3 (en) * 1999-04-03 2010-03-10 Volkswagen Aktiengesellschaft Method of producing a magnesium alloy by extrusion and use of the extruded semifinished products and components

Similar Documents

Publication Publication Date Title
US4021271A (en) Ultrafine grain Al-Mg alloy product
EP1640466A1 (en) Magnesium alloy and production process thereof
CN107604222B (en) It is a kind of can ageing strengthening Al-Mg alloy and preparation method thereof
JPS63157831A (en) Heat-resisting aluminum alloy
JP5233607B2 (en) Aluminum alloy plate excellent in formability and method for producing the same
CN104099502B (en) A kind of magnesium lithium alloy and preparation method thereof and magnesium lithium alloy preparation of plates method
JPH03500188A (en) Method for producing oxide dispersion hardened sintered alloy
US3945860A (en) Process for obtaining high ductility high strength aluminum base alloys
JPS623225B2 (en)
CN110195178A (en) A kind of heat-resisting resistance to combustion magnesium alloy of High-strength high-plasticity and its manufacturing method
KR20150017143A (en) Magnesium alloy for extrusion with excellent plasticity―workability and method for producing the same
CN103469039A (en) Magnesium-aluminum-zinc wrought magnesium alloy containing calcium and rare-earth samarium
US20200354818A1 (en) High Strength Microalloyed Magnesium Alloy
JPH05171331A (en) High strength magnesium-base alloy
JPH05306424A (en) High strength magnesium-base alloy and its laminated and solidified material
CN109477169B (en) Aluminum alloy plastic working material and method for producing same
JPH0456098B2 (en)
JPS627837A (en) Manufacture of magnesium alloy having fine-grained structure
CN114686735A (en) Wrought aluminum alloy with gradient structure and preparation method thereof
JP3387548B2 (en) Manufacturing method of magnesium alloy molded product
JPS627836A (en) Manufacture of aluminum alloy having fine-grained structure
JP2807400B2 (en) High strength magnesium-based alloy material and method of manufacturing the same
JPS5911651B2 (en) Superplastic aluminum alloy and its manufacturing method
JPH039183B2 (en)
JPS62297433A (en) Structural al alloy excellent in hardenability